
EAI Endorsed Transactions  
on Internet of Things Research Article 

1  

Weed detection with Improved Yolov 7 
Mingkang Peng1, Wuping Zhang1,*, Fuzhong Li1, Qiyuan Xue1, Jialiang Yuan 1, Peipu An1 

1College of Software, Shanxi Agricultural University, Taigu, Jinzhong , Shanxi, China 

Abstract 

INTRODUCTION: An improved Yolov7 model. 
OBJECTIVES: To solve the weed detection and identification in complex field background. 
METHODS: The dataset was enhanced by online data enhancement, in which the feature extraction, feature fusion and 
feature point judgment of weed image were carried out by Yolov7 to predict the weed situation corresponding to the prior 
box. In the enhanced feature extraction part of Yolov7, CBAM, an attention mechanism combining channel and space, is 
introduced to improve the attention of the algorithm to weeds and strengthen the characteristics of weeds.  
RESULTS: The mean average precision (mAP ) of the improved algorithm reached 91.15%, which was 2.06% higher than 
that of the original Yolov7 algorithm. Compared with the current mainstream target detection algorithms Yolox, Yolov5l, 
Fster RCNN, Yolov4-tiny and Yolov3, the mAP value of the improved algorithm increased by 4.35, 4.51, 5.41, 19.77 and 
20.65 percentage points. Weed species can be accurately identified when multiple weeds are adjacent. 
CONCLUSION: This paper provides a detection model based on Yolov7 for weed detection in the field, which has a good 
detection effect on weed detection, and lays a research foundation for intelligent weeding robot and spraying robot. 
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1. Introduction

Weed damage is the main factor affecting agricultural 
development[1]. In farmland, weeds compete with crops for 
water, nutrients and spatial location, which in turn affects 
the yield and quality of crops[2-3]. How to reasonably 
control weeds has become a major problem in agricultural 
development. At present, artificial pesticide spraying 
devices and drone spraying are the main ways to control 
weeds, which will have a bad impact on human body and 
environment, and even endanger human life[4-8]. Weed 
detection is the basis of intelligent weed control and 
intelligent equipment research[9-11], and it is also the 
difficulty[12]. Therefore, it is necessary to study the accurate 
detection of weeds.  

Previous weed detection methods mostly use traditional 
machine learning methods to extract image features 

*Corresponding author. Email: zwping@126.com

manually, and only use simple phenotypic features such as 
color and traits, which are easily affected by factors such 
as human and environmental background, resulting in low 
recognition accuracy and poor robustness[13-16]. 

2. Methodology

2.1 Data Preparation 

The data required for the experiment were collected from 
the test site of the west station of Shanxi Agricultural 
University and the test site of the pastoral station of Shanxi 
Agricultural University in Taigu District, Jinzhong City, 
Shanxi Province. The collected objects were the associated 
weeds information of soybeans, corn and other crops, 
including nine kinds of weed images of thistle grass, 
humulus scandens, daylily, summer solstice grass, 
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amaranth, quinoa, phoenix, solanum and glass grass. The 
acquisition equipment is Canon SLR camera EOS70D and 
Nikon SLR camera D3300. The maximum image 
resolution is 6000 * 4000. The collected images are 
characterized by individual weeds, multiple same weeds 
and multiple different weeds. Some samples are shown in 
Figure 1. 
 

  
(a) 

  
                                             (b) 

 
(c) 
 

Figure 1. Examples of sample. (a)Single weed, 
(b)Multiple identical weeds,(c)Multiple weeds. 

2.2 Data Pre-Processing  

After screening to remove duplicate and blurred images, 
the data set used 400 thistles, 350 humulus scandens, 230 
bowl flowers, 160 summer solstice grass, 700 amaranth, 
700 quinoa, 270 lanceolate, 150 solanum, 210 borage, a 
total of 3170. According to the training set: validation set 
: test set for the ratio of 8 : 1 : 1 to establish a data set, in 
order to ensure reliable data, using a random method to 
divide the data set, the data sets do not coincide with each 
other. The training set is used to fit the model, the 
classification model is trained by the set hyperparameters, 
the validation set is used to adjust the model parameters, 
and the test set is used to evaluate the performance of the 
model. We use the annotation tool LabelIMG to annotate 
images and generate Pascal VOC dataset format.  

2.3 Data Augmentation 

Data enhancement is divided into online data 
enhancement and offline data enhancement. In this paper, 

we use online data enhancement method. Mosaic ' s idea is 
to cut four images randomly and then stitch them into one 
image as training data. During the training process, each 
step has a 50 % probability to use Mosaic data 
enhancement, and a 50 % probability to mix-up data 
enhancement of Mosaic enhanced images. At the same 
time, the training set is randomly flipped and the color 
gamut is transformed. Gray bars are added to the redundant 
parts of the image, so that each epoch training picture is 
different. This method can greatly enrich the data set and 
enhance the robustness and generalization of the model. 
Compared with offline data enhancement, online data 
enhancement does not need to save the enhanced data, 
which saves a lot of storage space and has strong flexibility. 
The image effect after data enhancement is shown in Figure 
2. 

 

 
(a) 

  
(b) 

 
Figure 2. Effects of image data augmentation. (a) 

Picture splicing cutting, (b)Automatically add labels. 

2.4 Experimental Environment 
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The training parameters of the training process used in the 
experiment are shown in Table 1. 

Table 1. Experimental platform configuration 

Configuration Configuration 
Operating System Windows10  
CPU Intel(R)Core(TM)I7-5930K 
Random Access 
Memory 48G 

GPU NVIDIA TITAN X(Pascal) 
Python 3.8 
Pytorch 1.12.1 

2.5 Train Parameters 

The training set is used to train the model. The fp16 mixed 
precision training is used to train 200 epochs, and the first 
50 epochs are frozen for training. The learning rate of the 
model is set to 0.01, and the SGD optimizer is used. The 
momentum parameter in the optimizer is set to 0.937, the 
weight attenuation coefficient is set to 0.0005, the Batch 
Size is set to 16, and the cosine annealing attenuation 
strategy is used to adjust the learning rate. 

2.6 Evaluation indicators  

In order to represent the performance of the model, it was 
decided to use Average Precison, Mean of Precision (mAP 
), F1-score, parameters, and model memory usage as model 
evaluation metrics. AP is related to Precision (P) and recall 
( R ), which is the area under the curve of PR curve. AP 
value can better reflect the effect of the model. The specific 
calculation formula is: 

   

𝑃𝑃 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃+ 𝐹𝐹𝑃𝑃
× 100% (1) 

𝑅𝑅 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
× 100% (2) 

𝐴𝐴𝑃𝑃 = � 𝑃𝑃(𝑅𝑅)𝑑𝑑𝑅𝑅
1

0
(3) 

𝑚𝑚𝐴𝐴𝑃𝑃 =
∑𝐴𝐴𝑃𝑃
𝐹𝐹

(4) 

𝐹𝐹1 = 2 ×
𝑃𝑃𝑅𝑅
𝑃𝑃 + 𝑅𝑅

(5) 

 
In the formula, TP is the number of positive samples 

correctly predicted; FP is the number of samples whose 
error prediction is positive; FN is the number of samples 
whose false prediction is negative; N is the number of 
predicted samples. 

 
 
 

2.7 Related Network 

In this section, the details of the introduction of Yolov7 into 
the attention mechanism are described. 

2.7.1 Improved Yolov7 framework  
Yolov7 is a one stage algorithm designed by the original 
Yolov4 team. As the latest algorithm of Yolo series, 
Yolov7 has the advantages of higher accuracy and faster 
speed than Yolov5 series under the same training amount. 
Yolov7 exceeds the currently known detector between 
5FPS and 160FPS[17-19]. The improved Yolov7 algorithm 
structure is shown in Figure 3.  

Yolov7 structure can be divided into three parts: 
BackBone, FPN, Yolo Head. After the weed data is 
entered, the feature layer is first obtained in the BackBone 
section through convolution, batch normalization, and 
activation function processing. In order to identify weeds 
more accurately, Yolov7 is improved. The improvement 
is mainly to add CBAM after each MCB in the backbone 
feature network to enhance the attention to weed features, 
so as to improve the accuracy of weed identification. 

In the BackBone section, get the feature set for the 
input image data. The feature set is input into the FPN 
part for feature fusion. In the experiment, the data set 
contains complex images, in which the size and 
characteristics of the target object are different. By using 
the shallow features in FPN, a large feature map can be 
obtained, so as to identify simple targets. For example, 
pointed leaf grass belongs to Gramineae, Humulus 
scandens belongs to broadleaf grass, and the leaf 
morphology of the two is very different. Using deep 
features can obtain small target features and identify 
complex targets. In the process of image processing, FPN 
continuously down-sampled the feature points of the 
target, and the image size became smaller and smaller. 
After up-sampling, the image size became larger and 
larger, so as to obtain more useful information. Through 
feature upsampling and downsampling, feature fusion is 
finally achieved to obtain three enhanced feature layers.  

The enhanced feature layer of the weed obtained by the 
BackBone and FPN parts is the feature point set, and the 
feature points are judged by Yolo Head to determine 
whether the prior frame on the feature point corresponds 
to the weed. 
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Figure 3. Improved Yolov7 Algorithm structure 
diagram 

2.7.2 CBAM attention mechanism  
Because the weed shooting environment is too complex, 
the accuracy of target detection is low. To reduce the 
influence of noise, attention mechanism CBAM was 
introduced to improve the attention to the key features of 
weeds. The attention mechanism originated in the field of 
machine translation, mainly for image recognition tasks. In 
2018, a lightweight attention mechanism CBAM was 
proposed. CBAM is a mixed attention mechanism 
composed of channels and space.  

The channel attention module enters the image F and 
passes through the global maximum pooling and the global 
average pooling to obtain two vectors. The Relu activation 
function is used to fuse the two vectors through the multi-
layer perceptron and use the addition method for data 
fusion. Finally, the activation function sigmoid activation 
operation obtains the channel attention vector Mc (Channel 
Attention) process as shown in Figure 4. 

 

 
 

Figure 4. Channel attention process 
The calculation formula of channel attention vector 𝑀𝑀𝑐𝑐  

is: 
 

𝑀𝑀𝑐𝑐(𝐹𝐹) = 𝜎𝜎 �𝑀𝑀𝑀𝑀𝑃𝑃�𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴(𝐹𝐹)�+ 𝑀𝑀𝑀𝑀𝑃𝑃�𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴(𝐹𝐹)��

= 𝜎𝜎 �𝑊𝑊1 �𝑊𝑊0�𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐 ��+ 𝑊𝑊1�𝑊𝑊0(𝐹𝐹𝑚𝑚𝑎𝑎𝑚𝑚
𝑐𝑐 )�� (6)

 

 
σ is sigmoid function, 𝑊𝑊0  and 𝑊𝑊1  are weight size of 

MLP, AvgPool is average pooling, MaxPool is max 
pooling, 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐  is average pooling feature, 𝐹𝐹𝑚𝑚𝑎𝑎𝑚𝑚

𝑐𝑐  is max 
pooling feature. 

Spatial module obtains the feature map along the 
channel dimension after the global maximum pooling and 
global average pooling to obtain different feature 
description operator, convolution kernel is 7 * 7 
convolution Sigmoid activation function, finally get the 
spatial attention vector ( Spatial branch ), the process is 
shown in Figure 5. 

 

 
 

Figure 5. Spatial attention process 
The calculation formula of spatial attention vector 𝑀𝑀𝑠𝑠 

is: 
 
𝑀𝑀𝑠𝑠(𝐹𝐹) = 𝜎𝜎(𝑓𝑓7×7([𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴(𝐹𝐹);𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴(𝐹𝐹)])) 

= 𝜎𝜎 �𝑓𝑓7×7��𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠 ;𝐹𝐹𝑚𝑚𝑎𝑎𝑚𝑚
𝑠𝑠 ���                    (7) 

where 𝑓𝑓7×7 is a convolution kernel of size 7 x 7. 

3 Experimental Results Analysis  

3.1 Experimental results  

Using Yolov7-CBAM to train the training set according to 
the adjusted parameters, we get the loss function Figure 
6(a) and mAP Figure6(b). The loss function is used to 
describe the difference between the predicted value and the 
true value of the model. The smaller the loss function value, 
the smaller the difference between the predicted value and 
the true value. The loss function of Yolov7-CBAM 
includes training loss and verification loss. It can be seen 
from the graph that both training loss and verification loss 
converge to a lower value, which proves that the improved 
Yolov7 has good convergence ability and high robustness 
of the model. From Figure 6(b), it can be concluded that in 
the training of the model, the mAP value of the first 50 
epoch models is improved rapidly, and the model tends to 
be stable after training to 100 epochs. When training to 200 
epochs, the mAP value of Yolov7-CBAM is stable at about 
0.91. 
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Figure 6. Train curve, (a)Loss function curve, 

(b)mAP curve. 

3.2 Comparison of detection results using 
different attention mechanisms  

In order to verify the effectiveness of adding attention 
mechanism, different attention mechanisms are compared 
with no attention mechanism. The comparison results are 
shown in Table 2. The average accuracy of Yolov7 
category without attention mechanism is 89.09 %, the 
average accuracy of Yolov7 category with CA attention 
mechanism is 90.62 %, the average accuracy of Yolov7 
category with CBAM attention mechanism is 91.15 %, and 
the average accuracy of Yolov7 category with SE attention 
mechanism is 88.79 %. After using CBAM mechanism, the 
problem of difficult identification of Solanum nigrum is 
solved without affecting the recognition accuracy of other 
categories, and the mAP value is increased by 2 percentage 
points. 

Table 2. Average classification accuracy of different 
attention mechanisms                                              % 

Types Yolov7 Yolov7-
CA 

Yolov7-
CBAM 

Yolov7-
SE 

Crisium 89.05 97.35 97.87 97.54 
Calystegia 88.27 95.45 95.26 95.99 
Humulus 89.48 88.10 85.24 80.95 
Pteris ensiformis 90.16 89.23 93.18 90.46 
Chenopodium 
album 80.74 84.78 85.47 82.14 

Cynoglossum 
furcatum 94.29 90.71 91.86 93.25 

Solanum nigrum 85.93 85.15 94.55 83.24 
Amaranth 88.31 86.19 83.85 85.13 
Lagopsis supina 95.56 92.68 93.08 90.21 
Average 89.09 90.62 91.15 88.79 

3.3 Comparison of detection results using 
different model  

Table 3 and Figure7 shows the comparison results of 
different model. It can be seen from Table 3 that the mAP 
value and F1 value of Yolov7-CBAM algorithm in training 
weed data are higher than those of Yolov7, Yolox, Faster 
RCNN, Yolov5l, Yolov4-tiny and Yolov3. Although 
Yolov7 takes up more memory and parameters, Yolov7-
CBAM algorithm is selected because the mAP value and 
F1 value can better reflect the accuracy of the model. 

Table 3. Comparison results of performance 
indicators of different Models 

Models mAP/% F1-
score/% 

Model 
Memory/MB Parameters  

Yolov7 89.09 79.55 143 37.23M 
Yolov7-
CBAM 91.15 80.11 143 37.56M 

Yolox 86.80 77.55 34.3 8.94M 
Faster 
RCNN 86.64 68.22 108 28.35M 

Yolov5l 85.74 70.44 176 46.18M 
Yolov4-
tiny 71.38 60.00 22.5 5.89M 

Yolov3 70.50 44.33 235 61.56M 

EAI Endorsed Transactions on 
Internet of Things 

| Volume 9 | Issue 3 | e1



 
M. Peng et al. 

6 

 
 

Figure 7. Accuracy of models 

3.4 Yolov7-CBAM detecting result 

The trained model was used to detect weeds, and three 
different background environments of single plant weeds, 
single plant weeds and multiple plants weeds were selected 
for testing, as shown in Figure8. When multiple weeds are 
adjacent, the optimized Yolov7 algorithm can still 
accurately identify each weed, which is basically not 
affected by the complex environmental background and the 
number of weed species. 

  
(a)                                            (b) 

  
                     (c)                                            (d) 

  
                     (e)                                             (f)   

  
                     (g)                                              (h) 

 

  
                     (i)                                              (j) 

  
                     (k)                                          (l) 
 

Figure 8. Result of detection. (a)Cirsium, (b)Pteris 
ensiformis, (c)Multiple Cirsium, (d)Multiple Pteris 
ensiformis, (e)Cynoglossum furcatum, (f)Multiple 

weeds, (g)Lagopsis supina, (h)Amaranth, (i)Multiple 
humulus, (j)Calystegia, (k)Chenopodium album, 

(l)Multiple weeds. 

4. Discussion 

4.1 Development of deep learning of 
agriculture 

Deep learning has become a popular method for image 
classification in recent years due to its high detection 
accuracy and strong robustness[20]. Classical deep learning 
algorithms include R-CNN[21] and Mask R-CNN[22].This 
paper uses one stage target detection algorithm. One stage 
target detection algorithm has the advantage of fast 
recognition speed[23], including SSD[24], RetinaNet[25], 
Yolov3[26] and so on.Jiang[27] et al. proposed a graph 
convolutional network(GCN) method based on CNN 
features. The GCN-Resnet-101 method achieved 97.8 %, 
99.37 %, 98.93 % and 96.51 % recognition accuracy on 
four different data sets. Chen[28] et al. used Yolov4 
algorithm with attention mechanism and feature fusion to 
detect sesame associated weeds, and the detection accuracy 
reached 96.16 %. Jin[29] et al.applied Yolov3 to weeding in 
vegetable fields, identified vegetable crops, and classified 
other objects as weeds. The detection accuracy of Yolov3 
for vegetables reached more than 97 %, avoiding the 
problem of low detection accuracy due to the wide variety 
of weeds. Tang[30] et al. constructed a weed recognition 
model based on K-means combined with CNN. K-means 
pre-training was used to replace the random initialization 
of CNN weights. The K-means pre-training method 
achieved 92.89 % accuracy for weed data. Zhao Hui[31] et 
al.introduced the attention mechanism on the DenseNet 
network to enhance the adaptability of different weed types 
through regularization, and the average recognition 
accuracy of corn seedlings and six associated weeds 
reached 98.63 %. 
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4.2 Limitations 

The Yolov7-CBAM algorithm proposed in this paper has a 
significant effect in weed recognition. Compared with 
other algorithms, it greatly improves the detection 
accuracy. It can accurately identify each weed in a complex 
environment, but there are still some limitations. First of 
all, the image data set used in this paper is self-collected, 
and the variety is relatively single. Due to various 
environmental factors, the weed characteristics of each 
area may be different, so in the future research, we can 
collect more weed data sets and expand the data set. 
Secondly, the Yolov7l model occupies a large space, and 
future research needs to further improve our model and 
reduce the space occupied by the model. 

5. Conclusion 

Combining Yolov7 algorithm and attention mechanism, a 
Yolov7-CBAM algorithm more suitable for weed detection 
is proposed. The average accuracy of weeds is 91.15 %, 
which is better than Yolov7 with other attention 
mechanisms, YOlov7 without improvement, other Yolo 
algorithms and Faster R-CNN. It is proved that the 
introduction of CBAM attention mechanism into Yolov7 
helps to reduce the influence of environmental noise and 
strengthen the key features of weeds, thereby improving 
the accuracy of weed recognition.  

Through online data enhancement, the generalization 
and robustness of the algorithm are enhanced, and the 
accurate detection of weeds is realized in the scene of 
single weed, single multiple weeds and multiple weeds. It 
has practical value for the development of weed robots and 
spraying robots. 
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