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Abstract 

Although the increasing number of technological products brings many solutions for Internet of Things (IoT) applications, 

it also causes some drawbacks, such as whether the product in question would run accordingly to a system structured to 

enable high-performance like Data Distribution Service (DDS). Therefore, the capabilities of the products must be defined 

to say that they are compatible enough. This paper aims to evaluate the performance of the DDS-XRCE standard while 

observing its working mechanism. As test scenarios, we benefit from three DDS-XRCE deployments that occurred due to 

the kind of receiver and sender, the path that packets follow, and the protocols used. Test conditions were set by switching 

stream modes, transport profiles, and limiting packet deliveries. We obtained the test environment by creating the DDS and 

DDS-XRCE objects using several eProsima implementations and tools for the standards. We monitored the network 

messages in two ways: 1) Using multiple Gnome Terminator terminals for observation via the human eye during testing. 2) 

Using Wireshark to save the information of the packets for further examination. We conducted 36 experiments focusing on 

latency, throughput, and packet loss. As a result of our study, the DDS-XRCE standard is deemed suitable for Internet of 

Things applications. 
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1. Introduction

The term "Internet of Things (IoT)" comes into question and 

is used for systems whose objects are established in the 

physical environment and connected over the Internet [1]. In 

the last decade, the IoT has gained popularity in several areas, 

such as the military, automation, and healthcare. It has 

considerable potential due to its technology based on sensors 

in the issue of reducing intervention [2]. Thus, it draws the 

attention of experts even more. It accomplishes this due to 

technology enabling itself. 

An IoT system can be described as a vast network whose 

devices cooperate and share data. Sensors are the components 

of the system that generate data, and the system generates a 

massive amount of data in a short period [3]. Simultaneously, 
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increasing data results in concerns about its handling or its 

protection. Therefore, technologies and disciplines that 

enable IoT draw attention in order to improve IoT systems as 

well. 

For instance, to improve human-machine interaction, some 

researchers want machines to be able to identify emotions and 

produce their own. The reason is that the IoT does not solely 

consist of machine-to-machine interaction. It also includes 

human-machine interaction [4]. Some researchers make a 

contribution by creating a platform to evaluate a video 

streaming service that operates in the cloud-server 

environment in the context of cloud computing [5]. Some 

researchers focus on the security of IoT systems. Because 

attackers mostly try to manipulate the network in assorted 

ways, it causes the network to be at risk [6]. Thus, it is thought 

that if machine learning algorithms are allowed to learn the 

operation of the devices and objects in the system, then the 
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system might be able to prevent corruption caused by 

unknown origins by detecting abnormal behaviour [7]. 

It is seen that an IoT system contains various devices of 

different technologies as it is a vast network. However, 

maintaining communication between devices becomes quite 

challenging when IoT is applied in a heterogeneous 

environment whose objects carry unalike purposes and 

priorities. The way of communication takes form regarding 

the kind of devices, purpose and priorities of the 

implementation, area of functioning, location, protocols, 

software, and the other end of the connection. The variation 

appears as a solution for possible problems in challenging 

issues. On the other hand, the harmonious functioning of 

things has become difficult as a consequence [8]. There is an 

increase in the industry's demands regarding IoT applications 

easily affected by latency and data [9]. It contributes to the 

burdensome communication issue. 

Being able to tell the responsive behaviour of the things to 

the data is an important issue apart from the compatibility of 

the devices in an IoT system as well. In other words, the 

processing time, the amount of data transferred periodically, 

the amount of data lost, and the retransmissions of the packet 

must be known. For that reason, for example, one can say if 

the thing runs at low latency or not. When deciding if the 

product will perform as expected or not for a certain 

implementation, knowing these kinds of characteristics is 

essential. 

The IoT structure consists of three layers: the perception 

layer in which the sensing devices are established for the 

collection of data; the network layer in which the devices 

access the network for data transmission; and the application 

layer in which the applications run actively [2]. IoT 

applications process request and response operations over 

application layer protocols. The Constrained Application 

Protocol (CoAP), Message Queue Telemetry Transport 

(MQTT), Extensible Messaging and Presence Protocol 

(XMPP), Advanced Message Queuing Protocol (AMQP), 

and Data Distribution Service (DDS) that have been adopted 

by Object Management Group Inc. (OMG) are the most well-

known application layer protocols [10], [11]. Although 

various protocols exist, communication standards do not meet 

all the needs due to a wide range of demands, environmental 

conditions, constrained devices, limited resources, budget, 

and technological limitations. Their usage is a demanding 

topic in the IoT that causes users to think thoroughly [12].  

OMG published the Data Distribution Service for 

Extremely Resource Constrained Environments (DDS-

XRCE) in 2020 as a solution to these limitations and 

constraints. There are implementations of DDS-XRCE called 

Micro-XRCE-DDS, Micro-XRCE-DDS-Agent, and Micro-

XRCE-DDS-Client by eProsima [13]. “micro-ROS” is a 

version of ROS2 and runs on microcontrollers. It contains the 

implementation of DDS-XRCE provided by eProsima [14]. It 

is possible to see implementations using DDS-XRCE. 

Nevertheless, there is a lack of studies concerned with the 

DDS-XRCE standard. For that reason, the network 

performance characteristics of the DDS-XRCE remain 

undetermined, which causes confusion about how to decide 

whether the DDS-XRCE will function in a system 

harmoniously or not. Therefore, the problem this study aims 

to solve is that the DDS-XRCE's unknown performance 

characteristics remain unrevealed. In this paper, we evaluated 

the performance of DDS-XRCE on its implementation 

provided by eProsima. The contributions of this paper are as 

follows: 

• Analysis of the DDS standard, its objects, and working

mechanism

• Analysis of the DDS-XRCE standard, its objects, and

functioning mechanism

• Analysis of integration between DDS and DDS-XRCE

standards

• Performance evaluation experiments and results of the

evaluation of the DDS-XRCE standard

This paper is expressed as follows: Recent similar studies 

mainly concerned with the performance of application layer 

protocols were examined and summarised in the second 

section. The DDS and DDS-XRCE standards were examined 

in the third section. In the fourth section, the experiments 

were explained in more detail in three phases: 1) the 

preparation phase, 2) the simulation and data collection 

phase, and 3) the analysis phase. The information about the 

tools used in the experiments was given in the fifth section. 

The results of the experiments were presented as tables in the 

sixth section. The conclusions that are related to the 

behaviours of the DDS-XRCE objects were explained in the 

seventh section. 

2. Related Work

In [15], Dehnavi et al. modelled an application of the DDS-

XRCE and implemented the model in multi-processor real-

time embedded systems. Additionally, they conducted some 

experiments on the systems, which have a soft real-time side 

for the DDS-XRCE Agent and a hard real-time side for the 

DDS-XRCE Client. The worst-case response times of the 

publisher and subscriber were measured using the Scenario 

Aware Data Flow (SADF) model, which they proposed to 

analyse the expected value of throughput in the long term. 

Kang et al. were concerned about the problems that IoT 

applications, which are easily affected by data and latency, 

cause for the edge and cloud implementations of 

publish/subscribe utilities [9]. They utilised the DDS and 

Kubernetes (K8s), which manage containerised applications 

in the cloud, to come up with a solution to these problems. 

The evaluation was maintained by running DDS applications 

in the K8s cluster, and they observed the impact of K8s on 

the DDS performance by focusing on throughput and latency 

when different QoS policies were enabled. 

Chul-Hwan Kim et al. developed a simulator to evaluate 

the performance of DDS [16]. The development of the 

simulator was carried out on the simulation platform called 

QualNet, which enables the use of several network protocols. 

The performance metrics that the authors focused on are 

discovery-completion time, message transmission delay, the 
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quantity of the data messages, and the time spent processing 

the user data. 

In [17], Krinkin et al. evaluated the performance of DDS. 

The experiments were conducted focusing on latency and 

jitter in comparison to different open-source implementations 

of DDS such as OpenDDS by Prismtech, OpenSplice by 

Vortex, and FastRTPS by eProsima. 

Thulasiraman et al. evaluated the performance of DDS, 

focusing on throughput and latency in a certain scenario [18]. 

It is because US Naval autonomous systems were in search 

of a communication protocol that could work with all network 

assets and the DDS was considered a major candidate. They 

modelled an experiment system including Satellite 

Communications (SATCOM) and Wi-Fi links. Also, Mininet 

was used during network emulation and network parameter 

arrangement processes. 

In [19], Andrei et al. evaluated the performance of DDS 

and AMQP. The evaluation was conducted using OpenSplice 

and FastRTPS implementations of DDS and the RabbitMQ 

implementation of AMQP, focusing on latency, investigation 

of message queues, and what the message sizes and 

frequencies are when the throughput has reached its highest 

level. 

Similarly, Profanter et al. evaluated open62541 of OPC 

UA, ROS C++ of ROS, eProsima FastRTPS of DDS, and 

Eclipse Paho MQTT C of MQTT implementations 

comparatively [20]. The evaluation was conducted by 

measuring the round-trip time of messages when the systems 

were idle, with high CPU load, and under high network load 

conditions. 

Chen and Khun evaluated the performance of MQTT, 

CoAP, DDS, and a custom protocol, which relies on UDP, for 

medical purposes using a network emulator [21]. They 

focused on the bandwidth consumed by the system, latency, 

and packet loss. 

Web performance of web implementations and IoT 

protocols were evaluated by experimenting on two test 

applications by Babovic et al. [22]. In the first application, 

various Web platform implementations were evaluated in the 

first application on various metrics. In the second application, 

MQTT, AMQP, XMPP, and DDS IoT protocols were 

evaluated, focusing on latency and throughput. 

The aim of Chen et al. is to check if DDS works according 

to real-time essentials [23]. It is a study that evaluates the 

performance of DDS on the PREEMPT_RT Linux system 

and Loongson platform in terms of latency, jitter, and data 

throughput. As a result, there is a relationship between the 

performance of DDS and the network card. 

In [24], MQTT and CoAP protocols were evaluated 

theoretically and practically by Palmese et al. Another form 

of MQTT, which is MQTT-SN, works according to the 

Publish/Subscribe communication scheme. Consequently, 

some changes were made to CoAP to follow the same 

communication scheme as MQTT-SN to compare them 

fairly. Both protocols rely on the UDP protocol in 

communication. 

According to Sasaki et al., cooperation between IoT 

protocols and other protocols of OSI layers is a curious topic 

and worth evaluation. For example, IP and associated 

protocols perform the work of MQTT. Additionally, MQTT 

comes with a Quality of Service (QoS). The performance of 

MQTT-TCP cooperation and the MQTT QoS mechanism on 

data transmission were analysed [25]. 

E-health is an area that IoT is crucially interested in, and

the performance of e-health applications is particularly 

thought about. Therefore, Kassem and Sleit examined CoAP 

and MQTT protocols over e-health scenarios and evaluated 

their performance comparatively on the past time that the 

authors chose as a metric [26]. 

MQTT is a protocol whose messages are brokered by an 

MQTT Broker between publisher and subscriber. Since 

messages pass over the broker, the broker is considered the 

point at which blockage is most likely to happen in the 

network. Based on that fact, the broker's performance 

indicates the performance of MQTT. The performance of 

MQTT v5.0 and its new functionalities were evaluated over 

its broker using MQTTLoader, which Banno et al. developed 

for load testing [27]. 

Bender et al. evaluated the performance of MQTT over its 

several open-source implementations using a test system that 

they created, focusing on interoperability, resource 

consumption, and latency [28]. These implementations are 

Mosquitto, HiveMQ, EMQX, VerneMQ, MQTT.js, and 

Paho. The test system they used can work free of MQTT 

implementations or language. 

Protocols of the application layer have critical significance 

in decreasing network traffic in IoT applications. Choosing 

them properly might ease the load of network traffic and 

increase successful message delivery. For that reason, in [29], 

the performance of CoAP, MQTT, and REST is discussed, 

which Tandale et al. measured by implementing them on the 

Raspberry Pi3 as a gateway and evaluated by focusing on the 

bandwidth that protocols consume and time that operations 

spend. 

In [30], Basavaraju et al. evaluated the AMQP protocol by 

comparing RabbitMQ and ActiveMQ message brokers, 

focusing on latency, data rate, different payloads, and the 

number of messages. One of the message brokers implements 

AMQP version 0-9-1. The other implements AMQP version 

1-0.

Pohl et al. evaluated AMQP, MQTT, and XMPP protocols,

focusing on bandwidth usage, reliability, latency, and 

throughput as performance metrics in a business application. 

The test system they designed has three layers, along with 

changeable latency and packet loss rate [31]. 

Previous studies mostly maintained their evaluation by 

comparing different protocols or focusing on a single 

protocol. Studies focusing solely on one protocol evaluated it 

using its several implementations or features. This paper can 

be categorised as a study focusing on one protocol, although 

it examines two protocols: DDS and DDS-XRCE. The DDS-

XRCE operates by integrating with the DDS. Hence, the use 

of DDS-XRCE makes the use of DDS essential in some ways. 

It is also what distinguishes this study from previous works. 

A necessary integration between protocols rarely occurs. 

Even though the DDS appears in the evaluation steps, the 

main focus is on the DDS-XRCE. The DDS-XRCE standard 

is the subject of this study as a result. The evaluation 
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proceeded while the DDS-XRCE was operating under several 

configurations. Since the main goal is to evaluate the 

performance of a protocol, there are many evaluation criteria. 

As we researched in this paper, these criteria mostly appear 

as latency, data packet loss, and throughput. The test system 

takes shape depending on the evaluation criteria as much as 

the problem. It is possible to see that some studies contain 

creations developed or designed by the authors. These 

creations vary as simulators or applications. Our creations are 

different topics and clients we produced using code 

generation tools. In addition, clients create the network of our 

study. 

3. The DDS Standard

Data Distribution Service (DDS), which is known commonly 

nowadays since it was published in 2006, is also a standard 

of OMG that provides high-performance communication 

along with efficient delivery of information. OMG is a 

standard establishment active in the computer industry [32]. 

An application in which the DDS is used is Robot Operating 

System 2 (ROS2). It uses DDS as DDS is more acceptable for 

real-time embedded systems due to its configurations [33]. 

3.1. The Structure of the DDS 

The structure of the DDS occurs due to the connection of two 

parts: DDS Global Data Space (DDSGDS) at the centre and 

DDS Participants, which communicate with each other using 

the Real-Time Publish-Subscribe (RTPS) protocol only over 

DDSGDS. Thus, the structure takes the shape of a star 

topology. The structure is shown in Fig. 1. 

Figure 1. The structure of DDS 

3.2. The Objects and Concepts of the DDS 

To have a better understanding, common objects and 

concepts in the DDS are explained. 

A publisher is an object that sends data to the endpoint that 

must be reached. A datawriter is an object that is used by 

applications to inform the publisher about data and its 

information. A publication is a relation between a publisher 

and datawriter. A subscriber is an object that receives data 

sent from a publisher. A datareader is an object that is used 

by data-receiving applications by attaching it to subscriber. A 

subscription is a relation between a subscriber and datareader. 

A topic is a concept between publication and subscription. 

Quality of Service is a policy list of adjustable features that 

manage some actions of the system. Each QoS policy 

concerns with particular entity or several entities. A domain 

is a set of conceptual links between the domain members 

which helps them communicate with each other. A domain 

participant is an application that is a member of a domain. An 

application can be a member of more than one domain. 

3.3. Data-Centric Publish-Subscribe (DCPS) 

The DDS was examined in terms of entities, operations, and 

functioning mechanisms. DDS defines the Data Centric 

Publish Subscribe (DCPS) model, which consists of five 

modules. The DCPS is the object model in the DDS, and the 

model categorises its objects and interfaces with modules. For 

example, listener interfaces belong to the Infrastructure 

Module. 

3.3.1. The Infrastructure Module 
The Infrastructure Module, which contains Entity, 

DomainEntity, QosPolicy, Listener, Status, WaitSet, 

Condition, GuardCondition, and StatusCondition classes and 

interfaces, helps the middleware to provide notification and 

wait-based interactions. The classes and interfaces of the 

Infrastructure Module are all abstract and processed by other 

modules. 

3.3.2. The Domain Module 
The Domain Module, working like a factory for many classes, 

is also to which the DomainParticipant class belongs. The 

Domain Module contains the DomainParticipantFactory class 

and the DomainParticipantListener interface in addition to the 

DomainParticipant class. 

3.3.3. The Topic-Definition Module 
The Topic-Definition Module contains TopicDescription, 

Topic, ContentFilteredTopic, MultiTopic, TopicListener, and 

TypeSupport classes and interfaces. They are the things that 

will be used during the topic creation process, and the QoS 

policies of the topic are also attached. 

3.3.4. The Publication Module 
The Publication Module consists of classes and interfaces that 

will be used for and help the publication process. These are: 

Publisher, DataWriter, PublisherListener, 

DataWriterListener. 

3.3.5. The Subscription Module 
The Subscription Module consists of classes and interfaces 

that will be used for and help the subscription process. These 

are Subscriber, DataReader, DataSample, SampleInfo, 
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SubscriberListener, DataReaderListener, ReadCondition, and 

QueryCondition. 

3.4. The DDS Entity and Interface Creations 

The DomainParticipant Entity is produced by 

DomainParticipantFactory. DomainParticipant creates 

Publisher, Subscriber, Topic, and MultiTopic Entities as it 

works like a factory for them. DataWriter is created by the 

Publisher, and DataReader is created by the Subscriber. 

Based on the fact that an entity is created by what, it can be 

said that the creator works like a factory for what it creates. 

All objects in the tree, except for MultiTopic objects, belong 

to the Entity class. Fig. 2 shows the creation tree of some of 

the DDS Entities. 

Figure 2. The creation tree of DDS Entities 

Fig. 3 shows the creation tree of the Listener interfaces of 

the DDS. 

Figure 3. The creation tree of DDS Listener interfaces 

The Listener interface, which helps entities monitor 

network traffic, is exclusive to the DDS and does not exist in 

the DDS-XRCE. The Listener interface takes place in the 

Infrastructure Module, and the Listener class of the 

Infrastructure Module works like an abstract root for other 

Listener interfaces. DomainParticipantListener, 

TopicListener, PublisherListener, SubscriberListener, 

DataWriterListener, and DataReaderListener are all derived 

from the root Listener and are coupled to the respective entity 

later. For example, DataReaderListener is attached to the 

respective DataReader after the creation process. 

Although they are not considered entities or listener 

interfaces, there are objects of other classes that are assistive 

to the DDS system and operations. Moreover, some of them 

have no factory and are created directly. For example, the 

WaitSet object postpones processes of an application until 

some condition objects, which are coupled with the 

application, provide the necessary conditions. 

3.5. The DDS Message Structure 

Communication between DDS DomainParticipants 

(DDSDP) over DDS Global Data Space is maintained using 

RTPS protocol, which is a wire protocol for DDS 

participants, objects, and devices to communicate in a 

coordinated way [32]. The RTPS message structure consists 

of two parts: Header and Submessage. The message structure 

of an RTPS message is shown in Fig 4. 

Figure 4. An RTPS message structure 

Every RTPS message has to contain the Header part at the 

start. The Header carries information about the protocol, 

protocol version, vendorId, and guidPrefix, which is a prefix 

that is used for reconstruction later. All messages have 

submessage parts, and the number of submessages is different 

for messages. Submessage, which is shown as the purple 

rectangle, also consists of two parts: SubmessageHeader and 

SubmessageElement. The Header is a part that a submessage 

has to have and contains information about submessageId, 

flags, and submessageLength. SubmessageElements are 

building blocks that the system uses to build submessages. 

They are predefined. 

RTPS version 2.2 defines some submessages that are 

categorized into two groups: Entity and Interpreter 

submessages. Entity submessages are summarised as follows: 

Data, DataFrag, Heartbeat, HeartbeatFrag, Gap, AckNack, 

and NackFrag. Interpreter submessages are summarised as 

follows: InfoSource, InfoDestination, InfoReply, 

InfoTimestamp, and Pad. 

4. The DDS-XRCE Standard
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The DDS-XRCE is a wire protocol following the client-

server paradigm, which is a branch of DDS. The DDS-XRCE 

is adopted essentially to involve resource-constrained devices 

in the DDSGDS [32]. 

4.1. The Objects and Concepts of the DDS-
XRCE 

The DDS-XRCE has XRCE Clients and Agents in addition to 

the objects and concepts of the DDS. 

An XRCE Client utilises the Agent by requesting 

publication, subscription, managing resources, etc. For 

example, XRCE Clients sleep and wake up periodically 

because they are resource-constrained devices. When an 

XRCE Client is in the sleep cycle, the Agent connected to the 

XRCE Client saves the messages to transmit them during its 

wake-up cycle. 

The Agent acts as a server in DDS-XRCE and as a 

participant in DDS. It maintains the communication between 

XRCE-Clients and DDS Participants by connecting to the 

members of DDSGDS over DDSGDS and acts as a bridge. 

Making connections over DDSGDS is the ability of an Agent 

in the DDS-XRCE. Distributing resources, converting 

between protocols while transferring data, configuring 

parameters and profiles, and maintaining communication 

within the DDS-XRCE model are other duties and behaviours 

of the Agent. 

4.2. The Integration Between the DDS and 
DDS-XRCE 

Fig. 5 represents the integration between DDS-XRCE and 

DDS. In DDSGDS, peers of the DDSGDS do not categorise 

other peers, such as peers of the DDS model or peers of the 

DDS-XRCE model. Every peer seems solely like a DDS 

Participant although the Agent of the DDS-XRCE 

communicates with the other members of the DDSGDS. 

Figure 5. The integration between the DDS-XRCE and 
DDS 

This integration can be explained simply by saying "plug 

and play" as a solution for compatibility issues. In DDS 

World, participants also have to be involved in a domain to 

access topic messages for that domain. The Agent makes the 

connections by creating a proxy DDSDP in the DDSGDS and 

keeps communication. 

We have mentioned that DDSDPs monitor the network 

traffic continuously. Monitoring or processing the messages 

continuously requires a significant amount of resources. 

Accordingly, the devices which DDS is concerned with can 

be said to be highly equipped and advanced devices. 

However, the devices which the DDS-XRCE is concerned 

with are resource-constrained, as DDS-XRCE stands for Data 

Distribution Service for Extremely Resource-Constrained 

Devices. Furthermore, XRCE-Clients sleep and wake up 

periodically. While XRCE-Clients are in the sleep cycle, an 

Agent operates for them, such as storing topic messages for 

XRCE-Clients to transmit messages during their wake cycle. 

QoS policies, which DDS supports twenty-two of them, are 

also in common between standards. They are also supported 

by the DDS-XRCE. DDS-XRCE usually works with DDS. It 

can be said that the DDS-XRCE even requires work with the 

DDS to be implemented in some ways when one observes the 

deployments. Therefore, DDS-XRCE is mostly dependent on 

the DDS and it has to have the ability to work with the DDS 

properly. In addition, the DDS-XRCE defines ten profiles 

that provide configuration abilities to some extent, including 

the configuration of QoS policies for the XRCE Entities. 

Some of these profiles provide advanced abilities that give 

entities the authority to set parameters, such as configuring 

the QoS policy of the Topic. Having this kind of authority 

makes the clients advanced. Thus, it shows that although the 

main purpose of the DDS-XRCE is to provide access to 

resource-constrained devices from frequently used other 

devices, the DDS-XRCE is also concerned with advanced 

devices and/or clients. DDS-XRCE categorises devices as 

simple devices, more capable devices, advanced clients, and 

complex clients. Variation of devices and clients occurs due 

to differentiation in needs of XRCE-Clients. 

4.3. The Structure of the DDS-XRCE 

While the DDS model is similar to a star topology, it is 

different in the DDS-XRCE. Six formations that are called 

"deployments" occur due to the transmission path, kind of 

sender and receiver, and transmission protocol. Objects 

communicating with each other, the transmission path 

focused on deployments, which are illustrated in Fig. 6, are 

listed in Table 1. 

In the transmission path column of Table 1, the ":::" refers 

to the DDS-XRCE protocol in which objects are used for 

communication. The “=” refers to the RTPS protocol in 

which objects are used for communication. 
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Table 1. Deployments list 

No Deployment Details 

Objects Transmission Path in Fig. 6 

1 XRCE-Client 
and DDSDP 

XRCE-Client-12:::Agent-8 
=DDSDP-1 

2 XRCE-Clients XRCE-Client-11:::Agent-8=Agent-7 
:::XRCE-Client-10 

3 XRCE-Clients XRCE-Client-10:::Agent-7=Agent-7 
:::XRCE-Client-9 

4 XRCE-Clients XRCE-Client-1:::Agent-1:::Agent-3 
=Agent-3:::Agent-2:::XRCE-Client-4 

5 XRCE-Client 
and Agent 

XRCE-Client-6 of Application1 
:::Agent-6 of Application2 

6 XRCE-
Clients, 
Agents and 
DDSDPs 

implementation of all or several 
paths at the same time 

Figure 6. DDS-XRCE deployments and their 
transmission paths 

In deployments, we encounter some characteristics worthy 

of mention. There is uncertainty about the transmission path 

of the third. Where the packets travel after being received by 

the Agent connected to the publisher XRCE Client is unclear. 

Three possible paths were listed for this uncertainty. 1) The 

Agent creates proxy DDS Entities for XRCE-Clients 

separately and maintains clients' communication as if 

different proxy DDSDPs communicate with each other. 2) 

The Agent creates one proxy DDSDP and maintains the 

communication as if the proxy DDSDP communicates with 

itself over DDSGDS. 3) The Agent creates a short path over 

itself for XRCE-Clients, which communicate with each other. 

The first and/or second possible paths are shown in Table 1. 

The transmission paths of the third and fourth have one 

thing in common, which is an Agent managing different 

clients. Hence, encountering the uncertain transmission path 

of the third deployment is possible in the same way for the 

fourth deployment, as well. 

In the fifth deployment, an application has to create an 

XRCE-Client to communicate with the Agents of other 

applications. Moreover, an application creates an Agent to 

maintain communication with XRCE-Clients of other 

applications. Each connection between applications can be 

accepted as a transmission path, so the transmission path of 

the fifth deployment may be multiple due to the formation of 

the fifth deployment on a system. Implementation of the fifth 

deployment is usually not suitable for resource-constrained 

devices. Because the application cannot sleep and wake 

periodically due to the Agent processing messages coming 

from XRCE-Clients. As an exception, the fifth deployment is 

the only implementation of the DDS-XRCE without any 

integration with the DDS model. 

4.4. The DDS-XRCE Object Model 

When one looks at the object model of DDS-XRCE, there are 

five classes. They are the Root singleton, ProxyClient, 

Application, AccessController, and DomainParticipant. In 

the DDS-XRCE, the object model does not contain modules 

and it does not have a particular name different from the DDS. 

At the highest level, it only includes classes. 

4.4.1. Root Singleton 
The Root singleton works like a factory for all the objects, 

and the Agent is in charge of these objects. Besides, the Root 

singleton is an entrance point to the system. 

4.4.2. ProxyClient 
When the XRCE-Client application and Agent communicate 

with each other over the XRCE protocol, the ProxyClient 

class represents the XRCE-Client application. Each 

Application object obtains the rights of a ProxyClient by 

being related to a single XRCE ProxyClient. 

4.4.3. Application 
The Application class represents a software application, 

which is in charge of the DDS objects used for publication 

and subscription processes on DDS Domains by associating 

with the XRCE-Client. An XRCE Application can be related 

to many DomainParticipants or none. Based on that fact, an 

XRCE Application can be active on many DDS Domains or 

none by using proxy objects. 

4.4.4. AccessController 
An XRCE ProxyClient has limited authority relating to 

resources and operations to function. This authority is 

determined and provided by AccessController for an XRCE 

ProxyClient since it holds the rules relating to a client with 

rights. These rights give the holders authority, such as 

choosing the DDS domain when an application intends to 

create and run proxy entities for a client, and deciding DDS 

topics when an application wants to publish and subscribe. 

4.4.5. DomainParticipant 
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The DomainParticipant of DDS-XRCE, which works as a 

proxy in DDSGDS, represents the connection with a DDS 

Domain and what the Application can do running on that 

domain. 

4.5. The DDS-XRCE Entity Creations 

Fig. 7 shows the creation tree of DDS-XRCE objects and 

entities. 

Figure 7. The creation tree of DDS-XRCE Entities 

XRCE Root, which represents an agent, creates an XRCE 

ProxyClient. XRCE ProxyClient creates a QosProfile, Type, 

Application, DomainParticipant, Publisher, Subscriber, 

DataWriter, and DataReader. In DDS-XRCE, the Publisher 

does not create a DataWriter and the Subscriber does not 

create a DataReader, unlike in DDS. The only object working 

like a factory in DDS-XRCE is the Root singleton since it is 

responsible for all the objects controlled by Agent. 

4.6. The DDS-XRCE Message Structure 

The structure of a DDS-XRCE message is shown in Fig. 8. 

Figure 8. A DDS-XRCE message structure 

A DDS-XRCE message contains Header and submessage 

parts. The Header carries information about the sessionId, 

streamId, sequence number, and clientKey. A submessage 

consists of submessageHeader and payload parts. 

SubmessageHeaders occur with submessageId, flags, and 

submessageLength. The payload provides information about 

the submessage according to submessageId. The DDS-XRCE 

submessage types are as follows: Create_Client, Create, 

Get_Info, Delete, Status_Agent, Status, Info, Write_Data, 

Read_Data, Data, Acknack, Heartbeat, Reset, Fragment, 

Timestamp, and Timestamp_Reply. 

5. Methodology

Initially, we need an environment in which the DDS-XRCE 

has been used. We benefit from deployments for the 

formation of the test environment to determine the 

performance of the DDS-XRCE. Thus, we have decided to 

use the first, second, and third deployments. 

The DDS-XRCE is a multi-functional one that has many 

parameters and provides many options to adjust the quality of 

communication. We decided to utilise the transport profile, 

stream mode, and network layer protocol features of DDS-

XRCE for the test environment conditions. The transport 

profile is a choice that the DDS-XRCE provides to the user 

about the transportation protocol to transmit messages. The 

user decides if to use UDP/TCP, CAN FD, serial, or custom 

protocol by utilizing the transport profile feature. We utilised 

UDP and TCP protocols. As to streams, a stream is an 

independent flow of topic messages, and there are two kinds 

of streams in the DDS-XRCE protocol: reliable and best 

effort. The streams also take place as one of the QoS policies 

under the name of reliability. In best-effort streams, if the 

messages have been received or not, it is not controlled, 

whereas it is controlled in reliable streams. In addition, extra 

messages are sent to notify the sender of successful delivery 

in reliable streams. We have utilised both streams. At the 

network layer, IPv4 and IPv6 are provided for the user to 

choose from. We have utilised only IPv4. 

5.1 Preparation Phase 

Layouts of deployments given in the DDS-XRCE 

specification are provided as examples of the application of 

the DDS-XRCE. We have reformed the given deployments 

without corrupting their main focus by adding extra XRCE-

Clients, Agents, and DDS participants to obtain a test 

environment. 

Meanwhile, tracking the source, destination, and other 

information of messages has become difficult because of 

increasing client numbers and having only the HelloWorld 

topic, which will cause the same messages to circulate in the 

network. Thus, we created workspaces for different topics to 

distinguish messages. Workspaces contain a publisher, a 

subscriber, and other files for a specific topic. The creation of 

unalike topics is completed by following the instructions 

provided by eProsima about the usage of Micro-XRCE-DDS-

Gen and Fast-DDS-Gen libraries. 

Fig. 9 represents our reformation of the first deployment 

of DDS-XRCE for our study. Two Agents, four XRCE-

Clients, and a DDSDP were utilised for the formation of 

Deployment-1. 
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Figure 9. DDS-XRCE Deployment-1 scenario 
formation for our study 

Agents are members of DDSGDS and are directly 

connected to their respective XRCE-Clients. They 

communicate over the RTPS protocol with other DDSDPs at 

DDSGDS and over the DDS-XRCE protocol with respective 

XRCE-Clients. They have different port numbers that help 

XRCE-Clients distinguish the respective Agents from each 

other when connecting. The port numbers of Agent-1 and 

Agent-2 are 2018 and 2019, respectively. Other objects of 

Deployment-1 are listed in Table 2 with the topic that they 

are concerned with, the objects that they connect with, and 

the objects that they communicate with. 

Table 2. The objects of Deployment-1 scenario 
formation and their details 

Objects Deployment-1 Object Details 

Pub./Sub. Topic Connect Com. 
with 

DDSDP Pub. Humidity Agent-1 
(proxy 
DDSDP) 

XRCE-
Client-2 

XRCE-
Client-1 

Pub. Temperature Agent-1 - 

XRCE-
Client-2 

Sub. Humidity Agent-1 DDSDP 

XRCE-
Client-3 

Pub. Altitude Agent-2 - 

XRCE-
Client-4 

Sub. Pressure Agent-2 - 

We have focused on the communication between DDSDP 

and XRCE-Client-2 during tests of Deployment-1. They 

communicate with each other via the Agent connected to the 

respective XRCE-Client. 

Fig. 10 represents our reformation of the second 

deployment of DDS-XRCE. Two Agents, seven XRCE-

Clients, and three DDSDPs have been utilised for the 

Deployment-2 formation. 

The features of the Agents of Deployment-2 are the same 

as the features of the Agents of Deployment-1. Other objects 

of Deployment-2 are listed in Table 3. The topics that they 

are concerned with, the objects that they connect with, and 

the objects that they communicate with are listed as well. 

Figure 10. DDS-XRCE Deployment-2 scenario 
formation for our study 

Table 3. The objects of Deployment-2 scenario 
formation and their details 

Objects Deployment-2 Object Details 

Pub./Sub. Topic Connect Com. 
with 

DDSDP-
1 

Sub. Helloworld Agent-1 
(proxy 
DDSDP) 

XRCE-
Client-1, 
XRCE-
Client-2 

DDSDP-
2 

Sub. Humidity Agent-1 
(proxy 
DDSDP) 

XRCE-
Client-5 

DDSDP-
3 

Sub. Humidity - - 

XRCE-
Client-1 

Pub. Helloworld Agent-1 DDSDP-
1, 
XRCE-
Client-3, 
XRCE-
Client-4 

XRCE-
Client-2 

Pub. Helloworld Agent-1 DDSDP-
1, 
XRCE-
Client-3, 
XRCE-
Client-4 

XRCE-
Client-3 

Sub. Helloworld Agent-1 XRCE-
Client-1, 
XRCE-
Client-2 

XRCE-
Client-4 

Sub. Helloworld Agent-1 XRCE-
Client-1, 
XRCE-
Client-2 

XRCE-
Client-5 

Pub. Altitude Agent-1 XRCE-
Client-6, 
DDSDP-
2 

XRCE-
Client-6 

Sub. Altitude Agent-2 XRCE-
Client-5 

XRCE-
Client-7 

Sub. Humidity Agent-2 - 
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We have focused on the communication between XRCE-

Client-5 and XRCE-Client-6 during tests of Deployment-2. 

XRCE-Client-5 and XRCE-Client-6 communicate with each 

other via their respective Agents. 

Fig. 11 represents our reformation of the third deployment 

of DDS-XRCE for our study. An Agent, five XRCE-Clients, 

and two DDSDPs have been utilised for the Deployment-3 

formation. 

The features of the Agent of Deployment-3 are the same 

as Agent-1's features of Deployment-1. Other objects in 

Deployment-3 are listed in Table 4 with the topic that they 

are concerned with, the objects that they connect with, and 

the objects that they communicate with. 

Figure 11. DDS-XRCE Deployment-3 scenario 
formation for our study 

Table 4. The objects of Deployment-3 scenario 
formation and their details 

Objects Deployment-3 Object Details 

Pub./Sub. Topic Connect Com. 
with 

DDSDP-
1 

Sub. Helloworld Agent 
(proxy 
DDSDP) 

XRCE-
Client-1, 
XRCE-
Client-5 

DDSDP-
2 

Sub. Humidity Agent 
(proxy 
DDSDP) 

XRCE-
Client-2 

XRCE-
Client-1 

Pub. Helloworld Agent DDSDP-
1, 
XRCE-
Client-3 

XRCE-
Client-2 

Pub. Humidity Agent DDSDP-
2, 
XRCE-
Client-4 

XRCE-
Client-3 

Sub. Helloworld Agent XRCE-
Client-1, 
XRCE-
Client-5 

XRCE-
Client-4 

Sub. Humidity Agent XRCE-
Client-2 

XRCE-
Client-5 

Pub. Helloworld Agent DDSDP-
1, 
XRCE-
Client-3 

We have focused on the communication between XRCE-

Client-2 and XRCE-Client-4 during tests of Deployment-3. 

XRCE-Client-2 and XRCE-Client-4 communicate with each 

other via the same Agent, to which they are connected. 

It will come to one's attention that some XRCE-Clients 

will not receive any messages on their respective topics. All 

subscribers may not receive messages continuously, even in 

real-time applications. Consequently, XRCE-Clients who do 

not receive any messages will not affect experiments. 

We emphasise that transport profile options, streams, and 

network layer protocols are configurable via source codes of 

publisher and subscriber of DDS-XRCE using respective 

functions. These options have to be chosen and configured 

before compilation. Thus, we have created publishers and 

subscribers for each topic to send and receive messages over 

the UDP protocol at the transport layer and the IPv4 protocol 

at the network layer in the reliable stream. Also, it goes the 

same for transport profile-stream mode pairs like UDP-BE-

IPv4, TCP-R-IPv4, and TCP-BE-IPv4. 

Since these are test environment conditions, it means that 

each deployment will be tested according to four different 

conditions. We indicate that while tests were carried out 

under a respective condition, for example, UDP-R-IPv4, all 

XRCE-Clients in the deployment have been configured to 

transport messages over UDP protocol at the transport layer 

and IPv4 protocol at the network layer in the reliable stream. 

However, we have encountered a function dissimilarity at 

further stages of the UDP-BE-IPv4 tests. Because of the 

function dissimilarities, we have written additional codes for 

publishers and subscribers, which we focused on their 

communication, running according to the UDP-BE-IPv4 pair. 

The purpose of these actions will be explained in the analysis 

phase of the methodology. 

5.2 Simulation and Data Collection Phase 

We have twelve different scenarios in total, and all software 

products are ready to run. Fig. 12 shows the steps of the 

simulation. All experiments have been conducted on a 

computer operated by Ubuntu 18.04.6 LTS. 

As the first step of the simulation, source code directories 

of Publishers, Subscribers, Agents, and DDSDPs were set on 

multiple Gnome Terminator windows, and all commands, 

which will make Wireshark and all units of the deployment 

work, have been written on each respective terminal. 

In the second step, Wireshark was run through the 

command line to track messages in the network and 

configured through its interface to record them for analysis. 

We run Agents, later XRCE-Clients, which we have not 

focused on, and DDSDPs in order when it comes to the third 

step. 

In the fourth step, we ran Subscriber and Publisher, in 

which we focused on their communication with each other, in 

order through the command line. 

Then we stopped Publisher and Subscriber through the 

command line after enough messages had been received. 
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Figure 12. Steps of our evaluation study 

We have limited the messages to be transferred to 50, 100, 

and 150 packets to decide if enough messages were received. 

In the final step, we saved the simulation data for analysis. 

We obtained data from thirty-six tests shown in Table 5 by 

the end of the simulation and data collection phase. 

Table 5. Tests and their limits 

Cond. Deployments 

Deployment-1 Deployment-2 Deployment-3 

UDP-R 50 100 150 50 100 150 50 100 150 

UDP-
BE 

50 100 150 50 100 150 50 100 150 

TCP-R 50 100 150 50 100 150 50 100 150 

TCP-
BE 

50 100 150 50 100 150 50 100 150 

5.3 Analysis Phase 

Latency is described as the time needed to transfer some data 

from one end to another. Hence, we needed to know when to 

start and end the transfer of each message to measure network 

latency. We used Wireshark to monitor the network and could 

track network packets by knowing their timestamp and size. 

However, Wireshark adds the beginning time of sending 

each packet as a timestamp with various formats. Still, we had 

to know the ending time to measure latency. As a function of 

reliable streams, when a message is successfully transferred, 

the receiver sends a confirmation message back to the sender. 

Since to send a confirmation message, another message needs 

to be transferred successfully earlier. Based on that fact, we 

assumed that we could utilise the timestamp of the receiver's 

confirmation message that the receiver sends back to the 

sender as the ending time of the data transfer. We observed 

that confirmation messages still exist in TCP-BE scenarios, 

although they use a best-effort stream. The time of the 

received message refers to the future relative to the time of 

the sent message. We calculated the duration between the 

times of the received messages and the sent messages. Each 

duration value represents the latency of packets. The latency 

of a packet is shown as follows, 

  (1) 

TCM is the time of the confirmation message, which the 

receiver sends back to the sender; TDP is the time of the data 

packet sent initially; and L is the latency of a packet, which 

the difference between TCM and TDP gives in Equation (1). 

Nevertheless, there are UDP-BE scenarios that need to be 

tested. During the simulations, it is observed that there is no 

confirmation message for UDP-BE scenarios to determine the 

ending time of messages. This is what we mentioned in the 

preparation phase as the function dissimilarity of the UDP-

BE tests. As a solution, initially, we analysed the source codes 

of publishers and subscribers and added some code between 

specific lines. When it is run, the code returns the time in 

seconds and minor values than seconds since the Epoch. 

For publisher source code, extra code calculating the time 

was written right before the code line sent the data message, 

and extra code returning the time, which was calculated 

earlier, was written right after the code line sent the data 

message. For subscriber source code, extra code calculating 

and returning the time was written right after the code line 

that publishes the message that the subscriber received. 

Aiming to look like data messages come first, and timestamps 

of the data messages come second in the terminal window. 

Again, one timestamp refers to the future according to the 

other. The duration between the time of the sent and the 

received messages was calculated for all transferred packets. 

Thus, we obtained the latency of each message in UDP-BE 

scenarios. 

Throughput answers the question of how much data is 

transferred successfully from one point to the other in the 

network for a particular period. It is measured in bits per 

second. Nevertheless, there is confusion when it comes to 

throughput and bandwidth. The bandwidth corresponds to the 

maximum throughput. 

Wireshark monitored network traffic during all of our 

scenarios. It has herewith provided for our study the size of 

packets as bytes for each message. However, a packet size 

may change several times on the transmission path due to 

protocol conversions. Fig. 13 shows Deployment-2 with 

some points on the transmission path we have focused on and 

information about the thirty-fourth packet transferred in 

Deployment-2 with TCP-R-50-p. The first row in the table is 

packet information that was transferred from Point A to Point 

B over the DDS-XRCE protocol. The second row in the table 

is information on the confirmation message, which was sent 

back from B to A for the packet that was sent earlier. The 

third row in the table is packet information that was 

transferred from Point B to Point C over the RTPS protocol. 
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The fourth row in the table is packet information that was 

transferred from Point C to Point D over the DDS-XRCE 

protocol. The fifth row in the table is the confirmation 

message, which informs the sender about successful delivery. 

Point A is where the transmission starts. Point B is where the 

DDS-XRCE protocol is converted to the RTPS protocol. 

Point C is where the RTPS protocol is converted to the DDS-

XRCE protocol. Point D is where the transmission ends. 

Figure 13. Protocol and size information of a packet 
when a message is published 

The values of the “size” column show the sizes of the 

packets transferred from Point A to Point B, B to C, and C to 

D, respectively. The change in the size of the packet occurs 

due to protocol conversion. A successful delivery has to 

happen between a sender and a receiver, and the packet size 

must be known to calculate throughput. If the latency of a 

delivered packet can be thought of as the time spent by a 

vehicle that goes from one point to another. If total packet 

size can be thought of as the total length of the road that the 

vehicle goes on. The calculation of throughput can be 

associated with the calculation of the vehicle's velocity. 

Therefore, the throughput has been calculated using this 

similarity. The throughput is shown as follows in Equation 

(2), 

      (2) 

The total size of the packet for the calculation of the 

throughput is obtained by summing up all sizes of the packet 

between protocol conversions. SAB is the size of the packet 

transferred from A to B. SBC is the size of the packet 

transferred from B to C. SCD is the size of the packet 

transferred from C to D. L is the latency of the packet, and 

the total size of the packet is divided by the latency of the 

respective packet to obtain a value in bits per second (bps). 

We have calculated the bps values for each successfully 

transferred packet on the transmission path on which we have 

focused. In this context, N refers to the number of successful 

deliveries on the transmission path. Eventually, the sum of 

the bps values of the packets on the transmission path gives 

the total throughput, as shown as Th in Equation (2). 

6. Used Tools

6.1. eProsima Software Products 
eProsima provides networking, high-performance 

middleware solutions. As a member of OMG, eProsima 

creates and implements middleware standards. These are 

DDS, RTPS, DDS-XRCE, CDR, RPC over DDS, etc. In 

addition, eProsima publishes the source codes of some 

products they provide on Github under the Apache 2.0 

licence. 

The DDS-XRCE is the standard we mainly focused on in 

this study. While evaluating the performance of the DDS-

XRCE on network latency and throughput, we have used 

some of the other products eProsima provides. It is important 

to state that we ran all performance evaluation tests in an 

environment that is run by the Ubuntu 18.04 LTS operating 

system. Thus, the installation process of all eProsima 

products is followed according to the installation manual for 

Ubuntu [34]. 

6.1.1. eProsima Micro-XRCE-DDS-Agent v2.0.0 
Client and server communication is essential in the DDS-

XRCE protocol. The server is represented by an agent whose 

function is to become a bridge between XRCE-Clients and 

the DDS world to ensure safe and secure communication. In 

more detail, the agent receives messages from the DDS world 

to transmit them to XRCE-Clients and receives messages 

from XRCE-Clients to transmit them to the DDS world. 

The library implementation of the agent in the DDS-XRCE 

protocol is the Micro-XRCE-DDS-Agent source code, which 

is provided by eProsima on Github. This implementation 

allows devices like microcontrollers and microsensors to 

communicate with the DDS world. Also, a feature of agent 

library implementation is the ability to provide some built-in 

transports such as UDPv4, UDPv6, TCPv4, TCPv6, and 

Serial communication. Communication between the XRCE-

Client library and Agent library is implemented via built-in 

transports aforementioned [13]. In our study, we used the 

Micro-XRCE-DDS-Agent source code without making any 

changes. 

6.1.2. eProsima Micro-XRCE-DDS-Client v2.0.0 
We mentioned that client and server communication is 

essential in the DDS-XRCE protocol and what the function 

of the Agent is. Thus, it is clear that XRCE-Clients are the 

other transmission end while the Agent is communicating 

with the DDS world. The Agent publishes and subscribes to 

topics on behalf of XRCE-Clients according to their requests. 

Entities like Topics, Publishers, Participants, and Subscribers 
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that may be needed by XRCE Clients in the DDS world are 

created by an assigned ProxyClient. 

The Micro-XRCE-DDS-Client library is configurable. It 

has changeable features such as profile options, which can be 

enabled or disabled by changing some CMake flags. It has 

some other parameters that can be used to control the 

capabilities of the library. Moreover, the XRCE-Client library 

provides the built-in transports as the Agent library does [13]. 

In our study, we have benefited from these changeable 

features. We needed publishers and subscribers to publish and 

subscribe to different topics for our scenarios. As a result, it 

is necessary to make some changes to the source code for our 

study. We utilised the Micro-XRCE-DDS-Client library to 

get a better understanding of how the library works and to 

decide which parameters to choose or use during our trial 

process. 

6.1.3. eProsima Micro-XRCE-DDS-Gen 
Micro-XRCE-DDS-Gen is a tool that is used to generate 

topics and some supplement files. The code generated by 

using Micro-XRCE-DDS-Gen cannot be generated without 

the Micro CDR library. The tool generates the topics by using 

an IDL file as a source file and a Micro CDR library. Thus, 

the only dependency this library has is on the Micro CDR 

library [13]. 

We created IDL files for different topics to create different 

topic workspaces. These are humidity, temperature, pressure, 

altitude, and helloworld. After the generation was completed, 

publisher and subscriber files were edited as needed and 

compiled. We had applications on different topics whose 

publishers and subscribers have different transportation 

profiles and stream modes in the end for the DDS-XRCE. 

6.1.4. eProsima Fast-DDS v2.4.0 
Fast-DDS is the source code that eProsima provides for the 

DDS. Previously, it was known as Fast RTPS, where RTPS 

stands for Real Time Publish Subscribe. RTPS is a wire 

protocol that maintains communication over some transports 

and was produced for DDS. The Fast-DDS library provides 

the implementation of the RTPS protocol and full access to 

its full functionalities [13]. In our study, this implementation 

was used to understand how the product works. 

6.1.5. eProsima Fast-DDS-Gen 
Similar to the Micro-XRCE-DDS-Gen library, this software 

product is a code generator tool from an IDL file [13]. The 

difference between them is that while the Micro-XRCE-

DDS-Gen tool is for the DDS-XRCE, the Fast-DDS-Gen tool 

is for the DDS. The code obtained from the Fast-DDS-Gen 

implementation by generating can work in every Fast-DDS 

application without having any extra features [35]. 

Creating DDS workspaces is similar to creating DDS-

XRCE workspaces. Firstly, we made an IDL file which will 

be the source of the topic workspace. The Fast-DDS-Gen tool 

was run by indicating from which IDL file to generate. After 

the generation was completed, we obtained the publisher, 

subscriber, and some other files. As the last step, we edited 

and compiled publisher and subscriber files. Finally, we 

created different topic workspaces with publishers and 

subscribers as needed for the DDS. 

6.2. Wireshark 

Wireshark is a network protocol analyser that can run on 

various operating systems and other platforms [36]. It 

captures packets from the network and allows us to monitor 

the network traffic in real-time. We can save what we 

captured as a pcapng file, which Wireshark 1.8 and later 

generate by default. Pcapng files can be used to store packet 

details in it as other formatted files or for any other purpose. 

Wireshark was used to retrieve network traffic data during 

the simulation. After saving what we retrieved as a pcapng 

file, we printed all captured packets to extract the necessary 

features. These are the protocol, source port, destination port, 

length of the packet, and timestamp. The extracted features 

were initially used to tell messages we focused on from other 

messages in the network traffic and, secondly, used to 

calculate network latency and throughput. 

6.3. Gnome Terminator 

It is a command prompt that was developed as a Python script. 

It has the functionality of running multiple terminals in the 

same window. The user can benefit from the multiple 

terminal features by splitting the window. Also, the split 

windows can be combined later [37]. 

In our study, we needed an environment to be able to show 

multiple topic messages at the same time. Hence, we used 

Gnome Terminator to run many Agents, Publishers, and 

Subscribers and see network traffic messages. After the 

ordering layout of the terminals was completed, we ran the 

codes in the terminals accordingly to our test plan and saw 

the network traffic messages as the participants saw them. 

7. Results

We measured the latency of packets, the packet sizes, the 

number of packets sent, and the number of packets received. 

The other criteria were calculated according to the 

information obtained from the experiments. 

The Min in the tables refers to the minimum of the 

respective measurement. The Max refers to the maximum of 

the respective measurement. The Avg. refers to the average 

of the respective measurements. Std. Dev. refers to the 

standard deviation of the respective measurement. Var. refers 

to the variance of the respective measurement. The Total in 

the tables refers to the total packet size of successful delivery. 

The number sent in the tables refers to the number of packets 

that were sent. The number of recv. in the tables refers to the 

packets that were received. In other words, it refers to the 

number of successful deliveries. The results are shown in the 

tables. 

Latency results of Deployment-1 are presented in Table 6. 

The test with UDP-BE-150p conditions had the lowest 

average latency of all, which is interpreted as possibly 
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performing the fastest among the tests with 150-packet 

deliveries. The test with TCP-R-100p conditions had the 

highest average latency of all, which is interpreted as possibly 

performing the slowest among the tests with 100-packet 

deliveries. The lowest minimum latency was observed during 

the test with UDP-BE-150p conditions. The highest 

maximum latency was observed during the test with TCP-R-

100p conditions. Latency results of Deployment-3 are 

presented in Table 8. The test with TCP-BE-150p conditions 

had the lowest average latency of all, which is interpreted as 

possibly performing the fastest among the tests with 150-

packet deliveries. The test with TCP-R-100p conditions had 

the highest average latency of all, which is interpreted as 

possibly performing the slowest among the tests with 100-

packet deliveries. The lowest minimum latency was observed 

during the test with TCP-BE-50p conditions. The highest 

maximum latency was observed during the test with TCP-R-

100p conditions. The test with TCP-R-150p conditions had 

the lowest average throughput of all, which is interpreted as 

possibly transmitting the least data periodically among the 

tests with 150-packet deliveries. The test with UDP-BE-150p 

conditions had the highest average throughput of all, which is 

interpreted as possibly transmitting the most data periodically 

among the tests with 150-packet deliveries. The lowest 

minimum throughput was observed during the test with TCP-

R-100p conditions. The highest maximum throughput was 

observed during the test with UDP-BE-150p conditions. 

Throughput results of Deployment-1 are presented in Table 

9. Throughput results of Deployment-2 are presented in Table

10. The test with TCP-R-100p conditions had the lowest

average throughput of all, which is interpreted as possibly

transmitting the least data periodically among the tests with

100-packet deliveries. The test with TCP-BE-50p conditions

had the highest average throughput of all, which is interpreted

as possibly transmitting the most data periodically among the

tests with 50-packet deliveries. The lowest minimum

throughput was observed during the test with TCP-R-50p

conditions. The highest maximum throughput was observed

during the test with TCP-R-100p conditions. The test with

UDP-BE-50p conditions had the lowest average throughput 

of all, which is interpreted as possibly transmitting the least 

data periodically among the tests with 50-packet deliveries. 

The test with TCP-BE-150p conditions had the highest 

average throughput of all, which is interpreted as possibly 

transmitting the most data periodically among the tests with 

150-packet deliveries. The lowest minimum throughput was

observed during the test with TCP-R-100p conditions. The

highest maximum throughput was observed during the test

with TCP-BE-50p conditions. Throughput results of

Deployment-3 are presented in Table 11. Packet length

results of Deployment-1 are presented in Table 12. The tests

with UDP-R and UDP-BE conditions had the lowest average

data packet of all, which are interpreted as transmitting the

least data among the tests with their packet deliveries. The

test with TCP-R-50p conditions had the highest average data

packet of all, which is interpreted as transmitting the most

data among the tests with 50-packet deliveries. Any packet

loss was not observed during the tests of Deployment-1. The

tests with UDP-R-50p, UDP-BE-50p, and UDP-BE-100p

conditions had the lowest average data packet of all, which

are interpreted as transmitting the least data among the tests

with their packet deliveries. The test with TCP-R100p

conditions had the highest average data packet of all, which

is interpreted as transmitting the most data among the tests

with 100-packet deliveries. The test with TCP-R-150p

conditions had the highest packet loss of all. The loss is three

packets. The packet loss of the other tests varies between zero

and two. Packet length results of Deployment-2 are presented

in Table 13. The tests with UDP-R and UDP-BE conditions

had the lowest average data packet of all, which are

interpreted as transmitting the least data among the tests with

their packet deliveries. The test with TCP-R-150p conditions

had the highest average data packet of all, which is interpreted

as transmitting the most data among the tests with 150-packet

deliveries. All tests of Deployment-3 resulted in one packet

loss. Packet length results of Deployment-3 are presented in

Table 14.

Table 7. Latency results of Deployment-2 

Criteria 
The Conditions 

UDP-
R 

UDP-
R 

UDP-
R 

TCP-R TCP-R TCP-R UDP-
BE 

UDP-
BE 

UDP-
BE 

TCP-
BE 

TCP-
BE 

TCP-
BE 

Limit 
(packet) 

50 100 150 50 100 150 50 100 150 50 100 150 

Min (ms) 0.387 0.301 0.274 0.249 0.248 0.238 0.272 0.318 0.248 0.251 0.272 0.236 

Max 
(ms) 

0.873 1.175 0.902 48.129 48.427 48.800 1.467 2.661 1.385 0.630 0.917 1.124 

Avg. 
(ms) 

0.656 0.615 0.617 14.792 15.002 14.689 0.558 0.731 0.573 0.404 0.570 0.555 

Std. 
Dev. 
(ms) 

0.111 0.135 0.128 20.985 20.537 20.435 0.188 0.242 0.193 0.085 0.120 0.136 

Var. 
(ms2) 

0.012 0.018 0.016 440.379 421.788 417.588 0.035 0.058 0.037 0.007 0.014 0.019 
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Table 8. Latency results of Deployment-3 

Criteria 
The Conditions 

UDP-
R 

UDP-
R 

UDP-
R 

TCP-R TCP-R TCP-R UDP-
BE 

UDP-
BE 

UDP-
BE 

TCP-
BE 

TCP-
BE 

TCP-
BE 

Limit 
(packet) 

50 100 150 50 100 150 50 100 150 50 100 150 

Min (ms) 0.261 0.252 0.252 0.242 0.238 0.253 0.303 0.256 0.254 0.167 0.201 0.169 

Max 
(ms) 

1.440 0.846 0.890 48.112 48.589 47.084 0.808 0.807 1.469 0.682 0.761 0.983 

Avg. 
(ms) 

0.576 0.571 0.579 15.058 15.274 14.584 0.628 0.606 0.550 0.450 0.493 0.444 

Std. 
Dev. 
(ms) 

0.200 0.115 0.111 21.105 20.885 20.099 0.133 0.148 0.183 0.106 0.100 0.128 

Var. 
(ms2) 

0.040 0.013 0.012 445.402 436.164 403.954 0.018 0.022 0.033 0.011 0.010 0.016 

Table 9. Throughput results of Deployment-1 

Criteria 
The Conditions 

UDP-
R 

UDP-
R 

UDP-
R 

TCP-R TCP-R TCP-R UDP-
BE 

UDP-
BE 

UDP-
BE 

TCP-
BE 

TCP-
BE 

TCP-
BE 

Limit 
(packet) 

50 100 150 50 100 150 50 100 150 50 100 150 

Min 
(Mbps) 

3.294 3.181 2.648 0.051 0.048 0.049 3.608 3.040 4.782 3.146 3.686 3.210 

Max 
(Mbps) 

9.997 14.233 12.447 17.357 15.117 13.771 16.027 14.506 18.885 15.326 17.225 15.747 

Avg. 
(Mbps) 

5.436 6.115 5.897 5.441 4.744 4.636 6.602 6.353 8.638 7.615 6.796 7.062 

Std. Dev. 
(Mbps) 

1.234 1.901 2.010 4.683 3.772 3.578 2.213 1.839 2.130 2.365 1.948 2.361 

Var. 
((Mbps)2) 

1.523 3.613 4.039 21.931 14.232 12.803 4.896 3.383 4.537 5.592 3.794 5.575 

Table 10. Throughput results of Deployment-2 

Criteria 
The Conditions 

UDP-
R 

UDP-
R 

UDP-
R 

TCP-R TCP-R TCP-R UDP-
BE 

UDP-
BE 

UDP-
BE 

TCP-
BE 

TCP-
BE 

TCP-
BE 

Limit 
(packet) 

50 100 150 50 100 150 50 100 150 50 100 150 

Min 
(Mbps) 

3.096 2.300 2.998 0.077 0.064 0.063 1.843 1.016 1.952 4.901 3.368 2.747 

Max 
(Mbps) 

6.992 8.997 9.869 12.426 12.462 12.999 9.947 8.491 10.883 12.295 11.368 13.062 

Avg. 
(Mbps) 

4.263 4.683 4.651 4.259 4.220 4.554 5.247 3.988 5.248 7.995 5.693 5.999 

Std. Dev. 
(Mbps) 

0.874 1.377 1.372 3.601 3.319 3.581 1.381 1.188 1.718 1.795 1.430 1.919 

Var. 
((Mbps)2) 

0.765 1.897 1.881 12.964 11.016 12.821 1.908 1.411 2.951 3.221 2.045 3.681 
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Table 11. Throughput results of Deployment-3 

Criteria 
The Conditions 

UDP-
R 

UDP-
R 

UDP-
R 

TCP-R TCP-R TCP-R UDP-
BE 

UDP-
BE 

UDP-
BE 

TCP-
BE 

TCP-
BE 

TCP-
BE 

Limit 
(packet) 

50 100 150 50 100 150 50 100 150 50 100 150 

Min 
(Mbps) 

0.956 1.626 1.547 0.049 0.036 0.037 1.704 1.705 0.937 2.580 2.311 1.791 

Max 
(Mbps) 

5.264 5.469 5.459 7.262 7.403 8.070 4.544 5.368 5.425 10.543 8.753 10.445 

Avg. 
(Mbps) 

2.680 2.541 2.494 2.458 2.431 2.610 2.335 2.468 2.773 4.233 3.810 4.371 

Std. Dev. 
(Mbps) 

0.987 0.700 0.640 1.999 1.890 2.144 0.701 0.859 0.917 1.482 1.249 1.544 

Var. 
((Mbps)2) 

0.974 0.490 0.409 3.996 3.573 4.599 0.492 0.738 0.841 2.197 1.561 2.383 

Table 12. Packet length results of Deployment-1 

Criteria 
The Conditions 

UDP-
R 

UDP-R UDP-R TCP-R TCP-R TCP-R UDP-
BE 

UDP-
BE 

UDP-
BE 

TCP-
BE 

TCP-
BE 

TCP-
BE 

Limit 
(packet) 

50 100 150 50 100 150 50 100 150 50 100 150 

Avg. (bit) 2144 2144 2144 2357.6 2336 2345.6 2144 2144 2144 2336 2336 2336 

Total 
(bit) 

1072
00 

21440
0 

32160
0 

11788
0 

23360
0 

35184
0 

10720
0 

21440
0 

32160
0 

11680
0 

23360
0 

35040
0 

Number 
of Sent 

50 100 150 50 100 150 50 100 150 50 100 150 

Number 
of Recv. 

50 100 150 50 100 150 50 100 150 50 100 150 

Table 13. Packet length results of Deployment-2 

Criteria 
The Conditions 

UDP-
R 

UDP-R UDP-R TCP-R TCP-R TCP-R UDP-
BE 

UDP-
BE 

UDP-
BE 

TCP-
BE 

TCP-
BE 

TCP-
BE 

Limit 
(packet) 

50 100 150 50 100 150 50 100 150 50 100 150 

Avg. (bit) 2704 2706.6 2704.9 3287.2 3296.5 3296.2 2704 2704 2706 3088 3088 3088 

Total 
(bit) 

1324
96 

26795
2 

40032
0 

16436
0 

32635
2 

48453
6 

13249
6 

26769
6 

40320
0 

15131
2 

30571
2 

46011
2 

Number 
of Sent 

50 100 150 50 100 150 50 100 150 50 100 150 

Number 
of Recv. 

49 99 148 50 99 147 49 99 149 49 99 149 
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Table 14. Packet length results of Deployment-3 

Criteria 
The Conditions 

UDP-
R 

UDP-R UDP-R TCP-R TCP-R TCP-R UDP-
BE 

UDP-
BE 

UDP-
BE 

TCP-
BE 

TCP-
BE 

TCP-
BE 

Limit 
(packet) 

50 100 150 50 100 150 50 100 150 50 100 150 

Avg. 
(bit) 

1376 1376 1376 1963.3 1961.2 1970.2 1376 1376 1376 1760 1760 1760 

Total 
(bit) 

67424 136224 205024 96200 194160 293560 67424 136224 205024 86240 174240 262240 

Number 
of Sent 

50 100 150 50 100 150 50 100 150 50 100 150 

Number 
of 
Recv. 

49 99 149 49 99 149 49 99 149 49 99 149 

[34] enounces that TCP-BE streams perform similar

behaviour to that of UDP-R streams. Thus, for example, when 

one looks at the latency levels of deployments on different 

transport profile-stream mode pairs, the proximate measures 

in TCP-BE and UDP-R of respective deployments support 

the accuracy of results. 

8. Conclusions

After some experiments, we came to a few conclusions by 

observing the behaviour of XRCE-Clients, Agents, and 

DDSDPs and analyzing the results. 

If we think of the transmission path we focused on in 

Deployment-1, we tested it in the aspect of subscription due 

to the direction of the transmission. Because XRCE-Client is 

a subscriber. When we think of the successful delivery, every 

delivery for all experiments of Deployment-1 was completed 

successfully. Consequently, it can be said that packets go 

finely to the destination without encountering any problems 

or loss in the aspect of subscription for the first conclusion. 

As to the second conclusion, we need to remember the 

transmission path of Deployment-2. The transmission path is 

the same from the standpoints of both ends. The connection 

between XRCE-Clients is symmetrical due to the formation 

of Deployment-2, and it allows us to test the DDS-XRCE 

from the perspective of publication and subscription. It means 

there is an XRCE-Client that sends the packets, and there is 

another XRCE-Client that receives them. When we look at 

the number of successful deliveries, a few packets were not 

received by the subscriber. Although all packets were sent by 

the publisher XRCE-Client in the experiments of 

Deployment-2. When we examined the messages, the lost 

packets were lost after they were received by the Agent 

connected to the publisher XRCE-Client. Hence, the first 

conclusion we obtained from experiments of Deployment-1 

is also valid for experiments of Deployment-2. Because the 

subscriber side would have received all the packets if the 

publisher side could have sent all of them. Furthermore, the 

lost packets were always in the first three. It seems as if the 

Agent does not realise that it has to send the packets at the 

moment that it receives the first few packets. When it starts 

to send, the Agent sends the rest of the packets. Thus, it can 

be said that the first few packets might not be sent by the 

Agent of publisher XRCE-Client in the aspect of publication 

for the second conclusion. 

Moreover, we encountered an integration pattern during 

Deployment-2 experiments by examining network messages, 

and it is related to the topic on whose messages we focused. 

When we think of DDSGDS at the centre, there are two 

Agents and a DDSDP connected over DDSGDS due to the 

concern of the topic on whose messages we focused. We 

added the DDSDP as a subscriber to the experiments of 

Deployment-2 to observe the topic messages circulating in 

the DDSGDS. After the examination of the network 

messages, we observed that the Agent connected to the 

publisher XRCE-Client sends the packets in two different 

series of messages to two different DDSDPs over DDSGDS. 

It is important to remember for the next conclusion. 

The first and second conclusions are also valid for 

Deployment-3. However, the transmission path was unclear. 

We added a DDSDP as a subscriber to the experiments of 

Deployment-3 for observation. During analyzing the network 

messages, we encountered only one series of messages, 

which carries the data of the respective topic and carries the 

data using the RTPS protocol. However, there were two series 

of messages for experiments in Deployment-2 due to two 

subscribers, and two subscribers existed in Deployment-3 as 

well. It means the Agent never transferred the packets over 

DDSGDS for two subscriber members of DDSGDS while 

maintaining the communication between XRCE-Clients. It 

did for one member of DDSGDS, which is DDSDP. It 

maintained communication between XRCE-Clients by 

creating a short path. The path that the Agent chose is the 

third conclusion of our study. 

When all the conclusions are considered one more time, 

the existence of the fourth conclusion is highly likely. After 

the Deployment-2 tests, the Agent's packet loss is possible for 

other scenarios. Observation of the Agent losing packets 

during Deployment-3 tests makes this possibility more 

realistic. Therefore, although Deployment-1 has not been 

tested while the Agent is connected to a publisher XRCE 

Client, the Agent might act the same way during Deployment-
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1 tests. The Agent's possible behaviour regarding packet loss 

for Deployment-1 is the fourth conclusion. 
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