
Managing Trade-off Between Subscription Load and
Latency in Vehicular Edge Platform
Takumu Takada1,∗, Ryohei Banno1,†

1Kogakuin University, Tokyo, Japan

Abstract

Adding connectivity to vehicles is attracting much attention toward developing smarter vehicles such as
autonomous cars. To obtain and utilize real-time information from vehicles, techniques that combine the
concept of edge computing and publish/subscribe messaging model have been proposed. However, there is
an issue that the increase in the number of edge servers imposes a heavy load upon a subscriber for managing
connections to them. To address this issue, we propose an edge-based platform with the functionality of
adjusting the number of connections to edge servers. Experimental results clarify the trade-off characteristic
between subscription load and latency.

Received on 11 January 2022; accepted on 21 April 2022; published on 29 April 2022

Keywords: Edge computing, Publish/Subscribe, MQTT, IoT, Vehicular platform

Copyright © 2022 Takumu Takada et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium so
long as the original work is properly cited.

doi:10.4108/eetiot.v8i28.708

1. Introduction
Recently many studies have been carried out for
realizing smarter vehicles e.g., autonomous cars and
traffic congestion control. Such vehicular functionality
requires gathering real-time information like the speed,
position, and surrounding environment from vehicles
over a wide area.

To this end, there are existing studies that combine
the concept of edge computing and publish/subscribe
messaging model [1, 2]. Edge computing [3] enables
to reduce latency and obtain better load distribution,
whereas Publish/subscribe messaging model [4] allows
clients to exchange messages in a loosely coupled
manner. By running distributed brokers on edge
servers, vehicles can publish their data to applications
through the brokers. For example, a vehicle can
publish traffic congestion information around its
current location. For the use in a cloud application
like generating a wide-area traffic information map,
the application can gather data via the brokers with
avoiding load concentration on a single broker. An edge
broker also lowers latency in an edge application like
information sharing among neighboring vehicles.

∗Present affiliation: Hino Motors, Ltd.
†Corresponding author. Email: banno@computer.org

However, there is a problem that the increase in
the number of edge brokers imposes heavy load upon
a subscriber for managing connections to them. The
existing studies assume that each subscriber maintains
a connection to every edge broker. Accordingly, a large
number of edge brokers involves a significant load
on a subscriber to manage connections to them. To
address this issue, we propose an edge-based vehicular
platform with functionality of adjusting the number of
connections to edge brokers.

2. Related work

Aoyama et al. [1] proposed a concept of double edge
architecture for connected vehicles that fuses edge
computing and publish/subscribe messaging model.
Brokers are placed at the edge hierarchically, i.e., out-
car edge and in-car edge. Subscribers in the cloud
connect to those brokers so that they can receive
vehicular information over a wide area. UPub [2] also
has an architecture combining edge computing and
publish/subscribe messaging model, while it assumes
not only vehicles but general mobile devices. Mobile
applications behave as publishers whereas cloudlets
placed at the fog behave as subscribers. In these existing
studies, each subscriber needs to maintain connections
to every edge broker. Therefore, the increase in

1

EAI Endorsed Transactions
on Internet of Things Research Article

EAI Endorsed Transactions on
Internet of Things

04 2022 - 05 2022 | Volume 8 | Issue 29 | e1

https://creativecommons.org/licenses/by/4.0/
mailto:<banno@computer.org>

T. Takada, R. Banno

the number of brokers causes an enlarged load on
subscribers.

One possible approach to suppress an increase in
the load is clustering the brokers and making each
subscriber connects to one of them, as proposed in
[5]. However, it assumes that each subscriber connects
to only one broker node. This impose an increase in
latency when a subscriber receives data originated in a
publisher that connects to a different broker from the
subscriber.

VerneMQ [6] is also capable of clustering. A client
node can connect to arbitrary multiple brokers and
receive data originated in a publisher that connects
to those brokers without forwarding among brokers1.
However, multiple connections can cause redundant
traffic among brokers. For example, if subscriber S1
connects to two brokers B1 and B2 and subscriber
S2 connects to broker B1, data on broker B3 can be
forwarded to both B1 and B2 though B3 essentially can
deliver all subscribers by forwarding it to B1. This is
because the connection used to deliver the data to S1 is
randomly chosen.

From these, maintaining connections to every edge
broker could increase the load of subscribers, whereas
using less connections imposes an increase in latency
unless allowing redundant traffic among brokers. To
enable to adjust the trade-off between the load and
latency without redundant traffic, we propose an edge-
based platform in which a subscriber can selectively
connect to an arbitrary number of brokers. This enables
each application subscribing to data to connect to
multiple brokers according to its requirements. For
example, if an application wants to obtain data with
low latency from a specific area, it can directly connect
to brokers taking charge of the area. If the application
wants to lower the load of maintaining connections, it
can reduce the number of connections while keeping
the ability to obtain data from all brokers.

3. Proposed method
We assume that brokers are placed at the edge over
a wide area and applications in the cloud behave
as subscribers. Vehicles can be either publishers or
subscribers, though how to determine the broker to
connect to is out of the scope of this paper.

Figure 1 shows the architecture of the proposed
method. Different from the existing studies [1, 2] as
depicted on the left, the proposed method depicted
on the right enables a subscriber to connect to one or
more arbitrary edge brokers. Data from a publisher
connecting to a broker that is not connected to

1This is realized by using shared subscription and configuring the
policy of shared subscription to “prefer_local”.

Figure 1. Architecture of the proposed method

the subscriber is delivered via the brokers that are
connected to it, as shown by a red arrow.

In the proposed method, each broker connects to
all other brokers. When a subscriber subscribes to a
topic on a broker, the broker shares the subscription
information among the brokers.

3.1. Behavior of brokers
Hereafter, we refer to a client, i.e., a publisher or a
subscriber, directly connected to a broker as a local
client of the broker.

Each broker has a subscription table consisting of
client information (client identifier, IP address, etc.), a
list of brokers that the client connects to, and topics
that the client subscribes to. This table is synchronously
shared among brokers.

When a broker forwards data to another broker, it
contains information about the destination clients2 for
avoiding the delivery of duplicate data.

When a broker receives data from its local publisher,
it immediately delivers the data to its local subscribers.
When it receives data from another broker, it delivers
the data to its local subscribers contained in the
destination information of the data. It also forwards
the data to other brokers according to the following
procedure. At first, it extracts information from its
subscription table by excluding its local subscribers.
Then, it determines a set of brokers to be forwarded
the data by using the extracted information. This
determination is made so that the number of brokers
in the set is minimized while satisfying the following
condition: all subscribers subscribing to the topic of the
data are connected to at least one of the brokers in the
set. Finally, the broker forwards the data to the brokers
in the set. Upon forwarding, destination information is
attached for each of the brokers such that the number
of destination clients becomes as equal as possible. By
these, we can avoid redundant traffic among brokers
like in VerneMQ as mentioned in Section 2.

2Since each broker has the exact client information in its subscription
table, there is a possibility to compress the destination information
by techniques like Bloom Filter, though it needs to consider handling
false positives.

2 EAI Endorsed Transactions on
Internet of Things

04 2022 - 05 2022 | Volume 8 | Issue 29 | e1

Managing Trade-off Between Subscription Load and Latency in Vehicular Edge Platform

Figure 2. Basic topology of the experiments

4. Evaluation
To clarify the necessity of the proposed method, we
conducted experiments for measuring the load of a
subscriber and the latency from a publisher to the
subscriber.

In the following experiments, we used the MQTT
protocol that is one of the best-known protocols
for publish/subscribe messaging. We used Mosquitto
1.6.12 [7] for brokers and MQTTLoader 0.7.3 [8, 9]
for clients. The publisher sends messages of 100 bytes
payload size at 2 milliseconds intervals for 60 seconds.
QoS level of both the publisher and the subscriber is set
to 0.

Figure 2 shows the basic topology of the experiments.
We used two hosts for brokers (B1 and B2) and one
or two hosts for clients (C1 and C2). For forwarding
messages between the two brokers, we used the bridge
function of Mosquitto.

4.1. Subscription load
We conducted an experiment for measuring the load of
the subscriber. In this experiment, C1 is the subscriber
and C2 is the publisher. The spec of B1, B2, and C1 is
as follows: Celeron N3350 CPU, 4GB memory, Ubuntu
20.04 OS. The spec of C2 is as follows: Core i5-10400
CPU, 32GB memory, Windows 10 OS.

We compared the following two cases:

• Two connections: C1 connects to both B1 and B2.
C2 connects to both B1 and B2 and sends out
messages to them equally.

• One connection: C1 connects to B1. C2 connects
to B2 and sends out all messages to it.

Figure 3 shows the result. Note that we removed
the first five seconds and last five seconds from the
60 seconds of measurement time as ramp-up/ramp-
down time. From the result, the load of the subscriber
is higher when it connects to two brokers than when
it connects to one broker. The average CPU usages are
25.83% and 16.30% respectively.

4.2. Latency
We conducted an experiment for measuring the latency
between the publisher and the subscriber. In this

0

10

20

30

40

50

0 10 20 30 40 50

C
P

U
 u

sa
g

e
 [

%
]

Elapsed time [sec]

Two connections One connection

Figure 3. Subscriber load

0

100

200

300

400

0 50 100A
v
e

ra
g

e
 l
a

te
n

cy
 [

m
se

c]

Link latency [msec]

Two connections One connection

Figure 4. Latency

experiment, C1 behaves as both the subscriber and the
publisher to calculate the latency accurately. The spec of
B1, B2 is as follows: Celeron N3350 CPU, 4GB memory,
Ubuntu 20.04 OS. The spec of C2 is as follows: Core i5-
10400 CPU, 32GB memory, Windows 10 OS.

We compared the following two cases:

• Two connections: The subscriber in C1 connects
to both B1 and B2. The publisher in C1 connects
to both B1 and B2 and sends out messages to them
equally.

• One connection: The subscriber in C1 connects to
B1. The publisher in C1 connects to B2 and sends
out all messages to it.

Each measurement was conducted three times and the
average latency was calculated.

For every link among the hosts (B1, B2, and C1), we
set three patterns of link latency by using the Traffic
Control (tc) utility of Linux to reproduce the case that
those hosts are placed at a distance; 0 millisecond, 50
milliseconds, and 100 milliseconds.

Figure 4 shows the result. From the result, the latency
is larger when the subscriber connects to one broker
than when it connects to two brokers. The difference

3 EAI Endorsed Transactions on
Internet of Things

04 2022 - 05 2022 | Volume 8 | Issue 29 | e1

T. Takada, R. Banno

becomes large especially when the link latency is set to
a large value.

Analytical evaluation for latency. In addition to the
experimental evaluation, we analytically evaluate the
latency. We assume a Jackson network, a well-known
queueing network class, with multiple brokers and one
subscriber for simplicity. We call the brokers that the
subscriber connects to “a connected broker”, whereas
those not connected to the subscriber “a non-connected
broker”. We also make the following assumptions.

• The number of brokers: n

• The number of connected brokers: m

• The average arrival rate of each broker: λ
messages per second

• The average service rate of each broker: µ
messages per second

• Published data on the non-connected brokers are
equally forwarded to the connected brokers.

Hereafter, we call m
n the “connection rate” of the

subscriber. Since each broker connects to all other
brokers in the proposed method, published data on the
non-connected brokers are delivered to the subscriber
through one connected broker.

The average waiting time from a connected broker to
the subscriber is

1
µ − λ

, (1)

whereas that from a non-connected broker is

1
µ − λ

+
1

µ − n
mλ

. (2)

Therefore, the entire average waiting time W is

W =
1

µ − λ
+

1
µ − n

mλ
(1 − m

n
). (3)

Figure 5 shows the impact of connection rate on
latency, calculated by the above equation. We set
parameters as follows: the size of each message is 10
KBytes, and the network bandwidth is 1 Gbps. Thus, the
service rate of each queue is roughly 12, 207 messages
per second. The figure shows that a lower connection
rate enlarges the latency. Note that this analysis focuses
on the brokers and does not consider the network
latency since it aims at revealing the tendencies when
changing the connection rate.

From these results, we can say that there is a trade-
off characteristic between the load of maintaining
connections to brokers and the latency from a publisher
to a subscriber. The proposed method enables each
subscriber to adjust this trade-off according to its
situation.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

La
te

n
cy

 [
m

se
c]

Connection rate

Figure 5. Connection rate impact on latency

5. Conclusion
In this paper, we proposed an edge-based vehicular
platform that provides the functionality of adjusting
the number of connections from a subscriber to edge
brokers. Experimental results show that reducing the
number of connections lowers the CPU usage but
enlarges the latency. The proposed method enables each
subscriber to adjust the trade-off, so that it eases to
support various situations of applications. One of the
drawbacks is that the application parameter increases;
the operator of each application has to determine the
number of brokers to connect and select broker(s)
to connect. It is desirable to determine the above
parameters dynamically according to the load status
and topics of interest. Besides, there is also an issue
that each broker is forced to manage and exchange
more information compared to existing studies. As
we mentioned in Section 3.1, there is a possibility
to improve by using techniques like Bloom Filter.
Our future work includes designing such an efficient
cooperation algorithm among edge brokers.

Acknowledgement. This work was supported in part by JSPS
KAKENHI Grant Numbers 19K20253 and in part by JST
PRESTO Grant Number JPMJPR21P8.

References
[1] Aoyama, M. and Uno, T. (2019) A Concept and Design

Method of Double Edge Computing Architecture for
Connected Vehicles Software Platform and its Evaluation.
In JSAE Congress (Autumn): 1–6. (in Japanese).

[2] Quental, N. (2021) UPub: Enabling Mobility Manage-
ment for Publish/Subscribe Systems in the Edge. In Proc.
IEEE Consumer Communications and Networking Confer-
ence.

[3] Shi, W., Cao, J., Zhang, Q., Li, Y. and Xu, L. (2016)
Edge Computing: Vision and Challenges. IEEE Internet of
Things Journal 3(5): 637–646.

[4] Eugster, P.T., Felber, P.A., Guerraoui, R. and Kermarrec,

A.M. (2003) The Many Faces of Publish/Subscribe. ACM
Computing Surveys 35(2): 114–131.

4 EAI Endorsed Transactions on
Internet of Things

04 2022 - 05 2022 | Volume 8 | Issue 29 | e1

Managing Trade-off Between Subscription Load and Latency in Vehicular Edge Platform

[5] Banno, R., Takeuchi, S., Takemoto, M., Kawano, T.,
Kambayashi, T. and Matsuo, M. (2015) Designing overlay
networks for handling exhaust data in a distributed
topic-based pub/sub architecture. Journal of Information
Processing 23(2): 105–116.

[6] VerneMQ, https://vernemq.com/ (accessed Apr. 26,
2022).

[7] Light, R.A. (2017) Mosquitto: server and client imple-
mentation of the MQTT protocol. Journal of Open Source

Software 2(13): 265.
[8] Banno, R., Ohsawa, K., Kitagawa, Y., Takada, T. and

Yoshizawa, T. (2021) Measuring Performance of MQTT
v5.0 Brokers with MQTTLoader. In Proc. IEEE Consumer
Communications and Networking Conference.

[9] MQTTLoader, https://github.com/dist-sys/

mqttloader/ (accessed Apr. 26, 2022).

5 EAI Endorsed Transactions on
Internet of Things

04 2022 - 05 2022 | Volume 8 | Issue 29 | e1

https://vernemq.com/
https://github.com/dist-sys/mqttloader/
https://github.com/dist-sys/mqttloader/

	1 Introduction
	2 Related work
	3 Proposed method
	3.1 Behavior of brokers

	4 Evaluation
	4.1 Subscription load
	4.2 Latency
	Analytical evaluation for latency

	5 Conclusion

