
EAI Endorsed Transactions
on Internet of Things Research Article

Migration of Microservices Execution Contexts
Between Processing Zones in Software-Defined
Vehicular Fog Networks
Leonel D. C. Alvarenga12,∗, Pedro Sousa2, António Costa2

1Instituto Federal Goiano, Rio Verde - GO, Brasil
2Centro Algoritmi, LASI, Department of Informatics, University of Minho, Braga, Portugal

Abstract

The growing need for time-sensitive applications in vehicular networks makes Fog Computing a promising
model to orchestrate cloud-based services consumed by vehicle nodes, as it brings computational resources
and decision-making processes near to vehicles. However, vehicular mobility presents significant challenges
for implementing Fog Computing Services that require low latency. The dynamic nature of vehicle movement
means that the physical location of computational resources (Fog Nodes) relative to vehicles is constantly
changing. Consequently, maintaining a consistent and reliable low-latency communication path becomes
challenging. Recent research suggests that the Software-Defined Networking paradigm can optimize Vehicular
Fog Computing Networks in resource and service management. In this paper, a dynamic methodology is
proposed for the migration of the microservice execution context between processing zones in Software-
Defined Vehicular Fog Computing Networks (SDVFN). This approach was tested using a simulated use case
in our SDVFN Simulation Framework, designed to support research on dynamic microservice orchestration
in SDVFN, taking into account vehicular mobility.

Received on 26 September 2024; accepted on 07 March 2025; published on 19 August 2025
Keywords: Vehicular Fog Networks, Software-Defined Vehicular Fog Networks, Task Allocation, Mobility-Responsive
Microservice Orchestration

Copyright © 2025 Leonel D. C. Alvarenga et al., licensed to EAI. This is an open access article distributed under the terms
of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material
in any medium so long as the original work is properly cited.

doi:10.4108/eetiot.9987

1. Introduction
With the expansion of urban areas and the increase
in the number of vehicles, applications of Intelli-
gent Transportation System (ITS) are revolutionizing
the management and interaction within vehicular net-
works. Typically, ITS refers to the application of infor-
mation, communication, and sensing technology to
transportation and transit systems. It is likely to be an
integral component of the smart cities of the future [1].

In this context, Internet of Vehicle (IoV), under
the umbrella of Internet of Things (IoT), emerges as
a promising paradigm for enabling a wide variety
of ITS applications, taking advantage of connectivity
and data exchange capabilities between vehicles and
infrastructure, and real-time sharing of information

∗Corresponding author. Email: leonel.carvalhaes@ifgoiano.edu.br

such as traffic conditions, road hazards, and weather
updates. ITS can improve road safety and efficiency,
optimize traffic flow, mitigate congestion, and improve
the overall driving experience [2–5].

Vehicular nodes in the IoV paradigm can benefit
from various services provided by Cloud and Fog
Computing Networks. While Cloud Computing offers
a centralized platform for processing and storing data,
Fog Computing brings computational resources closer
to the edge of the network, enabling low-latency
processing and real-time decision-making. Being the
junction of these two network paradigms, Vehicular Fog
Network (VFN) is an environment in which vehicular
nodes can access many services that are hosted on a
Fog Computing Network. This is particularly beneficial
for applications that require immediate responses.
By handling data locally, VFN reduces the amount
of data to be transmitted to the cloud, conserving

1
EAI Endorsed Transactions on

Internet of Things
| Volume 11 | 2025 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:<leonel.carvalhaes@ifgoiano.edu.br>

L. D. C. Alvarenga, P. Sousa, A. Costa

bandwidth, and reducing costs. It also improves service
availability, allowing operations to continue even when
the connection to the cloud is lost, and increases data
privacy and security by minimizing data exposed to
network transmission [6].

Within an IoV environment, Fog platforms need to
face additional challenges as vehicles move between
Road-Side Units (RSUs), while preserving their roles in
computing, communication, and end-user functional-
ity. Furthermore, the stringent Quality of Service (QoS)
requirements of numerous ITS applications impose sig-
nificant challenges for the deployment of VFN [2].

Modern networking paradigms, specifically the
Software-Defined Networking (SDN), can be used
to improve Fog Computing orchestration to manage
resources and services across edge devices [7]. It can
solve problems and limitations that occur in traditional
environments by using an architecture designed to
simplify and improve network management. In the
SDN architecture, the control plane and the data
plane are decoupled, so the control of the network
is separated from the packet forwarding mechanism.
Thus, the network control function can be programmed
directly, adapting to the reality of each scenario, as well
as promoting improvements in existing mechanisms
[8].

SDN paradigm is applied to get better results on
typical tasks in IoVs and vehicular ad hoc networks.
This paradigm has become an excellent alternative
to promoting centralized network control, improving
flexibility and programmability, simplifying network
management, optimizing wireless network resources,
improving heterogeneity management and enabling
even more intelligent and scalable services in Vehicular
Network environments [9, 10].

The authors in [7] present research on SDN and Fog
Computing in vehicular networks. They envision an
architecture that uses SDN to support Fog Computing
in Vehicular Ad Hoc Networks (VANETs). The authors
do not deal with ITS services or with Fog Computing
Node (FCN) orchestration. In addiction, they do not
have implemented the architecture, but pointed out
important future works:

• The creation of a Fog orchestration model that
takes into account the capabilities of SDN to
support Fog Computing;

• The implementation of an SDN protocol to opti-
mize the reorganization of datapaths, responding
to the mobility nature of vehicular networks;

• The improvement of load balancing techniques;

• The need to implement and evaluate the proposed
architecture in a simulation environment or on a
real environment.

In their work, the authors of [9] present a compre-
hensive review of Software-Defined Vehicular Ad hoc
Networks (SDVN). They envision research challenges
for SDVN, among which are the management of topo-
logical changes and the adaptive reconfiguration of the
network.

The authors in [11] wrote a review of VANET
simulators. They compare available simulators in many
dimensions, including support for new technologies
such as SDN and Edge Computing. However, the study
does not mention that existing simulators could address
service orchestration in Vehicular Fog Computing
Networks using SDN.

There is still a lack of work in the literature that
comprehensively evaluates SDVFN scenarios, with the
ability to orchestrate ITS services/applications in a Fog
Computing paradigm to be consumed by connected
vehicles, as well as promoting the network’s ability to
adapt to the mobility nature of vehicular networks.

Experimental environments are necessary to put IoV,
SDN, and Vehicular Fog Networks models into practice.
However, it is not always possible to implement real
testbeds, either because of the cost of the physical
construction of such environments or because of the
disruption model of the experiment when compared to
usual models.

The simulation of an SDVFN scenario, including
the orchestration of ITS applications in Vehicular
Fog Computing environments and the exploitation
of SDN resources, is therefore essential for carrying
out research in this field. Simulations can allow
the evaluation of various metrics, including vehicle
mobility and network communication, as well as other
resources, depending on the focus of the research.

However, reviews in the literature, such as [7, 9, 11],
do not point to a network simulator that can deal with
an SDVFN scenario directly and comprehensively.

Costa et al. [12] performed a comprehensive system-
atic review of the current literature on orchestration
in fog computing, identifying the key functionalities
required for efficient orchestration within fog comput-
ing settings. The authors stress the necessity of evaluat-
ing service orchestration techniques both in simulation
and in real-world test environments.

Sarkohaki et al. [13] provide an overview of the
latest and leading techniques for service placement
in fog-cloud environments. They organize these tech-
niques into seven primary categories based on opti-
mization strategies: exact solutions, approximated solu-
tions, heuristic and meta-heuristic methods, machine
learning approaches, game theory strategies, neural
network algorithms, and other miscellaneous methods.
The authors highlight the absence of a unified and com-
prehensive simulation environment as a gap, suggesting
that its development is vital to advance research and
create more effective methods for service placement.

2
EAI Endorsed Transactions on

Internet of Things
| Volume 11 | 2025 |

Migration of Microservices Execution Contexts Between Processing Zones in SDVFN

Pallewatta et al. [14] provide a comprehensive
classification of current research on the deployment
of microservices within Fog computing settings. The
authors highlight the crucial role of effective placement
algorithms for microservices. They suggest that scalable
placement strategies are crucial to fully leverage the
modular and scalable nature of microservices and to
tackle the specific challenges inherent in Fog computing
frameworks.

This paper presents a simulation framework designed
to directly support the implementation and evaluation
of service orchestration in software-defined vehicle fog
networks (SDVFN) with the following capabilities:

• Implement different strategies for selecting Fog
Computing Nodes to compare load balancing
algorithms;

• Use the SDN paradigm to provide adaptability to
datapaths, given the mobility of vehicles;

• Employ a service-oriented routing rule strategy;

• Anticipate the sending of OpenFlow routing
rules for the correct reorganization of datapaths,
responding to vehicle movement;

• Responsive Microservice Orchestration in
Software-Defined Vehicular Fog Computing
Networks;

• Enable Migration of Microservice Execution
Context Between Processing Zones in Software-
Defined Vehicular Fog Networks Simulation.

In addition, an ITS application use case is also
implemented to evaluate the proposed framework.

The rest of this document is structured as follows.
Section 2 presents the proposed SDVFN simulation
approach to test and evaluate the deployment of
ITS applications, the adaptation of the simulation
framework, and details of the implementation. Section
3 describes the experimental use case, analyzing
its effectiveness and the obtained results. Section 4
presents the conclusions about the work.

2. Proposed SDVFN Simulation Architecture
This study introduces a Simulation Architecture aimed
at testing and evaluating methodologies to orchestrate
microservices allocation and migration in SDVFN,
taking into account vehicular mobility. We validate our
method employing a use-case scenario that handles
computational microservice tasks from connected
vehicle nodes in two ways, using static task allocation
and using dynamic mobility responsive task allocation.
The Eclipse MOSAIC Framework [15] was utilized to
implement several functions associated with SDVFN,
thereby creating a simulation environment that allows
for:

• the prototyping of ITS applications in SDVFN;

• a Service Placement orchestration to perform
optimization on processing computational vehicle
tasks;

• a service-oriented routing strategy using the
[vehicle,service] tuple information;

• distribution of OpenFlow based forwarding rules
to switches, and reorganization the forwarding
datapaths;

• the implementation of vehicular handover algo-
rithms.

The proposed SDVFN architecture consists of a
VANET within the wireless domain and a Software-
Defined Fog Computing Network on the infrastructure
side. These components are interconnected by RSUs
placed along urban transportation routes, as illustrated
in Figure 1.

The SDVFN architecture is made up of three layers.
The Infrastructure Layer, the Control Layer, and the
Application Layer.

The infrastructure layer encompasses all physical
hardware components that enable data processing,
storage, and communication across the network. This
includes vehicles equipped with computational and
communication capabilities RSUs, and fog nodes, which
assist in performing data processing and storage tasks
close to the network edge.

Each RSU depicted in Figure 1 provides a FCN for
performing computational tasks and acts as an access
point, connecting wireless VANET nodes to SDVFN,
and is also responsible for forwarding packets along the
communication path. Moreover, each switch maintains
a direct connection to an SDN controller via a dedicated
channel to exchange OpenFlow messages.

In the control layer, the Fog Orchestration Server and
the SDN controller manage the underlying infrastruc-
ture. These two elements can monitor network perfor-
mance, allocate processing tasks, optimize data flow,
and enforce policies to meet network requirements. The
SDN controller has a comprehensive view of the net-
work, facilitating centralized governance and dynamic
configuration of network resources.

The application layer hosts the various services and
applications that depend on the network infrastructure
and the support provided by both the Orchestration
Server and the SDN Controller.

Eclipse MOSAIC [15] was used to build our SDVFN
Simulation Architecture. It is a multi-domain and mul-
tiscale simulation framework for testing and developing
connected and automated mobility solutions. Eclipse
MOSAIC uses High Level Architecture (HLA) to stan-
dardize interfaces and employs the concept of federates
and ambassadors, coupling individual simulators to

3
EAI Endorsed Transactions on

Internet of Things
| Volume 11 | 2025 |

L. D. C. Alvarenga, P. Sousa, A. Costa

Vehicular Ad-hoc
communications links

Fog Nodes interconnection

Software Defined Vehicular Fog Network Architecture

OpenFlow secure channel link Service Processing

Datapath from Vehicle to RSU of Fog
Computing Node

OpenFlow-enable
RSUVehicular Node

RSU

RSU

Local Fog
Computing
NodeOF switch

Wireless Port

RSUs
interconnection

ports
Secure channel

port

RSU

RSU RSU RSU

ITS Applications

SDN Controller

Application Layer

Control Layer

Infrastructure Layer

Orchestration Server

Figure 1. Software-Defined Vehicular Fog Network Architecture.

Figure 2. HLA architecture of Eclipse MOSAIC, Available at [16]

the whole environment, thus acting as a co-simulation
framework. Federates can be wrapped into a Federate
object, which is linked to an Ambassador for direct con-
nection with the MOSAIC runtime infrastructure (RTI),
as can be seen in Figure 2. All the management tasks
of the simulation life cycle are in charge of the RTI. It
includes Federation Management, Time Management,
and Interaction Management.

Traffic simulation is carried out using the Eclipse
SUMO simulator [17]. All interactions between SUMO
and Eclipse MOSAIC are performed through the
Traffic Control Interface (TraCI). It is from this
interface that it is possible to retrieve information

about simulated entities, as well as manipulate their
behavior in real-time. On the Eclipse MOSAIC side, the
SumoAmbassador class interacts with Sumo TraCI and is
responsible for implementing the object that represents
this Federated Simulator.

The simulation of applications is in charge of the
ApplicationAmbassador class provided by the built-
in MOSAIC application simulator. This simulator
prototypes applications in all simulation units, which
can be Vehicles, RSU, Traffic Lights, Traffic Management
Center (TMC), and Servers.

Applications are deployed into each Unit. They are
compiled JAVA classes, which extend the abstract class
AbstractApplication and implement the Communication-
Application interface.

Each abstract application interacts with the unit’s
operating system application to gain access to the
simulated unit’s parameters and perform specific
actions of these units, such as navigation and
communication between them, using their respective
communication modules.

Eclipse MOSAIC offers a domain-specific architec-
ture to couple with a range of simulators: Application
simulators, Traffic and Vehicle Behavior Simulators,
Network and Communications Simulators, Environ-
ment Simulators, and E-Mobility Simulators.

4
EAI Endorsed Transactions on

Internet of Things
| Volume 11 | 2025 |

Migration of Microservices Execution Contexts Between Processing Zones in SDVFN

In the field of Network and Communication Simu-
lations, the framework enables the simulation of Cel-
lular Communications and ITS-G5 Ad Hoc Commu-
nications. These simulations can be performed using
external simulators such as OMNeT++ and NS-3, or
using built-in Eclipse MOSAIC simulators. The built-
in MOSAIC Simple Network Simulator (SNS) is used
to simulate ITS-G5 Ad Hoc networks, while the built-
in MOSAIC Cell Simulator is used to simulate cell-
network communications. Eclipse MOSAIC does not
offer directly wired communications, but we adapt the
Cell communications to behave like wired ones.

2.1. SDVFN Infrastructure Layer Simulation
The built-in Eclipse MOSAIC network simulators offer
many communication modes. Cellular communications
in MOSAIC Cell are available to entities that have a
cellular interface enabled. The communication modes
are as follows:

• GeoBroadcast: Broadcast cellular communication
in a specific area.

• Geocast: Unicast Cellular Communication in a
specific area.

• Topocast: Unicast Cellular Communication
regardless of geographical area restrictions.

Ad hoc communications simulate the IEEE 802.11p
standard in the 5.9 GHz frequency band (5.85-
5.925 GHz), which is intended for ITS across seven
possible channels. The available modes of ad hoc
communications are:

• GeoBroadcast: In this mode, messages are
broadcasted, and therefore all simulated entities
with ad hoc enabled within a specific range will
receive the messages.

• GeoCast: Ad hoc geocast mode enables unicast
communication between two entities on the same
ad hoc channel if the receiver’s IP address
is known. This type of simulated transmission
does not impose geographical restrictions on
communication between entities.

• Topobroadcast: This mode is designed to dis-
seminate information to all nodes within the
signal range. This mode can operate in single-
hop or multi-hop configurations, and the entities
involved in the communication must be operat-
ing on the same ad hoc channel. In multi-hop,
message dissemination is accomplished through
flooding.

• Topocast: This mode enables unicast communica-
tion in ad hoc networks, subject to no restrictions
on signal range and the number of hops.

However, the Eclipse MOSAIC framework does not
offer a native method to simulate SDN and Fog
Computing Networks and, consequently, SDVFN. As
a result, we engineered a suite of Eclipse MOSAIC
applications to address this limitation.

Although the coupled OMNET++ and NS-3 simula-
tors can simulate wired networks, Ambassadors do not
have this functionality. Furthermore, there is no switch
entity available to build the infrastructure network,
leading us to implement software switches within the
RSU Unit.

OpenFlow Switch Abstraction. The proposed SDVFN
architecture simulates a subset of the OpenFlow
protocol for communications between the Control
Layer and the Infrastructure Layer. In addition, we
implemented a novel service-driven packet forwarding
strategy that specifies the actions to be taken for each
incoming packet.

To establish an infrastructure network which simu-
lates a fog network, we created a packet-switching net-
work interconnected by OpenFlow software switches
implemented as a Mosaic Application. Switches are
equipped with cellular network modules and ad hoc
networks to communicate with other elements of the
network. Each switch abstracts four communication
ports:
INTRAUNIT_PORT: This port abstracts an interface

to provide communication between the OpenFlow
switch and the Fog Computing Node of the local RSU
where the switch is attached.
ADHOC_PORT: This port uses an abstraction of an ad

hoc communication module to provide communication
between the OpenFlow switch and the vehicular nodes
of SDVFN.
RSUS_PORT: This port uses a cellular communica-

tion module to send and receive packets from adjacent
switches on the fog side of the SDVFN. It is configured
to use Cellular Topocast communication with a constant
delay of 10ms, without loss, and without range restric-
tion.
SERVER_PORT: This port abstracts communication

with the fog server to exchange SDN OpenFlow
messages. Communications are carried out via cellular
module using topocast mode and with a constant delay
of 20ms without loss and without range restriction.

By reducing communication delays, eliminating
range restrictions, and utilizing topocast communica-
tions, we enable RSUS_PORT and SERVER_PORT to
function as seamlessly as wired networks.

Each switch contains a flow table comprising various
flow rules designed to match incoming data packets
and determine the corresponding action. The SDN
OpenFlow controller can add, remove, or modify these
rules via the connection, using the SERVER_PORT.

5
EAI Endorsed Transactions on

Internet of Things
| Volume 11 | 2025 |

L. D. C. Alvarenga, P. Sousa, A. Costa

The infrastructure component of the SDVFN was
set up using RSU OpenFlow switches, which provide
standard OpenFlow packet forwarding rules. Commu-
nications occur through cellular topocast transmissions
via the RSUS_PORT of each switch.

2.2. SDVFN Control Layer Simulation

The SDVFN control layer consists of the network
Orchestration Server and the SDN controller, as can
be seen in Figure 1. The Orchestrator coordinates the
allocation of services on Fog Computing Nodes and
optimizes communication paths to ensure low latency
and high throughput.

By integrating SDN with Fog Computing, the SDVFN
supports services that are sensitive to location and
require a shorter response time. In this context, the
Orchestrator communicates with the SDN Controller
to manage the routing paths between vehicles and fog
nodes.

The Orchestrator maintains a comprehensive data set
of vehicular metrics, including positional coordinates,
service utilization, velocity, directional heading, and the
RSU access point of the vehicle.

The SDN controller constitutes a critical component
of the SDVFN. It encompasses a subset of conventional
OpenFlow Controller Functions tailored to address
the specific requirements of the SDVFN context. The
controller processes packet-in messages transmitted
from the switches via the secure OpenFlow channel,
thereby allowing the addition, removal, or modification
of matching rules on the switches.

Additionally, the SDN Controller maintains a net-
work topology model to retain an abstract perspective
of the whole Fog Network, encompassing the flow
table of every switch. This abstraction is crucial for
determining the best paths for packet forwarding and
subsequently applying the forwarding rules within the
switches. The abstraction of the topology includes only
the infrastructure side of the SDVFN, where there are
OpenFlow switches.

2.3. SDVFN Control Layer Modules

The SDVFN is made up of several elements. Figure
3 shows how the main simulation components are
distributed. The modules of both the SDN Controller
and the Fog Orchestration Server play a pivotal role in
the SDVFN orchestration.

Fog Orchestrator Server Modules. The Microservice Reg-
istration Module is responsible for recording relevant
information about each microservice in the SDVFN,
with the following objectives:

• Register the replication strategy used for each
microservice in the SDVFN, including the maxi-
mum total number of replicas for each microser-
vice.

• Maintain a list of fog computing nodes where the
replicas of each microservice are located.

• Maintain a registration of all vehicle customers for
each microservice.

The Mobility Monitoring Module monitors the infor-
mation about the vehicle as it moves. Periodically, reg-
istered vehicles send information about their speed,
heading, and geographical position to the Fog Orches-
trator Server, including which RSU is used by each
vehicle to connect to the SDVFN. In addition, when a
vehicle is about to perform a handover from the actual
RSU to another, it sends a handover notification to
the Fog Orchestrator Server. Subsequently, the Mobil-
ity Monitoring Module requests the SDN Controller to
anticipate the distribution of the OpenFlow rules to the
new datapath from the next RSU to the Fog Computing
Node. The actual and next path information is main-
tained by the Mobility Monitoring Module for each pair
of [vehicle,service].

The MicroService Placement Optimization Module is
responsible for implementing the algorithms in charge
of the allocation and reallocation of microservice
replicas according to the replication strategy defined
in Microservice Registration Module for each specific
Microservice. This means that each microservice can be
submitted to different service placement models. This
can be illustrated by deploying Kubernetes pods on
FCNs.

With the movement of vehicles and the consequent
handover from one RSU to another, the initial
geographical positioning of microservice replicas may
have become unsuitable to optimize communication
latency between vehicles and microservices. When
this happens, the Microservice Placement Optimization
Module can decide to rearrange the distribution
of the replicas of a given microservice, following
their respective optimization strategies. The module
calculates the optimal distribution of replicas for the
current scenario, and replicas are migrated to the
designated FCNs.

Each migration generates the need to reorganize the
datapaths between FCNs and the RSUs for all vehicles
that consume the same service that is being migrated.
The Fog Orchestrator Server asks the current FCN to
migrate the replica to the new FCN that will host
the replica and, after the migration, asks the SDN
Controller to trace the new datapaths and distribute the
OpenFlow forwarding rules on the switches affected by
the change.

6
EAI Endorsed Transactions on

Internet of Things
| Volume 11 | 2025 |

Migration of Microservices Execution Contexts Between Processing Zones in SDVFN

SDN
Controller

 Fog Orchestrator Server

Task Context Allocation/Migration Module MicroService Placement Optimization Module

Mobility Monitoring Module MicroService Registration Module

SDN NorthBound Interface

SDN SouthBound Interface

Fog Computing
Node 1

RSU OpenFlow
Switch 1

...

Datapath
Optimization Module

Forwarding Rules
Distribution

Module

Vehicular Node 1

Wireless Link Between Vehicular Node and its RSU Access Point

RSU Site 1

Fog Computing
Node 2

RSU OpenFlow
Switch 2

RSU Site 2

Fog Computing
Node N

RSU OpenFlow
Switch N

RSU Site N

Client of Service 1

...
Client of Service 2

Client of Service N

Communication
Module

RSU Selection
Module

Vehicular Node N

Client of Service 1

...

Client of Service 2

Client of Service N

RSU AcessPoint
Selection Module

RSU Handover
Module

...

Communication Module

Figure 3. Component Vision of SDVFN Architecture.

The Task Context Allocation/Migration Module is
responsible for selecting the appropriate microser-
vice replica (i.e., Kubernetes pods) to process vehicle
requests. The Service Context Allocation/Migration Mod-
ule can reallocate microservice replicas applying some
strategy. In addition, the module can migrate the execu-
tion contexts between replicas of the same microservice.
In this case, the replica remains in the same FCN, but
the vehicle is now served by another FCN that has
another replica of the same microservice.

The execution context migration reallocates the
current state of the task that is being processed,
independently of any replica reallocation. This means
that execution contexts can be transferred from one
microservice replica to another, based on any strategy
designed to respond to vehicle movement. As a
result, this migration ensures the balance of load
between replicas, supporting the achievement of QoS
restrictions, such as selecting one that is not overloaded
and geographically closer to the vehicle.

7
EAI Endorsed Transactions on

Internet of Things
| Volume 11 | 2025 |

L. D. C. Alvarenga, P. Sousa, A. Costa

SDN Controller Modules. The Datapath Optimization
Module depicted in Figure 3 generates a topological
representation of a Fog Network and optimizes the
network’s data pathways. Currently, it uses the Dijkstra
algorithm, which is a popular algorithm for finding the
shortest path between nodes in a graph. However, the
system is designed to be flexible, allowing additional
algorithms to be implemented in the future if necessary.

Forwarding Rules Distribution Module registers dat-
apaths used by vehicles to access specific microser-
vices. The referred module contains crucial information
on how data are routed through the network. Thus,
when the Datapath Optimization Module determines a
new datapath, the Forwarding Rules Distribution Module
compares this new path with the existing one in its
registers.

The module not only distributes the new routing
rules to the network switches in the new section of
the datapath, but also cleans up outdated rules from
switches that were in the section of the datapath that
are no longer needed in the current configuration.

These modules help the SDN Controller to optimize
network resources and ensure optimal routing for vehi-
cles accessing microservices, by dynamically updating
and removing routing rules as needed.

OpenFlow Service-Driven Forwarding Rules on SDVFN.
The proposed SDVFN Framework uses personalized
rules for each microservice execution context of a
specific vehicle. This means that when a vehicle uses
various services, the microservice execution context
of each vehicle can be handled by different nodes
within the SDVFN. By doing this, the network can
effectively manage traffic by assigning a unique rule
for each combination of vehicle and microservice,
allowing efficient and flexible data routing and resource
allocation in SDVFN.

When a vehicle sends the first message to the
SDVFN, the RSU access point sends the vehicle’s
data to the Orchestrator and awaits a decision on
which Fog Computing node will process the requested
microservice.

The Orchestrator, in turn, records vehicle informa-
tion and chooses one of the microservice replicas in the
respective FCN to attend the vehicle and requests to the
SDN Controller to calculate the best datapath between
the vehicle and the selected FCN to host the execu-
tion context of the [vehicle,service] pair. Then, it sends
the customized OpenFlow [vehicle,service] forwarding
rules to all switches along the datapath. Vehicles sends
its data periodically to the SDVFN to help Orchestrator
and SDN controller on network mobility responsive-
ness.

3. Experimental Use Case Analysis and Results
To validate our work, we developed an experimental
use case scenario to evaluate the suitability of
the proposed SDVFN architecture to orchestrate
microservices, including the migration of its execution
contexts responding to vehicle mobility. In addition,
we analyze its ability to apply various strategies to
optimize data traffic in the SDVFN. To achieve the
research objectives, we use the following requirements:

1. The SDVFN should allow for the selection of a
specific replica of a given microservice allocated
to a FCN (Fog Computing Node) to process
requests sent by a given vehicle, thus evaluating
the capacity of the proposed architecture to test
load balancing techniques on distribute replicas
of a microservice.

2. The simulation environment must be able to
establish an optimized datapath for each vehicle
from its RSU access point to its respective
processing Fog Node within the SDVFN.

3. It must be able to effectively use the SDN
paradigm to adapt to vehicular mobility, by
rearranging data forwarding paths along with
vehicle handovers.

4. It must implement a seamless handover between
the RSUs. In this case, the main goal is to assess
how effectively the environment can facilitate
various handover methodologies.

5. It must have the capability to migrate the
microservice execution context from one
microservice replica to another, responding
to vehicular mobility.

6. The SDVFN must allow algorithms to optimize
the use of customized strategies in migrating
microservice execution contexts.

The experimental environment was created using
Eclipse SUMO for the mobility simulation and the
Eclipse MOSAIC Multi-Domain Framework for the
implementation of network communications, and the
algorithms that implement the SDN OpenFlow protocol
and its modules, Orchestrator and its modules, and the
applications in the switches, FCNs, and vehicles. The
experiments are geographically contextualized using a
partial map of the city of Rio Verde, located in the
Brazilian state of Goiás, as shown in Figure 4. The
SDVFN is made up of 58 RSUs interconnected by
OpenFlow switches.

Each Roadside Unit (RSU) signal covers a radius of
200 meters. They are strategically positioned to provide
optimal average signal coverage. Vehicles remain within
the signal range of at least 2 RSUs, but some zones are

8
EAI Endorsed Transactions on

Internet of Things
| Volume 11 | 2025 |

Migration of Microservices Execution Contexts Between Processing Zones in SDVFN

0
1

2
4

5

6

7

9

10

11
12

23

36

27

26

37

38

33

39

30

40

41

42

46

45
47

48

50

3

8

13

14

16

17

18
19

20

21
22

24

57

25

28

29

31
32

34

35
43

44

54

49

51

52
53

55

56
15

Figure 4. Geographic distribution and network communication
topology of the RSUs in the SDVFN experimental scenario.

intentionally covered by just 1 RSU or outside of any
RSU signal coverage.

Communications between vehicles and the RSU
switches consistently employ wireless ad hoc connec-
tions, incurring a 10 ms latency for each direction of
network packets. Similarly, it takes 20 ms for commu-
nications between RSUs OpenFlow switches. Further-
more, interaction times between OpenFlow switches
and the SDVFN servers, namely the Orchestrator and
the SDN Controller, are 50 ms in each direction. The
simulation also accounts for a 3 ms communication time
between the OpenFlow switch and the FCN at each
RSU location. This arrangement is quite the same as
our previous work [18] and can be parametrized in the
framework.

We used two comparative experimental scenarios:
The first is the same as used in [18], with seamless
handovers, and the second implements a microservice
context migration in microservice orchestration in
response to vehicular mobility. Both scenarios are in the
context of a limited number of microservice replicas.

3.1. Comparative experimental scenarios
The Static Task Context Allocation Scenario. The Baseline
Scenario is the Static Task Allocation Scenario. It
uses ten Fog Computing Nodes that handle tasks
transmitted by vehicles, all providing the same
microservice. In Figure 4, these nodes are represented
as red RSUs and are identified with the following
numbers: RSUs 0, 6, 13, 14, 22, 28, 34, 43, 48, 54.

In the baseline scenario, when a vehicle connects to
the SDVFN for the first time, the orchestrator applies
the resource allocation strategy and defines which FCN
will process the vehicle’s requests. In this scenario, the

vehicle’s tasks are always processed in the same FCN
throughout the simulation.

The Orchestrator applies the round-robin algorithm
to distribute the processing tasks of each vehicle to the
Microservice replica in one of the ten Fog Computing
Nodes on the SDVFN. In the SDVFN architecture, this
straightforward load balancing can be replaced by other
alternative methods.

The orchestrator makes the decision regarding the
allocation of processing tasks, in accordance with the
round-robin algorithm to select an FCN for processing
tasks. In turn, the SDN Controller defines an optimized
datapath to forward data between the OpenFlow switch
in the RSU Access-Point (RSU-AP) and the previously
selected FCN which has a microservice replica.

Even in the baseline scenario, the SDVFN implements
two mechanisms for adapting to vehicle mobility: The
first is the ability to reorganize the datapath, reacting
to changes in the vehicle’s connection points with
the SDVFN. In other words, whenever the vehicle
connects to another RSU of the SDVFN, the data paths
will be reorganized to obtain the best path to the
data, as presented in our previous work [19]. The
second mechanism for the mobility response is to
anticipate both the calculation of the next datapath
and the distribution of the OpenFlow rules in advance
throughout the next datapath that will be used when
the vehicle performs handover to the next RSU-
AP, reducing the increase in communication latencies
and consequently promotes seamless handovers, as
presented in [18]. The new rules are distributed to
the OpenFlow switches in new sections that will be
part of the next optimized datapath that connects the
next RSU-AP and the FCN. To get a minimum cost to
distribute the rules, the sections shared between the
current datapath and the next datapath do not need to
receive new rules.

Although the baseline achieves excellent adaptation
to the mobility scenario, it can still be noted from
the graph in Figures 6, 7, 8, 9, when the SDVFN is
using the "Static Task Allocation", and the vehicle is
changing its RSU-AP, it causes a significant variation in
the number of hops in the datapaths and consequently
a big variation in latency, increasing not only the
average latency but also the jitter in the communication
between vehicles and the microservice.

The Dynamic "Cluster Head" Task Context Allocation
Scenario. The second experimental scenario also uses
an approach with the same limited number of
10 microservice replicas and has mobility response
mechanisms implemented for the baseline. However,
in this second scenario, each replica of a given
microservice is allocated to a FCN called the “Cluster
Head” of the microservice in that zone. This "Cluster
Head" is responsible for processing requests from all

9
EAI Endorsed Transactions on

Internet of Things
| Volume 11 | 2025 |

L. D. C. Alvarenga, P. Sousa, A. Costa

vehicles that use as RSU-AP any of the members of that
cluster zone, as shown in Figure 5.

Figure 5. Zones Distribution for Dynamic "Cluster Head"
Microservice Task Context Allocation in SDVFN.

In this proposed scenario, the definition of the
processing zones and the composition of their members
is performed once based on the parameters defined
for the simulated microservice. The Orchestrator Server
performs the service placement of each microservice
replica with the aim that each processing zone tends
to have the same maximum number of hops between
its most distant members (in hops) and the FCN
"Cluster Head" of the Microservice in that zone. Each
microservice has an abstract division of the SDVFN area
into processing zones, based on the number of replicas
available for each microservice.

In this proposed scenario, as the vehicle moves
and performs the handover to another RSU-AP, the
datapaths are rearranged as in the baseline scenario.
However, when a vehicle moves from RSU-AP to an RSU
that is part of another processing zone, the Orchestrator
Server detects this situation and migrates the execution
context of vehicle requests to the “Cluster Head”
FCN of the next processing zone. This migration also
triggers the rearrangement of the datapaths between the
Vehicle’s RSU-AP and the new FCN that will handle the
vehicle’s requests in this new processing zone.

3.2. Analysis of Results
The graphs in Figures 6, 7, 8 and 9 show the
communication latencies between vehicles 1, 2, 3, and
4 and their respective FCN runners throughout the
simulation time. The minimum latency is 26 ms when
the vehicle is directly connected to the RSU where the
microservice FCN runner is allocated. In this case, we
consider the vehicle to be at a distance of 0 hop from the

microservice execution context. The latency increases
by 40 ms for each additional hop that is added as a
result of handover. Depending on the vehicle’s route,
there may be increments greater than 40 ms because the
vehicle routes do not coincide with the data paths, and
the handover methodology used prioritizes minimizing
unnecessary handovers, as presented in [18].

Simulation Time (ms)

L
a

te
n

c
y
 i
n

 c
o

m
m

u
n

ic
a

ti
o

n
s
 w

it
h

 m
ic

ro
s
e

rv
ic

e
 (

m
s
)

0

100

200

300

400

500

0 250000 500000 750000 1000000 1250000

Static Task Allocation Dynamic "Cluster Head" Task Allocation

Vehicle 1 on Route 1

Figure 6. Vehicle 1 communications latencies.

Figure 7. Vehicle 2 communications latencies.

Simulation Time (ms)

L
a

te
n

c
y
 t
o

 r
e

c
e

iv
e

 m
ic

ro
s
e

rv
ic

e
 r

e
s
p

o
n

s
e

 (
m

s
)

0

100

200

300

400

500

0 250000 500000 750000

Static Task Allocation Dynamic "Cluster Head" Task Allocation

Vehicle 3 / Route 3

Figure 8. Vehicle 3 communications latencies.

10
EAI Endorsed Transactions on

Internet of Things
| Volume 11 | 2025 |

Migration of Microservices Execution Contexts Between Processing Zones in SDVFN

Table 1. Experimental results using Static Task Allocation Strategy versus Dynamic "Cluster Head" Allocation Strategy in SDVFN.

Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4

Static Task
Allocation

Dynamic
 "Cluster Head"
Task Allocation

Static Task
Allocation

Dynamic
 "Cluster Head"
Task Allocation

Static Task
Allocation

Dynamic
 "Cluster Head"
Task Allocation

Static Task
Allocation

Dynamic
 "Cluster Head"
Task Allocation

Min.
Latency 66 ms 26 ms 66 ms 26 ms 26 ms 26 ms 106 ms 26 ms

Max.
Latency 426 ms 226 ms 346 ms 186 ms 386 ms 186 ms 346 ms 186 ms

Avg.
Latency 210.16 ms 78.88 ms 189.15 ms 77.89 ms 192.49 ms 69.45 ms 194.66 ms 78.39 ms

Min.
Hops 1 0 1 0 0 0 2 0

Max.
Hops 10 5 8 4 9 4 8 4

Avg.
Hops 4.6 1.32 4.07 1.29 4.16 1.08 4.21 1.31

Jitter 71.79 ms 28.69 ms 62.96 ms 24.91 ms 75.95 ms 23.37 ms 46.42 ms 24.30 ms

Total of
Messages 2102 2766 1968 2502 1355 1771 1961 2521

Simulation Time (ms)

L
a

te
n

c
y
 t

o
 r

e
c
e

iv
e

 m
ic

ro
s
e

rv
ic

e
 r

e
s
p

o
n

s
e

 (
m

s
)

0

100

200

300

400

500

200000 400000 600000 800000 1000000

Static Task Allocation Dynamic "Cluster Head" Task Allocation

Vehicle 4 / Route 4

Figure 9. Vehicle 4 communications latencies.

In these graphs, it can be seen that when SDVFN
is using Static Task Allocation, in blue, as the vehicle
moves along its route and performs handovers, there is
a change in the number of hops to reach the FCN runner
and, consequently, it causes a large variation in the
latency of communications between the vehicle and the
microservice. On the other hand, when analyzing the
results for Dynamic Task Allocation using the "Cluster
Head" strategy, shown in red, it confirms what was
expected from the distribution seen on the map in
Figure 5. That is, when traveling along the route, the
number of hops between the vehicle and the FCN
runner does not increase in the same way as it does in
the static task allocation.

When connecting to an RSU-AP located in another
processing zone, the number of hops would increase,

but with the migration of the execution context to this
new processing area, both the number of hops and
the latency remain lower than in the static approach.
However, even in the approach with context migration,
there may be some sparse messages with higher latency.
It occurs when there is a communication in progress
at the same time as the task migration, but with
a minimum impact when compared with the total
number of messages. As an example, in Figure 6 it is
possible to see that only 6 messages or 0.216% of all
2,776 messages had this effect.

In Table 1, the experimental results are presented
comparing the static task allocation strategy with a
dynamic "Cluster Head" allocation strategy in SDVFN.
It is possible to see better results for the proposed
methodology in all metrics.

By analyzing the results shown in Table 1, we can
conclude that the average reduction in communication
latency for vehicles 1, 2, 3, and 4 was 62.47%,
58.82%, 63.92%, and 59.73%, respectively. Thus, we
can see that the overall average latency was reduced by
61.10%, which represents a significant decrease when
we move from a static allocation scenario to a scenario
that applies the migration of microservice execution
contexts following the dynamic allocation methodology
with "Cluster Heads".

As can be seen in Table 1, the results also show
that the number of hops required for vehicles to reach
the microservice replica drops from an overall average
of 4.21 hops in the static allocation scenario to 1.30
hops when the proposed strategy of "Cluster Heads" is
applied, which means 69.12% of reduction.

11
EAI Endorsed Transactions on

Internet of Things
| Volume 11 | 2025 |

L. D. C. Alvarenga, P. Sousa, A. Costa

In the same way, the overall jitter metric decreased
from 67.35 ms in static allocation scenario to 24.60 ms
in the "Cluster Head" scenario. which means 63.48% of
reduction, offering communication with fewer latency
variations.

The last row of the table shows the difference in the
number of messages exchanged between the vehicle and
the microservice when applying the static allocation
strategy and also when applying the ‘Cluster Head’
strategy. As can be seen, there is an increase in the
transmission rate of 31.59%, 27.13%, 30.70% and
28.56% for vehicles 1, 2, 3 and 4, respectively, indicating
faster responses, in line with the other results.

It is important to note that in a static allocation
scenario, the distance in hops of communications
varies based on a direct relation between the positions
of the RSUs used by the vehicle on its route and
the geographical position of the microservice replica,
considering the entire geographical coverage and
topology of the SDVFN network. However, when we use
the processing zone strategy with "Cluster Heads", we
confine this same effect to only the geographic area of
the processing zone itself. Therefore, the more replicas
of a Microservice are distributed in the SDVFN, the
smaller the processing zones will be, and thus it will
be possible to have fewer hops and consequently lower
latencies, lower jitters, and higher transmission rates in
communications.

4. Conclusion
SDN networks have shown great potential in the
implementation of ITS applications in IoV scenarios,
especially in the implementation of SDVFN. The pro-
posed SDVFN simulation framework makes possible
the investigation of various strategies for selecting Fog
Computing nodes, including load balance algorithms.
SDN networks have shown significant promise for
deploying ITS applications within IoV contexts, partic-
ularly in the realm of establishing SDVFN. The SDVFN
simulation framework that has been proposed enables
exploration of multiple strategies for choosing Fog
Computing nodes, such as load balancing algorithms.

The Simulation framework successfully fulfilled its
objectives by developing adaptive datapaths aligned
with vehicle movements using the SDN OpenFlow
capability. The environment is specifically designed
to allow for detailed comparative analysis of different
methodologies of service orchestration in SDVFN.

The use case demonstrates that Orchestrator, together
with SDN Controller, is capable of promoting ser-
vice placement of microservice replicas, rearranging
data paths between RSU-AP and the FCN running the
microservice, responding to mobility. The platform can
promote smooth handover strategies and increase net-
work efficiency by applying the migration of execution

contexts between microservice replicas that are closer
and better suited to serve the vehicle. It enables optimal
workload distribution across fog nodes, simultaneously
decreasing infrastructure network traffic and reducing
communication delays.

The anticipation of forwarding rules demonstrated
effectiveness, primarily through utilizing the OpenFlow
rules based on [vehicle, service] pair. These rules are
uniquely assigned to each vehicle, ensuring that they do
not interfere with the forwarding of other packets and
allowing different routing to different microservices,
even to the same vehicle. In the same way, it enables
different vehicle task processing allocation on different
FCN, even if they are consuming the same microservice.

It also correctly implements the adaptability of
datapaths through the SDN paradigm, even with
vehicular mobility, and proves to be efficient in
anticipating route sending, based on decision making
generated by algorithms that predict the next RSU
Access Point for the vehicle.

The next steps include migrating the microservice
replicas - since the current implementation only
migrates the execution context - and improving support
for simulating multiple microservices in parallel. We
intend to implement dynamic strategies to define
processing zones and their respective “Cluster Head”.
The framework could also respond dynamically to the
workload of the FCNs and the distribution of vehicles
in each geographic region of the SDVFN.

In addition, we will expand the range of metrics to
evaluate the system’s performance, including security
features, and also make the framework available for free
use by the scientific community.

5. Acknowledgements
This work has been supported by FCT – Fundação
para a Ciência e Tecnologia within the R&D Unit
Project Scope UID/00319/Centro ALGORITMI (ALGO-
RITMI/UM)

References
[1] Yuan, T., Da Rocha Neto, W., Rothenberg, C.E.,

Obraczka, K., Barakat, C. and Turletti, T. (2022)
Machine learning for next-generation intelligent
transportation systems: A survey. Transactions on
Emerging Telecommunications Technologies 33(4): 1–35.
doi:10.1002/ett.4427.

[2] Darwish, T.S. and Abu Bakar, K. (2018) Fog Based Intel-
ligent Transportation Big Data Analytics in The Inter-
net of Vehicles Environment: Motivations, Architecture,
Challenges, and Critical Issues. IEEE Access 6: 15679–
15701. doi:10.1109/ACCESS.2018.2815989.

[3] Sharma, S. and Kaushik, B. (2019) A survey on
internet of vehicles: Applications, security issues
& solutions. Vehicular Communications 20:
100182. doi:10.1016/j.vehcom.2019.100182, URL

12
EAI Endorsed Transactions on

Internet of Things
| Volume 11 | 2025 |

https://doi.org/10.1002/ett.4427
https://doi.org/10.1109/ACCESS.2018.2815989
https://doi.org/10.1016/j.vehcom.2019.100182

Migration of Microservices Execution Contexts Between Processing Zones in SDVFN

https://linkinghub.elsevier.com/retrieve/pii/

S2214209619302293.
[4] Langley, D.J., van Doorn, J., Ng, I.C., Stieglitz, S.,

Lazovik, A. and Boonstra, A. (2021) The Internet of
Everything: Smart things and their impact on busi-
ness models. Journal of Business Research 122(January
2020): 853–863. doi:10.1016/j.jbusres.2019.12.035, URL
https://doi.org/10.1016/j.jbusres.2019.12.035.

[5] Farias da Costa, V.C., Oliveira, L. and de Souza,

J. (2021) Internet of Everything (IoE) Taxonomies:
A Survey and a Novel Knowledge-Based Taxonomy.
Sensors 21(2): 568. doi:10.3390/s21020568, URL https:

//www.mdpi.com/1424-8220/21/2/568.
[6] Ji, B., Zhang, X., Mumtaz, S., Han, C., Li, C., Wen,

H. and Wang, D. (2020) Survey on the Internet
of Vehicles: Network Architectures and Applications.
IEEE Communications Standards Magazine 4(1): 34–41.
doi:10.1109/MCOMSTD.001.1900053, URL https://

ieeexplore.ieee.org/document/9088328/.
[7] Truong, N.B., Lee, G.M. and Ghamri-Doudane, Y.

(2015) Software defined networking-based vehicular
Adhoc Network with Fog Computing. Proceedings
of the 2015 IFIP/IEEE International Symposium on
Integrated Network Management, IM 2015 : 1202–
1207doi:10.1109/INM.2015.7140467.

[8] Liu, K., Xu, X., Chen, M., Liu, B., Wu, L. and Lee, V.C.

(2019) A Hierarchical architecture for the future internet
of vehicles. IEEE Communications Magazine 57(7): 41–47.
doi:10.1109/MCOM.2019.1800772.

[9] Bhatia, J., Modi, Y., Tanwar, S. and Bhavsar, M. (2019)
Software defined vehicular networks: A comprehensive
review. International Journal of Communication Systems
32(12): e4005. doi:10.1002/dac.4005, URL http://doi.

wiley.com/10.1002/dac.4005.
[10] Ku, I., Lu, Y., Gerla, M., Gomes, R.L., Ongaro,

F. and Cerqueira, E. (2014) Towards software-
defined VANET: Architecture and services. In 2014
13th Annual Mediterranean Ad Hoc Networking
Workshop (MED-HOC-NET) (IEEE): 103–110.
doi:10.1109/MedHocNet.2014.6849111, URL
http://ieeexplore.ieee.org/document/6849111/.

[11] Weber, J.S., Neves, M. and Ferreto, T. (2021) VANET
simulators: an updated review. Journal of the Brazilian
Computer Society 27(1): 8. doi:10.1186/s13173-021-
00113-x, URL https://journal-bcs.springeropen.

com/articles/10.1186/s13173-021-00113-x.
[12] Costa, B., Bachiega, J., Rebouças, L., Carvalho, D.E.,

Araujo, A.P.F. and Rebouças De Carvalho, L. (2022)
Orchestration in Fog Computing: A Comprehensive
Survey. ACM Comput. Surv 55. doi:10.1145/3486221,
URL https://doi.org/10.1145/3486221.

[13] Sarkohaki, F. and Sharifi, M. (2024) Service place-
ment in fog–cloud computing environments: a com-
prehensive literature review. The Journal of Supercom-
puting 80(12): 17790–17822. doi:10.1007/s11227-024-
06151-4, URL https://link.springer.com/10.1007/

s11227-024-06151-4.
[14] Pallewatta, S., Kostakos, V. and Buyya, R. (2023) Place-

ment of Microservices-based IoT Applications in Fog
Computing: A Taxonomy and Future Directions. ACM
Computing Surveys 55(14s): 1–43. doi:10.1145/3592598.

[15] Schrab, K., Neubauer, M., Protzmann, R., Radusch,

I., Manganiaris, S., Lytrivis, P. and Amditis, A.J.

(2023) Modeling an ITS Management Solution for
Mixed Highway Traffic With Eclipse MOSAIC. IEEE
Transactions on Intelligent Transportation Systems 24(6):
6575–6585. doi:10.1109/TITS.2022.3204174.

[16] Eclipse MosaicWebsite (2024), Eclipse Mosaic: A Multi-
Domain and Multi-Scale Simulation Framework for
Connected and Automated Mobility. URL https://

eclipse.dev/mosaic/.
[17] Lopez, P.A., Wiessner, E., Behrisch, M., Bieker-

Walz, L., Erdmann, J., Flotterod, Y.P., Hilbrich,

R. et al. (2018) Microscopic Traffic Simulation using
SUMO. In 2018 21st International Conference on Intel-
ligent Transportation Systems (ITSC) (IEEE): 2575–
2582. doi:10.1109/ITSC.2018.8569938, URL https://

ieeexplore.ieee.org/document/8569938/.
[18] Alvarenga, L.D.C., Sousa, P. and Costa, A. (2024)

Seamless Handovers in Software-Defined Vehicular
Fog Networks. In 2024 8th International Symposium
on Innovative Approaches in Smart Technologies (ISAS)
(IEEE): 1–8. doi:10.1109/ISAS64331.2024.10845537.

[19] Alvarenga, L.D.C., Sousa, P. and Costa, A. (2025) IoV
Simulation Architecture for Software-Defined Vehicular
Fog Network Orchestration. 40–54. doi:10.1007/978-3-
031-84426-3_4, URL https://link.springer.com/10.

1007/978-3-031-84426-3_4.

13
EAI Endorsed Transactions on

Internet of Things
| Volume 11 | 2025 |

https://linkinghub.elsevier.com/retrieve/pii/S2214209619302293
https://linkinghub.elsevier.com/retrieve/pii/S2214209619302293
https://doi.org/10.1016/j.jbusres.2019.12.035
https://doi.org/10.1016/j.jbusres.2019.12.035
https://doi.org/10.3390/s21020568
https://www.mdpi.com/1424-8220/21/2/568
https://www.mdpi.com/1424-8220/21/2/568
https://doi.org/10.1109/MCOMSTD.001.1900053
https://ieeexplore.ieee.org/document/9088328/
https://ieeexplore.ieee.org/document/9088328/
https://doi.org/10.1109/INM.2015.7140467
https://doi.org/10.1109/MCOM.2019.1800772
https://doi.org/10.1002/dac.4005
http://doi.wiley.com/10.1002/dac.4005
http://doi.wiley.com/10.1002/dac.4005
https://doi.org/10.1109/MedHocNet.2014.6849111
http://ieeexplore.ieee.org/document/6849111/
https://doi.org/10.1186/s13173-021-00113-x
https://doi.org/10.1186/s13173-021-00113-x
https://journal-bcs.springeropen.com/articles/10.1186/s13173-021-00113-x
https://journal-bcs.springeropen.com/articles/10.1186/s13173-021-00113-x
https://doi.org/10.1145/3486221
https://doi.org/10.1145/3486221
https://doi.org/10.1007/s11227-024-06151-4
https://doi.org/10.1007/s11227-024-06151-4
https://link.springer.com/10.1007/s11227-024-06151-4
https://link.springer.com/10.1007/s11227-024-06151-4
https://doi.org/10.1145/3592598
https://doi.org/10.1109/TITS.2022.3204174
https://eclipse.dev/mosaic/
https://eclipse.dev/mosaic/
https://doi.org/10.1109/ITSC.2018.8569938
https://ieeexplore.ieee.org/document/8569938/
https://ieeexplore.ieee.org/document/8569938/
https://doi.org/10.1109/ISAS64331.2024.10845537
https://doi.org/10.1007/978-3-031-84426-3{_}4
https://doi.org/10.1007/978-3-031-84426-3{_}4
https://link.springer.com/10.1007/978-3-031-84426-3_4
https://link.springer.com/10.1007/978-3-031-84426-3_4

	1 Introduction
	2 Proposed SDVFN Simulation Architecture
	2.1 SDVFN Infrastructure Layer Simulation
	OpenFlow Switch Abstraction

	2.2 SDVFN Control Layer Simulation
	2.3 SDVFN Control Layer Modules
	Fog Orchestrator Server Modules
	SDN Controller Modules
	OpenFlow Service-Driven Forwarding Rules on SDVFN

	3 Experimental Use Case Analysis and Results
	3.1 Comparative experimental scenarios
	The Static Task Context Allocation Scenario
	The Dynamic "Cluster Head" Task Context Allocation Scenario

	3.2 Analysis of Results

	4 Conclusion
	5 Acknowledgements

