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Abstract

JASPER is a scenario-driven simulation testbed for analyzing jammer-angle allocation (JAA) strategies in
anti-UAV defense systems. It provides a modular simulation environment where users can run controlled
experiments that reflect realistic anti-UAV scenarios. In this extended version, we introduce a new failure
mechanism that allows jammers to fail dynamically during simulation. This addition enables the testing
of algorithmic robustness under partial system degradation and is showcased through a newly designed

case study focused on how algorithms recover and adapt after resource loss. We also conduct a sensitivity
analysis by varying the number of jammers, exploring trade-offs between coverage, swivel workload, and
algorithm runtime. Beyond enabling performance comparisons under realistic constraints, these experiments
also reinforce the reliability and adaptability of the JASPER platform. Together, these additions make JASPER
a more expressive and fault-aware testbed for evaluating directional jamming strategies under realistic
conditions.
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undetected UAVs. Then detected trace is identified
and a threat importance is assigned. As a result of
this assignment, if it is deemed that the trace is
dangerous and countermeasure is required, then the

1. Introduction

With the development of technology in today’s world,
unmanned aerial vehicles (UAVs) are extensively used

as weaponry, which has triggered the development
of countermeasures. Anti-drone systems play an
important role in protecting critical areas and facilities.
These systems provide functions such as detecting,
tracking, identifying, interfering, and assessing threats
specifically against UAVs, usually in addition to
traditional air defense systems [1, 2].

Detection and tracking of UAVs is accomplished
through various sensors such as radars and camera
systems. The detection phase is the primary step
to ensure the effectiveness of anti-drone systems
because preventive measures cannot be taken against
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interfering starts. The ways to interfere with UAVs
can be divided into two: hard kill and soft Kkill.
Hard kill methods, such as laser weapons or missile
systems, aim to physically destroy UAVs. In contrast,
soft kill methods focus on neutralizing UAV activities
without physical destruction, using techniques like
signal jamming and frequency jamming. Jammers,
a popular soft kill approach, disrupt the control
of UAVs by interfering with their communication
signals, effectively rendering them inoperable. Omni-
directional jammers are commonly used for this
purpose; however, in scenarios where surrounding
signals (e.g., those used for daily communication)
must not be disrupted, directional jammers that
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target specific angles are preferred [3]. Anti-drone
systems can operate either under human supervision
or autonomously. In autonomous mode, algorithms
analyze and track information from sensors, calculate
threat priorities, and execute necessary actions through
jammers. This decision-making process needs to be
completed rapidly because the acceptable response
time against incoming threats is generally restricted to
a few seconds [4, 5].

Given the increasing complexity and speed of UAV
threats, developing effective algorithms for threat eval-
uation and weapon allocation is crucial. Various algo-
rithms have been proposed, each with its strengths and
weaknesses in terms of prioritization, computational
efficiency, and adaptability to different types of threats
and environments. To determine the most effective
algorithms and tune their parameters, comprehensive
testing under a wide range of scenarios is essential.
However, real-world testing of these algorithms is costly
and hard to reproduce. Thus, a simulation environment
that can test and evaluate jammer-angle allocation algo-
rithms to simulate different test scenarios and obtain
the relevant metrics is needed. In response to this need,
this study proposes a simulation tool named JASPER
(Jammer Allocation Simulation Platform for Evaluation
and Reporting). JASPER is a modular, agent-based envi-
ronment for testing and evaluating the performance
of various jammer-angle allocation algorithms, and it
is based on the MASON framework [6]. It offers a
customizable simulation for analysts and planners to
analyze different key performance indicators (KPIs) and
refine algorithmic tactics.

The primary contribution of JASPER is its modularity
and adaptability, which let users customize the sim-
ulation environment to fit their unique requirements
and scenarios. Through the integration of multiple
algorithms, test cases, and reporting modules, JASPER
offers an adaptable environment for the examination
and comparison of different jammer-angle allocation
techniques. This adaptability is especially useful for
research and development contexts, where it allows for
the quick prototyping, testing, and optimization of new
algorithms against a variety of UAV threat scenarios.

Furthermore, JASPER’s capability to integrate differ-
ent reporter modules that record various KPIs, such as
coverage percentages, algorithm run times, and angle
adjustments, enables the evaluation of various results,
supporting analysts and planners in determining the
advantages and disadvantages of each tactic. For exam-
ple, a user may test two fundamentally different alloca-
tion algorithms, such as a greedy heuristic and a genetic
algorithm, under identical threat scenarios by simply
switching the input configuration, without modifying
any simulation logic. Similarly, a planner may develop a
custom reporter that tracks cumulative jammer rotation
angles to assess long-term mechanical wear, or another

that logs algorithm execution time to evaluate real-time
feasibility. This plug-and-play architecture decouples
algorithm development from simulation engineering,
significantly reducing overhead for experimentation
and encouraging a more iterative, test-driven approach
to algorithm evaluation.

2. Related Work

2.1. Simulation for Test and Evaluation

Simulation is an important tool for testing and eval-
uating systems, particularly in such fields as defense,
where physical testing can be expensive and risky. By
developing computer models that replicate various con-
ditions, threats, and scenarios, simulations help iden-
tify vulnerabilities and optimize system performance
in a safe, controlled, and cost-effective environment
[7, 8]. There are three commonly used simulation strate-
gies: activity scanning, process interaction, and event
scheduling [9]. However, object-oriented simulation
provides a more comprehensive approach by modeling
entities (such as algorithms, people, or machines) as
objects with unique characteristics and behaviors, facil-
itating understanding and development of the model
[10].

The success of a simulation depends on several
key factors, including realism, accuracy, consistency,
adaptability, and efficiency [7]. Simulations allow
analysts and planners to study the impact of these
algorithms under various scenarios [8]. As a result,
simulations are applied in such diverse areas as
autonomous robots [11], wireless communication [12],
cooperative intelligent transport systems [13], and
autonomous vehicles [14].

2.2. Threat Evaluation and Weapon Allocation

The Threat Evaluation and Weapon Allocation (TEWA)
problem is a critical optimization challenge in defense
systems, where the goal is to minimize the expected
value of surviving threats by prioritizing and assigning
the most suitable countermeasures [15]. TEWA is
commonly studied within command and control (C2)
systems, where various methods such as neural
networks, genetic algorithms, simulated annealing, and
taboo search are used to solve the problem [16, 17].
Threat evaluation involves determining the priority of
threats based on factors like proximity, capability, and
intent, which helps in deciding the appropriate action
against each threat [18].

Weapon allocation is about efficiently assigning
available defense systems to respond to threats. This
problem is classified as NP-hard, meaning that the
computational time for any ideal solution increases
exponentially with problem size [19, 20]. In practice,
meta-heuristic approaches are preferred due to the
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complexity of finding exact solutions. In specific
applications, such as assigning jammers to angles rather
than directly to targets, problem-specific algorithms are
required because a jammer can impact multiple targets
within a given angle. These specialized algorithms vary
based on the characteristics of the anti-drone system
and potential types of attacks, necessitating a tailored
approach for each scenario [21, 22].

2.3. Agent Based Simulation

Agent-based simulation (ABS) provides a flexible and
dynamic method for modeling complex systems by
allowing individual agents to act independently and
interact with one another, capturing the system’s col-
lective behavior and outcomes [23]. Unlike traditional
simulations that rely on fixed rules or equations, ABS
is well-suited for representing real-world uncertain-
ties and complexities, as agents evolve over time,
delay actions, and decide when to take initiative. This
approach is particularly advantageous for modeling
complex systems because it allows for modular struc-
tures, where agents’ behavior rules can be easily modi-
fied to test different scenarios [24].

ABS has gained popularity in UAV simulations and
defense applications because it facilitates coordination
and cooperation among units, allowing dynamic and
adaptive solutions to complex problems such as TEWA
[25, 26]. In TEWA problems, ABS can simulate the
tactical decisions of weapons and targets under varying
conditions, providing a framework to develop robust
defense tactics. Various frameworks such as MASON
[6], JADE [27], and Repast Simphony [28] are used for
ABS, each offering unique advantages depending on
the specific requirements of the simulation study. In
this study, MASON was chosen due to its open-source
nature, documentation, and level of control it offers
over the simulation.

3. JASPER Modeling and Design

JASPER is a specialized simulation platform designed
to evaluate jammer allocation algorithms in anti-drone
systems. Built on the agent-based simulation frame-
work MASON, JASPER facilitates detailed modeling of
interactions between UAVs and jammers, providing a
controlled environment for testing and refining these
algorithms.

A key feature of JASPER is its modular design,
which allows users to integrate different algorithms
and reporting agents seamlessly. The platform focuses
on executing these integrated components, enabling
analysts and planners to observe the behavior of
jammer algorithms under various scenarios. The
performance metrics, such as coverage percentages and
response times, are generated by user-defined reporter
agents, which can be customized and incorporated

into JASPER. This modularity ensures that the core
simulation environment remains flexible and adaptable
to different research requirements.

3.1. Assumptions

Modeling a real-world anti-drone system with all its
complexity can be an overwhelming task. To make
the problem easier to handle and focus on the
crucial elements of the jammer allocation methods, the
following simplifications and assumptions were made:

* 2D Aerial View Model: To simplify the envi-
ronment representation, an aerial view model
was used in the simulation design. This method
focuses on the interactions between the jammer
and the UAV while simplifying the visualization
and coverage tasks. The algorithms intended to be
tested also work in this kind of modeling. In sim-
plifying, certain land features, such as topography
plant cover, and atmospheric conditions are also
ignored.

* Grid System: Dealing with real-world coordi-
nates introduces a huge overhead for computa-
tions. Thus, a continuous grid system was used
to keep the locations of the jammers and tracks.
This simplification makes it more straightforward
to create test scenarios and to use the algorithms
by enabling simple computations of angles and
distances.

* Radar Range: It was assumed that the radar
would detect only in a circular, static manner. The
assumption assures consistent behavior across
every scenario. Typically, geography, meteorolog-
ical conditions, speed, and frame of the detected
object can all affect radar detection ranges. How-
ever, these complications are reduced to allow for
a more straightforward and predictable imple-
mentation by assuming a static and circular range.

* Track Movement: Track movements can often be
varied and can be affected by a variety of fac-
tors, including its mission, environmental con-
ditions, random deviations, and obstacles. These
difficulties are avoided by assuming that tracks
moved uniformly, following predetermined way-
points in designated simulation time. Because
of this assumption, track behavior is less vari-
able, enabling more planned and easily replicated
experiments.

* Jammer Coverage: Jammers’ coverage areas were
represented as idealized segments with set angles.
This simplification concentrates on the angular
optimization component of the algorithms, avoid-
ing the complications of signal transmission and
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interference. Usually, jammers do not cover a
set angular range; their jamming signals might
spread into adjacent locations. Jammers also oper-
ate on specific frequencies, which might alter
their coverage and efficacy. However, we excluded
frequency information from our assumption, fur-
ther simplifying the model to focus on angular
optimization.

These simplifying assumptions were determined to
balance realism with computational efficiency. They
ensure that the simulation stays focused on the essence
of jammer allocation while remaining manageable and
extensible.

3.2. Agents

Track. Track agents represent the data from radar,
which can be UAYV, suspected UAV, and other unimpor-
tant tracks. Suspected UAVs are threats that cannot be
identified as UAVs with certainty but are classified as
being closest to the UAV in terms of probability. Each
track agent has several properties:

e Location: The track’s current position, as repre-
sented by a Double2D object.

* Waypoints: A list of waypoints that the track will
follow, each with a specific arrival time.

* Velocity: The speed and direction of the track’s
movement.

* Type: The type of track (UAV, suspected UAV, or
other).

¢ Distance to Closest Jammer: Used to calculate the
track’s proximity to the nearest jammer.

Track agents’ position changes depending on their
velocity and waypoints, and it calculates the distance to
the nearest jammer to determine if the track is coming
closer or going farther away. Tracks are constructed
once for each scenario and traverse on their own.

Jammer. Jammer agents reflect the simulation’s jam-
ming devices. Jammer agents have the following
attributes:

* Location: The jammer’s fixed position.

e Directed At Angle: The current angle from which
the jammer is directed.

e Angle Swivel From Previous Step: The angle
swivel from the previous step.

Jammer agents do not change the angle on their
own. Instead, they alter orientation according to the
algorithm agent’s assignments.

Algorithm. The algorithm agent is responsible for
calculating the optimal angles for the jammers based
on the current state of the tracks and jammers. At
each step, the algorithm agent processes the simulation
state, which includes all tracks’ positions and jammer
statuses. It then determines the new optimal angles for
the jammers to meet its set objectives. These new angles
can be assigned through the interface provided by the
jammer class.

Users can provide different algorithms to be used
without the simulation needing to know their imple-
mentation, as long as they implement the interface
IAlgorithmAgent defined by JASPER. This modularity
enables analysts and researchers to evaluate alterna-
tive algorithmic strategies rapidly, without making any
changes to the simulation core. Integration is performed
at runtime: the user simply supplies a compiled .jar
file along with the fully qualified class name of the
algorithm. The simulation dynamically loads the class
and invokes it through reflection, eliminating the need
for recompilation or manual integration steps. This sep-
aration of concerns allows developers to focus entirely
on their optimization logic, while using JASPER as a
black-box evaluation environment.

Reporter. The reporter agent is responsible for calcu-
lating and reporting KPIs at each time step of the
simulation. At each step, the reporter agent accesses the
simulation state to acquire data and calculates its set of
KPIs. They may include but are not limited to coverage
percentages, angle swivels, and algorithm execution
times. The reporter agent then processes these KPIs in
accordance with its design.

Like the algorithm agent, users can provide different
reporter agents. Thus, different reporter agents can be
used to calculate and report different sets of KPIs,
giving control over what metrics the user monitors and
how the user handles them. Depending on the user’s
needs, the reporter agent can write the KPIs to a file,
display the KPIs on the screen, or even send the KPIs
over a network for remote analysis. The simulation
framework does not need to know the specifics of
each reporter’s actions, as long as they implement the
interface IReporterAgent given by JASPER.

This modular design allows users to define highly
customized reporter agents tailored to the specific
needs of their evaluation objectives. For example, a
user interested in system efficiency may implement a
reporter that captures algorithm execution time and
angle swivel variance, whereas another focused on
threat coverage might track UAV engagement ratios
or coverage stability over time. Since the reporting
logic is fully externalized, integrating domain specific
KPIs (such as energy consumption, jammer idle time,
or sector redundancy) requires no changes to the
simulation core. This decoupling ensures that JASPER
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remains flexible and reusable across a wide range
of operational contexts, encouraging experimentation
with novel evaluation strategies without introducing
technical overhead.

3.3. Integration of Components

Algorithm Agent. To integrate an algorithm agent, the
user provides a file that includes the algorithm. As
both MASON and JASPER are in Java, the given file
should be a JAR file. Additionally, users give where
JASPER can find the algorithm in this file as a path.
The user’s algorithm agent must implement JASPER’s
IAlgorithmAgent interface to ensure compatibility with
the simulation environment. With this approach, it is
easier to switch out and test various algorithms without
having to change the JASPER code.

Reporter Agent. To integrate a reporter agent, similar
to the algorithm agent, the user provides a file
containing the agent itself. For the same reason as
the algorithm agent, the file must be a JAR file
and the user also specifies the path within this
file where JASPER can locate the reporter agent.
The user’s reporter agent needs to implement the
IReporterAgent interface provided by JASPER to be
compatible with the simulation environment. To carry
out the required computations, the reporter agent
receives the simulation state. Different reporter agents
can use the state to measure different metrics.

Test Cases. The test cases include information regard-
ing jammers and tracks used in the simulation.

For jammers, the input specifies the number of
jammers, along with details such as their positions (X
and Y coordinates) and their initial orientation. These
parameters define the setup for each jammer within the
simulation.

Regarding tracks, the input contains the number of
tracks, the total time steps in the simulation, and the
type of each track. Additionally, it provides data on
the number of waypoints for each track. A waypoint
refers to a specific location the track is expected to reach
during the simulation. For each waypoint, the input
also specifies the corresponding simulation time step
at which the track is at that location. The sequence
of these waypoints and their associated times is used
to determine the movement pattern and timing of the
track throughout the simulation.

Users can create several test scenarios to try different
kinds of attacks. Thus, it is possible to simulate distinct
attack methods and enable the users to see the way
many variables interact under different scenarios. This
variation in scenario design helps to discover possible
weaknesses in algorithms and test them in a controlled,
repeatable way, in addition to improving the realism of
the simulations.

4. Case Study

In this section, two use cases to demonstrate how
the JASPER simulation environment can be used to
evaluate a jammer allocation algorithm is presented.
For the test cases, an analyst who wants to evaluate
how the algorithm presented in [21] behaves in certain
scenarios.

4.1. Evaluating Algorithm Behavior in Mixed
Confidence Scenarios

For this study, assume an analyst want to examine a
scenario in which some UAVs are detected as suspected
UAVs. In real-life usage, frequent device rotations in
a short time may increase maintenance requirements,
or slower assignments relative to track updates might
require speeding up the algorithm’s decision making
time, even if it means sacrificing performance. To
analyze these trade offs, the analyst creates a reporter
agent that records coverage percentages, angle swivel,
and algorithm execution time, using these KPIs to
decide if adjustments are necessary. The analyst
also creates a test scenario in which, there are two
jammers, four UAVs, two suspected UAVs, and eleven
unimportant tracks. In the scenario, paths for UAVs
and suspected UAVs are hand crafted considering the
initial positions, speeds, and movement patterns of
the UAVs and suspected UAVs. The representation of
initial assignments of jammers in JASPER can be seen
in Figure 1.

Figure 1. Simulation state after the initial assignment has been
made

During the simulation, coverage percentages can be
visualized in a chart. The algorithm’s performance
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was evaluated using the UAVs’ coverage percentages,
suspected UAVs’ coverage percentages, and overall
coverage percentages.

The algorithm often produced high UAV coverage
percentages throughout the experiment, decreasing
only to 75% under circumstances where all UAVs
could not be covered. Figure 2 represents a real
time visualization generated by JASPER during the
simulation process, showcasing coverage percentages
over simulation time. It demonstrates the algorithm’s
performance and variations in coverage percentages
during the test scenario.

Coverages

~ Drone Coverage — Overall Coverage — Suspected Drone Goverage

Coverage %
o

0.0
410 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 130 190 200
Time

Figure 2. Coverage percentages of the algorithm in the case
study (1.0 corresponds to 100%.)

While coverage performance is important, an algo-
rithm needs to take acceptable amount of time to calcu-
late angles. Otherwise, it cannot be used in real-world
applications. For that reason, the time taken by the
algorithm to compute new angle assignments at each
step was recorded. This metric indicates how long the
algorithm took to make new angle assignments at each
step. In this case, the reporter agent selected includes
this metric and the graph of the time taken for the
algorithm to calculate can be seen in Figure 3 obtained
from the JASPER.

4.2. Evaluating Algorithm Under Jammer Failures

Previous analyses in this paper assumed that all
jammers remain operational for the entire duration of a
scenario. In practice, however, hardware malfunctions
or deliberate electromagnetic counter-measures may
render a device inoperative at an arbitrary instant. To
evaluate the resilience of the allocation algorithm under
such conditions, an additional case study is conducted
in which each jammer is subject to a single, random
outage time that is generated deterministically from the
simulation seed.

The scenario is independent from the previous case
study of Section 4.1. The scenario includes four UAV
tracks, two suspected UAV tracks and eight non-threat

Time Taken

~= Time Taken

0.0070
0.0065
0.0060
0.0055
0.0050
0.0045
0.0040
0.0035

Time Taken

0.0020
0.0025
0.0020
0.0015
0.0010
0.0005

0.0000

0 25 50 75 100 125 150 175 200
Simulation Time

Figure 3. The time taken for the algorithm to calculate the
jammer-angle assignments, in seconds

tracks. At simulation start, the pseudo-random number
generator draws an outage time in the second quarter of
the scenario. Once f. is reached, the affected jammer
stops jamming. Two seeds are investigated. For Run-A
(seed 42) jammer 2 fails at step 64, whereas for Run-
B (seed 84) jammer 3 fails at step 72. All remaining
parameters, including the track set and the algorithm,
are identical across the two executions.

The reporter module records the same five KPIs from
subsection 4.1. Figure 4 and Figure 5 show the change
over time of the three coverage metrics; Figure 6 and
Figure 7 show the final simulation state for both seeds.

Coverages

~— Drone Coverage — Overall Coverage Suspected Drone Coverage

) 1

Coverage %
=)
@

0 25 50 75 100 125 150 175 200
Time

Figure 4. Coverage ratios for Run—A (seed 42)

In Run-A the loss of jammer 2 triggers a sudden
drop of the UAV coverage to 0.72 at t =66. The
algorithm restores full protection after twenty further
steps by reorienting the remaining jammers. During
this interval, overall coverage reaches a minimum of
0.50 because several non-threat tracks moves into the
newly created blind sector.

Run-B exhibits a similar behavior: the outage at t =
72 lowers the UAV coverage to 0.75 and the overall
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Coverages
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Figure 5. Coverage ratios for Run—B (seed 84)

Figure 6. The final simulation state of Run—-A

coverage to 0.56, followed by a recovery phase of
approximately thirty steps.

Suspected UAV coverage is markedly more volatile
in both seeds, oscillating between 0.50 and 1.00 as the
algorithm assigns lower priority to ambiguous targets
once all UAVs are jammed.

The experiment confirms that a single jammer
outage causes a temporary coverage drop, yet the
algorithm compensates for this loss after a while. While
high—priority UAV tracks regain full protection quickly,
suspected UAV tracks remain partially uncovered for
extended periods, suggesting that an adaptive weight
in the objective function could improve balanced
coverage.

5. Evaluations

5.1. Scaling Analysis

The simulation works smoothly with a regular amount
of jammers and tracks, with no noticeable performance
issues. For testing purposes, the simulation was run
with a more crowded real-world scenario, including 150

Figure 7. The final simulation state of Run—B

tracks and 10 jammers, and it continued to function
normally without interruption.

Given that the simulation handles tracks and
jammers equally, they are treated the same during stress
testing. During tests, it was found that the simulation
can handle 512 entities with little to no lag, while
performance may vary based on the settings chosen.
However, some MASON features, such as inspectors,
can struggle when too many entities are gathered. When
the number of entities approaches around 4000, the
simulation takes more time to calculate the next state.
Despite the additional computing load, it continues to
function successfully. The largest number of entities
tested was 16384, and while it had some slowdown, the
simulation performed successfully. To see the effect of
the visualization, the simulation was run on the console
under the same conditions. Although there was some
speedup, there was not much gain compared to the
visualized version. Results of the scaling analysis can
be seen in Table 1. Tests were conducted on a computer
with an AMD Ryzen 5 7600 processor and 32GB of
RAM. For each test, the tested scenario took 100 steps
to complete and only execution time is recorded (i.e. no
contribution from the algorithm or reporter).

Table 1. Execution time for various entity counts and
visualization modes
. . Execution Time
Entity Count E):?cutlon Time without visualization
in seconds) (in seconds)

2 3.752 3.567
16 3.885 3.632
512 3.923 3.749
1024 4.159 3.893
4096 4.968 4.013
16384 11.106 6.515
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It’s worth noting that, while the simulation scales
well, the algorithm used may have limitations. The
algorithm’s optimizer might reach limits in terms of the
amount of formulations or variables it can handle.

Furthermore, real-time viewing of all trails drasti-
cally degrades performance. Even with as few as 30
tracks, displaying all trails can make the simulation
incredibly slow and practically unusable. For that rea-
son, the simulation only shows the trail of the selected
track, one at a time.

5.2. Sensitivity Analysis

Validation in simulation for testing and evaluation
is important to ensure the accuracy and reliability
of the model. Without proper validation, the results
produced by the simulation may not reflect the true
behavior of the system, leading to incorrect conclusions
or decisions.

Ideally, validation would involve direct comparison
with real-world data. This method provides the
highest level of accuracy, as it directly correlates the
simulation results with actual observations. However,
such comparisons are often expensive and challenging
due to the difficulty of obtaining accurate and
comprehensive real-world data. Given these challenges,
in this study, sensitivity analysis is employed as
a practical alternative for validation. This approach
examines how variations in input parameters affect
the model’s output, allowing for an assessment of the
simulation’s robustness.

Sensitivity Analysis on Algorithm. Firstly, a sensitivity
analysis was conducted by running the jammer
assignment algorithm at different intervals within
the simulation. Using the same test scenario from
subsection 4.1, instead of executing the algorithm at
every time step, it was tested at intervals of every 2, 3,
4, and 10 time steps. This variation showed the impact
of reduced frequency on KPIs.

Average KPI values for jammer assignment algorithm running at different intervals

Coverage (%)

in every time step 2timesteps  inevery 3time steps

o— Suspected UAV Coverage UAV Coverage

Figure 8. Average KPI values for jammer assignment algorithm
running at different intervals

The results of this analysis are illustrated in Figure 8.
As expected, the interval between algorithm executions
increased, there was a slight decrease in coverage
percentages, UAV coverage being the one that fell
the most. Additionally, the angle swivel showed a
significant increase. In addition to this figure, it is
worth noting that the execution time of the algorithm
remained constant across all intervals.

This sensitivity analysis revealed that as the algo-
rithm was executed at larger intervals, corresponding
declines in performance metrics were observed. This
indicates that changes in the frequency of algorithm
execution directly impact the simulation outcomes.

Sensitivity Analysis on Jammer Count. This sensitivity
analysis investigates how the system’s KPIs respond to
changes in the number of active jammers, while all
other variables remain fixed.

In this experiment, total of six potential jammer
sites were available. For tests with fewer devices
the configuration was obtained by removing the
highest-index jammer(s) so that location of jammers
with lower index remained unchanged. All remaining
parameters followed the case study of Section 4.1,
including the pre-defined flight paths of four UAVs,
two suspected UAVs and eleven non-threat tracks. The
assignment algorithm was executed once per simulation
step, received the full state of the simulation and
returned a complete set of jammer-angle assignments.
Each configuration was simulated for 200 steps;
step-wise values of the five KPIs: overall coverage,
suspected-UAV coverage, UAV coverage, execution time
of the algorithm, and mean angle-swivel were averaged
over the run.

Average KPI values for different jammer quantities in the fixed-track scenario

UAV Coverage =+ Angle Swivel

= Overall Coverage = Suspected UAV Coverage

125

rage (%)
Angle Swivel ()

Covel

1 2 3 4 5 6

Number of Jammers

Figure 9. Average KPI values for different jammer quantities in
the fixed-track scenario

Figure 9 summarises the outcomes. All three coverage
metrics rise almost linearly up to n = 4. At that point
UAV coverage reaches 100%, while overall coverage
attains a comparable value when a fifth jammer is
introduced. Beyond four devices the curves plateau,
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indicating that additional jammers yield only marginal
gains.

In contrast, the mean angle-swivel increases almost
monotonically up to =~ 80° for n=5. This increase
is due to the algorithm’s tendency to take advantage
of each new available jammer. As the number of
jammers increases, multiple jammers are trying to
jam the same tracks simultaneously across the tracks’
movements, resulting in a higher average swivel
per device. When a sixth jammer is activated, the
combined field of view already covers almost the
entire field; further rotations provide little incremental
benefit. The resulting saturation—together with the
greater sector overlap—reduces the need for individual
adjustments and brings the average swivel down to =~
75° for n = 6 likely due to increased overlap between
areas jammers cover, which reduces the individual
adjustment demands. Algorithm execution time per
step remained approximately constant across different
jammer quantities.

For the present geometry, four jammers ensure full
protection of high-priority UAV tracks and leave only
a minor uncovered fraction of lower-priority tracks. A
fifth jammer closes this gap but increases mechanical
workload by roughly 25%. A sixth unit adds no
further coverage benefit. The smooth progression of
coverage and angle swivel (together with the stable
execution times) confirms that both the simulation
framework and the integrated allocation algorithm
respond predictably to variations in resource levels,
reinforcing confidence in JASPER’s suitability for
test-and-evaluation studies.

6. Conclusion

In this study, JASPER, a modular, agent-based simula-
tion testbed was developed to evaluate jammer-angle
allocation algorithms for anti-drone systems. JASPER
simulation environment, built using the MASON
framework, supports the integration and comparison of
different algorithms across various scenarios. Key fea-
tures include a configurable reporter agent and the abil-
ity to create diverse test cases. For observing how vari-
ations in input parameters affect the model’s output, a
sensitivity analysis is performed to JASPER. Moreover,
for observing the performance under different num-
bers of jammers and tracks, a scaling analysis is also
performed. Simplifications like ideal jammer coverage
and a 2D aerial view were made to focus on essential
elements, though these also introduced some limita-
tions. These simplifications were deliberately chosen to
minimize their impact on its application to real-world
scenarios. If the real-world modeling of the algorithm to
be tested, significantly differs from these assumptions,
this tool may not be suitable for testing such algorithms.

Future improvements to the simulation environment
could address several limitations and enhance its real-
ism. For instance, evaluating the effects of multiple
jammers’ interference and supporting different jam-
mer coverage patterns could provide a more accu-
rate assessment of jammer effectiveness. Additionally,
future research could incorporate frequency-specific
jamming capabilities, reflecting the diverse operating
frequencies of different UAV types. Moreover, develop-
ing a tool for automatic test case generation could make
the simulation more user-friendly. Such improvements
would give analysts and planners in the field of anti-
drone systems a more complete tool for the evaluation
of jammer allocation methods.
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