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Abstract 

INTRODUCTION: 5G networks are complex. They must handle different types of connections. These networks support 
industries, cities and mobile users. Managing traffic is difficult. Traditional methods are not efficient. 
OBJECTIVES: This paper introduces a software framework called ns-O-RAN. It combines a real-world RAN Intelligent 
Controller with a network simulator. This allows testing AI solutions without expensive hardware. The study also proposes 
a smart handover method. 
METHODS: The goal is to reduce delays and improve speed. The new method uses deep reinforcement learning (DRL). 
DRL learns the best way to assign users to base stations. The framework collects a large amount of data. It trains the AI 
system using this data. The model learns from past network conditions. It then makes better decisions for the future. 
RESULTS: The proposed solution increases network efficiency. The researchers tested their model. They compared it with 
traditional handover methods. This means faster speeds and fewer connection losses. The framework also enables real-
time monitoring. It detects network issues quickly and adapts to changing conditions. This ensures stable and high-quality 
connections for users. 
CONCLUSION: This approach supports different types of applications. It works well for video streaming, voice calls and 
industrial automation. This work has important implications. It helps telecom providers improve service quality. It also 
reduces operational costs. Researchers and engineers can use this framework for further development. 
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1. Introduction

Mobile networks have evolved exponentially [1]. The 
transition from 1G to 5G has introduced significant 
improvements in wireless communications. Each 
generation has brought faster speeds with better 
connectivity and lower latency. Present 5G is the latest 
advancement. It supports a variety of applications. This  

includes smart cities, industrial automation, and 
augmented reality [2, 3]. With help of 5G users 
experience high-speed internet and ultra-low latency. 
However, maintaining these networks is complex. The 
number of devices connected to networks is increasing 
rapidly [4]. Internet of things devices autonomous 
vehicles and smart home systems all require stable and 
efficient networks. Conventional network management 
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techniques struggle to keep up with these demands [5, 6]. 
There is a need for more intelligent and automated 
solutions. Existing mobile networks rely on static 
configurations. They do not dynamically adapt to 
changing conditions [7]. This results in inefficiencies and 
network congestion. A major challenge in mobile 
networks is optimizing network resources. When users 
move between base stations handovers must be handled 
efficiently. Poor handover decisions lead to dropped 
connections. This increases latency and degraded quality 
of service [8]. Traffic steering decisions are dynamic. If 
users are assigned to congested base stations, network 
performance decreases. O-RAN is a novel approach that 
aims to solve these challenges [9]. It introduces an open 
and programmable network architectures. Unlike 
traditional RANs, these are closed and vendor-specific. 
Hence, O-RAN promotes interoperability. It allows 
different components of the network to communicate 
using standardized interfaces [10]. This flexibility enables 
better control and optimization of network resources. O-
RAN provides a foundation for integrating AI and 
machine learning (ML) into network management [11]. 
This paper introduces ns-O-RAN, a software framework 
designed for testing AI-driven network management 
solutions. The framework integrates real-world O-RAN 
controllers with network simulation tools [12]. This 
allows researchers to experiment with AI-based solutions 
in a controlled environment.  
The research focuses on two key aspects of network 
management: First, traffic steering and handover 
optimization. Second, Traffic steering is the process of 
directing user connections to the best available base 
station [13]. Conventional methods rely on static 
thresholds. These thresholds do not consider real-time 
network conditions. DRL learns from past network data. 
It makes optimal decisions based on real-time 
observations. Handover management is equally important. 
When a user moves from one base station to another the 
transition should be smooth. Poor handover decisions 
cause disruptions and reduced network efficiency [14]. 
The AI-based method proposed in this study analyses 
multiple factors. These include user speed, signal strength 
and network congestion. The AI system then predicts the 
best time to perform handovers. This reduces dropped 
connections and improves overall network performance. 
The collected data is used to train reinforcement learning 
models [15]. These models continuously improve over 
time. They learn to make better decisions based on new 
network conditions. The system was tested under various 
network conditions. This paper presents several key 
contributions: 

 To integrate AI with O-RAN architecture. It
helps to enables large-scale network simulation
and testing. A new traffic steering mechanism
using DRL. This method dynamically adapts to
network conditions and improves user
experience.

 To design an AI-driven handover management
system. It reduces latency, prevents connection

drops, and increases efficiency. The framework 
facilitates extensive data collection. This data is 
used to train AI models for better network 
decision-making. 

 The AI-based approach outperforms traditional
heuristics. It shows a 50% improvement in
throughput and spectral efficiency. The paper
highlights the importance of AI in future mobile
networks. It provides a roadmap for further
research in intelligent network management.

5G networks require intelligent management. Traditional 
methods are no longer sufficient. AI and ML offer 
powerful solutions. This paper introduces ns-O-RAN, a 
framework for testing AI-driven solutions. It helps 
improve network performance, optimize traffic steering 
and enhance handover management]. The results show 
significant improvements. The study contributes to the 
advancement of AI in mobile networks. Future research 
can build on this foundation to create even smarter and 
more efficient networks. 

2. Related Work

5G is the latest and great evolution in mobile networks. It 
is designed to provide faster speeds, lower latency and 
better connectivity. The deployment of 5G is transforming 
industries like healthcare, manufacturing and 
transportation [17,18]. Unlike previous generations, 5G 
supports Ultra-Reliable Low Latency Communication 
(URLLC), Enhanced Mobile Broadband (eMBB) and 
massive Machine Type Communication (mMTC)[19]. As 
more devices connect to mobile networks, managing 
network resources becomes more complex. Traditional 
networks use rule-based traffic control methods, which 
cannot adapt to real-time changes in traffic and user 
behaviour [20]. To address these challenges, O-RAN 
introduces flexibility and intelligence in network 
management [21].  O-RAN is based on the principles of 
openness, virtualization and programmability. O-RAN 
allows operators to use multi-vendor equipment, 
promoting competition and reducing costs [22]. O-RAN 
disaggregates traditional base stations into different 
functional blocks. These include the Radio Unit (RU), 
Distributed Unit (DU) and Centralized Unit (CU). The 
real-time RAN intelligent controller (near-RT RIC) plays 
a crucial role in network optimization.  
The O-RAN architecture supports standardized interfaces. 
The E2 interface connects the near-RT RIC to network 
components, enabling intelligent decision-making. The 
A1 interface allows communication between the near-RT 
RIC and non-RT RIC, which operates at a higher control 
layer [23]. Traffic steering is a crucial function in mobile 
networks. It dynamically assigns users to the best 
available base station, ensuring an optimal balance 
between network performance and user experience. 
Traditional traffic steering methods rely on fixed signal 
strength thresholds. Handover management ensures 
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seamless connectivity when a user moves between base 
stations. Poor handover management results in dropped 
calls and reduced network efficiency. DRL-based traffic 
steering dynamically adjusts user connections based on 
real-time conditions [24].  
Supervised learning techniques predict network 
congestion and optimize resource allocation. 
Unsupervised learning helps detect anomalies in network 
performance. AI-based solutions enhance Quality of 
Service (QoS) and reduce network operational costs. 
Despite its advantages, AI-driven networking faces 
several challenges. Data Collection and processing has AI 
models require large datasets for training. Collecting and 
processing real-time network data is resource-intensive. 
Model Generalization must adapt to different network 
conditions. A model trained on one network configuration 
may not perform well in another. In Security and Privacy 
AI introduces security risks. Attackers can manipulate AI 
models by injecting false data. Ensuring AI security is a 
major concern for network operators [25]. AI and O-RAN 
are revolutionizing mobile networks. O-RAN introduces 
flexibility, while AI enables real-time optimization. AI-
driven traffic steering and handover management improve 
efficiency and user experience. However, challenges such 
as data collection and security remain. Future research 
will refine AI-driven networking techniques. The ns-O-
RAN framework is a step towards intelligent and 
automated networks. 

3. System Design and Architecture

The design and architecture of ns-O-RAN are essential to 
ensuring that modern 5G networks can handle high levels 
of user traffic, mobility and network congestion 
efficiently. This system is designed to integrate AI for 
decision-making in critical areas such as traffic steering, 
handover management and resource allocation. Unlike 
traditional cellular networks that rely on fixed 
configurations, ns-O-RAN provides a dynamic and 
intelligent approach, allowing real-time network 
optimizations. By designing for modularity and scalability 
this system allows operator to dynamically adapt network 
resources to demands with minimal latency and improved 
overall network performance. ns-O-RAN is composing 

multi-layer architecture providing specific service for 
each layer. Here are the main components of the system. 
Radio frequency (RF) transmission and reception will be 
handled by the RU. It guarantees data is properly 
modulated and communicated over the air interface to 
end-user devices, while DU is responsible for real-time 
processing of lower-layer protocols (PHY and MAC). 
With CU handling upper-layer network operations such as 
radio resource control (RRC) and packet data 
convergence protocol (PDCP), this unit helps ensure data 
is optimized for processing and sent off where it needs to 
go.  
The Figure 1 illustrates the integration of a Near-Real-
Time RIC with a simulated environment using ns-3 for 
network performance evaluation. The diagram is divided 
into two main sections: Real-world and simulated 
environment (ns-3). In the real-world section, the Near-
Real-Time RIC is responsible for network optimization 
and decision-making. This RIC connects to the simulated 
environment via an E2 interface, allowing both real and 
simulated network elements to interact. The E2 
Termination component performs the dispatching of E2 
messages and the ASN. e2sim tool for 1 label 
encoding/decoding This allows for use of real-world RIC 
functionalities to interact with the simulated network. By 
integrating these, one can see real-time experimentation 
and validation of AI-based RIC optimizations, which will 
lead to better adaptability and a leaner network. Multiple 
E2 nodes and network devices (Net Devices) 
communicate with base stations in the Simulated 
Environment (ns-3). This connectivity can be LTE or 
mmWave based, depending on the device. PDCP, RIC, 
MAC and PHY are just a few of the components that 
make up the network stack responsible for data 
transmission and management. RRC module & KPM 
Traces Generator is responsible for collecting and 
generating performance data. This architecture allows to 
test RIC algorithms in a simulated environment in real 
time and can be used for evaluation of AI-based network 
slicing solutions before they are deployed in a real setting. 
The accomplishment enhances the performance of 
network slicing, traffic steering and entire 6G systems. 
Furthermore, the combination of simulated and real-
world components enables developers to test various 
configurations, assess latency and analyze system 
performance under divergent conditions. 
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Figure 1. ns-O-RAN architecture 

All of these components can be connected by using 
standardized O-RAN interfaces, enabling communication 
across network layers. This interoperability between 
different vendors enables flexible network deployments 
and lowers infrastructure costs. Traffic steering in ns-O-
RAN refers to the dynamic assignment of users to base 
stations based on the real-time environment in a network. 
Conventional traffic steering methods have fixed 
threshold policies and are thus unable to adjust to varying 
network conditions. Unlike AI-based traffic steering 
models which leverage reinforcement learning to 
dynamically assign users. This means that the optimal 
base station for a user should be chosen to achieve the 
best data rates and least congestion. The mathematical 
formulation for traffic steering is defined as follows: 

u,b u,b
u U b B

max x R
∈ ∈
∑∑  (1) 

Here, U represents the set of users, B denotes the set of 
base stations, u,bx  is a binary variable indicating whether 
user u is connected to base station b and u,bR  represents 
the achievable data rate. The constraint ensuring that each 
user connects to only one base station at a time is given 
by: 

u,b
b B

x = 1, u U
∈

∀ ∈∑   (2) 

The base system is augmented with AI-capable 
optimization methods. These adds the predictive analytics 
dimension, which enables the system to learn users’ 
mobility patterns. This provides an optimized throughput, 
and user experience by system adapting AV resources. 
Handover management is a vital part of NS-O-RAN. 
Handover is a process, in which a user moves from one 

base station to another. Poor handover performance can 
cause call drops, increased latency and service 
discontinuity. Handovers in traditional networks are 
performed according to statically defined signal strength 
thresholds. In contrast, AI-based models take into account 
user velocity, congestion levels and historical mobility 
patterns to make more informed decisions about 
handovers. The handover optimization problem can be 
formulated as: 

u,b
u U

min H
∈
∑  (3) 

Here, u,bH  represents the cost associated with user u 
transitioning to base station b. The decision to trigger a 
handover is based on the received signal strength ( u,bS ): 

u,b u,b h

u,b h  
H = 1,S T

S 0, T
<

≥
        (4) 

Here, hT  is the threshold for handover execution. By 
incorporating AI and reinforcement learning, the system 
continuously refines handover policies to minimize 
unnecessary transitions while ensuring seamless 
connectivity. The AI-driven optimization model is 
structured as a Markov Decision Process (MDP), defined 
by: 

(S, A, P, R)                                   (5) 
Here, S is the set of network states, including congestion 
levels and user locations. A is the action space, 
comprising traffic steering and handover decisions. P 
represents the probability of transitioning between states. 
R is the reward function that evaluates the efficiency of 
the decision-making process. The reward function is 
expressed as: 
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T
t

t t
t=0

R = rγ∑  (6) 

Here, tr  represents the reward at time step t, γ  is the 
discount factor and T is the time horizon. By leveraging 
reinforcement learning, ns-O-RAN continuously improves 
its decision-making policies, leading to significant 
enhancements in network performance. The effectiveness 
of the ns-O-RAN system is assessed using key 
performance indicators Throughput that measures the 
amount of data successfully transmitted per unit time, 
Latency evaluates the time taken for data packets to travel 
across the network, Handover Success Rate determines 
the reliability of mobility management mechanisms and 
Resource Utilization assesses how efficiently network 
resources are allocated. The use of reinforcement learning 
in traffic steering and handover optimization results in 
better resource management and improved user 
experience. Future research will explore more advanced 
machine learning techniques and further optimize 
decision-making models to meet the growing demands of 
next-generation networks. 

4. Traffic Steering Optimization

Traffic steering is a vital process in modern wireless 
networks that facilitates user (service request) assignment 
to base stations such that network QoS [26], battery drain 
and user satisfaction are maximized. It leads to high data 
rates, causes less congestion, and ensures fairness. This is 
insufficient for dynamic and highly variable network 
environments where traditional rule-based methods fall 
short. Instead, AI-based and reinforcement learning based 
approaches offer a faster, and more adaptive solution to 
traffic steering. Traffic steering optimization has many 
facets including network load balancing, spectral 
efficiency enhancement, and user experience 
optimization. This part includes a detailed description of 
traffic steering approaches, mathematical expressions and 
AI-based optimizations. Base Stations are the static points 
in this framework, which serve multiple users and allocate 
resources as per signal strength, congestion levels, and 
interference conditions. User Equipment (UE) are the 
mobile users which move dynamically between base 
stations and needs continuous resource allocation from the 
Evolved NodeB [27]. Traffic Steering Controller AI-
driven entity which takes real-time traffic steering 
decisions based on network conditions. The system 
adheres to an iterative approach whereby users are 
assigned to base stations incrementally, optimizing 
multiple constraints encoded within multiple optimization 
functions. In this section, we explore the optimization of 
traffic steering. Formally, the optimization task can be 
characterized as a constrained optimization problem, and 
our goal is to optimize the overall throughput of the traffic 
across the system while ensuring fairness in the allocation 

of resources. The formula of the objective function is 
computed and expressed in (1). The constraint that the 
allocation must satisfy is given by equation (2). AI-driven 
traffic steering utilizes dynamic steering based on real-
time analysis of network performance and congestion. 
Through analyzing KPIs like latency, congestion and 
signal strength, the AI model decides how to steer for 
optimal outcomes continuously. The AI-driven decision 
function is given by: 

u,b u,b b u,bS = f(R ,C , L )                        (7) 
Here, u,bS  is the suitability score for user u at base station 
b, bC  represents congestion at base station b, u,bL  is the 
latency experienced by user u. The AI system updates this 
function in real time to reflect changing network 
conditions. RL techniques further enhance traffic steering 
by continuously learning from network performance 
feedback. The RL framework is defined and given in (5). 
The goal is to maximize the cumulative reward function is 
given in (6). To ensure balanced and efficient network 
performance, traffic steering must satisfy several 
constraints. Capacity Constraints ensures that the total 
resource allocation does not exceed base station capacity: 

u,b u,b b
u U

x R C , b B
∈

≤ ∀ ∈∑  (8) 

Latency Constraints maintains user latency within 
acceptable limits: 

u,b maxL L , u U≤ ∀ ∈                   (9) 
Fairness Constraints ensures equitable resource 
distribution: 

min
th

u,b

R F , u U,b B
R

≤ ∀ ∈ ∈  (10) 

Traffic steering optimization effectiveness is measured 
using key performance indicators: Throughput measures 
the total data transmitted per unit time, Latency evaluates 
the end-to-end delay in data transmission, Load Balancing 
assesses how evenly traffic is distributed among base 
stations and handover rate determines the frequency of 
user handovers between base stations.  
Traffic steering optimization plays a vital role in ensuring 
high-performance 5G networks. Traditional rule-based 
methods often fail to adapt to changing network 
conditions, leading to congestion and inefficiencies. AI-
driven and reinforcement learning-based approaches offer 
a promising solution by dynamically adjusting traffic 
steering decisions in real-time. By incorporating network 
constraints and optimizing key performance metrics, AI-
based traffic steering significantly enhances network 
throughput, fairness and overall user experience. Future 
research will focus on refining AI models and exploring 
federated learning techniques to further improve traffic 
steering strategies. 

5. Performance Evaluation
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The proposed Traffic Steering optimization model could 
be analysed for efficiency by performance evaluation. It 
assists in measuring improvements, validating the 
efficiency and identifying the drawbacks relatively to the 
traditional techniques. This section describes the 
performance metrics used for evaluation followed by 
experimental setup along with results obtained in 
simulation and real-world test environments. One of the 
key metrics is throughput, which indicates how much 
data was successfully delivered on the other end of the 
network. This means lots of bits get to the destination 
very quickly, and all resources are used to their maximum 
potential. An orthogonal metric is latency, the time it 
takes for data to travel from a source to a destination. 
This metric measures the rate of successful handover 
without disconnection. The higher the handover success 
rate, the fewer service interruptions users will experience 
when switching base stations. Another significant 
consideration is load balancing, the process of distributing 
incoming data among multiple base stations to ensure 
stable operations and no degradation of the service for the 
mobile stations.  
The performance of the AI-driven traffic steering system 
is evaluated in both simulated and real-world 
environments. A simulated 5G network model is created, 
which is covered by various network conditions such as 
high mobility users, fluctuating traffic loads and different 
environmental factors. The testbed features edge 
computing servers enabling real-time processing of AI-
based decisions. In-traffic devices use the mobile network 
for high-bit tasks such as video, online gaming and VR 
apps. This makes it possible to represent in the simulation 
the behaviour of real networks and validate the simulation 
results. One of the most noticeable improvements is in 
throughput. The optimization algorithm ensures that users 
are always connected to the most optimal base station, 
leading to an increase in total data transmission capacity. 
The observed throughput gain is calculated using the 
equation: 

AI baselineT = T + T∆                          (11) 
Here, AIT  represents the improved throughput with AI 
steering, baselineT  refers to the throughput using traditional 
rule-based methods and T∆  is the gain achieved due to 
AI-driven optimizations. Another significant 
improvement is seen in latency reduction. The AI-based 
system dynamically selects base stations with lower 
congestion, reducing end-to-end transmission delays. The 
latency reduction is given by: 

 AI baselineL = L - L∆                          (12) 
Here, AIL  is the latency with AI optimization and L∆  
denotes the improvement over conventional approaches. 
Handover success rate is another area where AI-based 
traffic steering excels. The reinforcement learning model 
predicts the best time for handover, minimizing failures 
and dropped connections. The success rate is calculated 
using the equation: 

 successful
success

total

H
H = ×100

H
  (13) 

Here, successfulH  represents the number of successful 
handovers and totalH  is the total handover attempts. A 
well-balanced network distributes users evenly across 
base stations, preventing congestion and ensuring fair 
resource allocation. The load balancing efficiency is 
evaluated using the standard deviation of users per base 
station, given by: 

u
loadB =

U
σ

 (14) 

Here, uσ  represents the standard deviation of users across 
different base stations and U  is the average number of 
users per base station. A lower loadB  value indicates a 
more evenly distributed load, reducing network 
congestion and enhancing user experience. Energy 
efficiency is also a critical metric in performance 
evaluation. The AI-based traffic steering model optimizes 
network energy usage by reducing unnecessary 
transmissions and handovers. The improvement in energy 
efficiency is calculated as: 

baseline AI
gain

baseline

E - E
E = ×100

E
 (15) 

Here baselineE  represents the energy consumption in a 
traditional network setup and AIE  denotes energy 
consumption with AI-driven optimization. The outcomes 
show an enhancement of about 20% in energy efficiency, 
rendering the system more sustainable and financially 
viable. To demonstrate the performance of AI-based 
traffic steering the results are compared to those of 
conventional rule-based steering. The graph compares 
throughput, latency, handover success rate and overall 
efficiency of the network. Also, shows an increase in 
throughput of 35% increase in throughput, a 28% 
decrease in latency, a 98% handover success rate, and 
overall improvement. 
These improvements further validate that AI-based traffic 
steering delivers a major boost over legacy methods 
across all key performance metrics. The AI-driven traffic 
steering model is compared against conventional rule-
based steering methods. The comparison results are 
summarized in Table 1. 

Table 1. Performance comparison of traditional 
versus AI-based traffic steering 

Metric Traditional 
Steering 

AI-Based 
Steering 

Throughput Gain 0% 35% 
Latency Reduction 0% 28% 
Handover Success Rate 85% 98% 
Load Balance Efficiency 65% 90% 
Energy Efficiency 
Improvement 0% 20% 
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The performance evaluation results demonstrate that AI-
driven traffic steering provides substantial improvements 
in network efficiency, throughput, latency and load 
balancing. The system enhances the user experience by 
minimizing service disruptions, improving handover 
success rates and ensuring even network distribution. The 
incorporation of AI techniques, particularly reinforcement 
learning, enables the network to adapt dynamically to 
changing conditions, optimizing resource allocation in 
real time. Future work will focus on refining AI models, 
integrating federated learning, and exploring more robust 
real-time optimization strategies to further improve 5G 
network performance. 
The Figure 2 illustrates the relationship between 
Throughput (Mbps) and the Number of Users for different 
traffic steering methods in a network. Four distinct traffic 
steering methods are compared: AI-Based Traffic 
Steering, traditional traffic steering, Load-aware traffic 
steering and random allocation. The AI-based method 
consistently achieves the highest throughput followed by 
the load-aware, traditional and random allocation 
methods. The AI-based technique shows a linear increase 
in throughput, reaching approximately 130 Mbps at 500 
users, while random allocation remains the lowest at 
around 70 Mbps. This suggests that AI-based optimization 
significantly improves data rates, even as network load 
increases. The gap between AI based method and other 
methods is clear, which reflect that ML positive 
contribution in solving Network Congestion and resource 
allocation efficiently. Also, in terms of numbers the 
throughput difference between AI-Based and Traditional 
Traffic Steering is approximately 30 mbps across all user 
counts, showing a clear dominance of AI-based 
optimization. Load-Aware Traffic Steering delivers 
improved throughput than the traditional approach, the 
traditional approach had about 15 Mbps lower throughput 
demonstrating how effectively resources can be 
distributed.  

Figure 2. Throughput versus number of users 

The Figure 3 illustrates the relationship between Latency 
(ms) and Network Load (%) for different traffic steering 
methods. Four traffic steering strategies are compared: 
AI-Based Traffic Steering, Traditional Traffic Steering, 
Load-Aware Traffic Steering and Random Allocation. As 
network load increases, latency rises for all methods but at 
different rates. The AI-Based Traffic Steering method 
achieves the lowest latency, remaining below 50 ms even 
at 100% load, while Random Allocation exhibits the 
highest latency exceeding 90 ms at full load. The gap 
between AI-based and traditional methods widens as 
network load increases, showing that AI-driven 
optimization can significantly reduce delays under high 
traffic conditions. The Load-Aware Traffic Steering 
technique remains between AI-based and traditional 
methods making it a more effective approach than 
conventional methods but not as optimized as AI-driven 
steering. Quantitatively, AI-Based Traffic Steering 
maintains a latency advantage of around 20 ms over 
Load-Aware Traffic Steering and 30 ms over Traditional 
Traffic Steering at full load. The Random Allocation 
method results in the worst performance, with nearly 50 
ms higher latency than AI-based optimization. Load-
Aware Traffic Steering performs better than the 
traditional method but still lags behind AI-based steering 
by approximately 10 ms at all load levels. As the network 
load increases from 0% to 100%, the latency for AI-based 
steering rises from 25 ms to 50 ms, while traditional and 
random methods show much steeper increases. The linear 
increase in latency for all methods suggests that network 
congestion plays a key role in determining performance, 
but AI-based approaches offer superior traffic 
management, reducing congestion effects.  

Figure 3.  Latency versus network load 
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Echoing the traffic steering in Figure 4 in which the 
handover success rate (%) with respective to user speed 
(km/h) is compared for 3 different steering methods. The 
evaluation takes place of four distinct traffic steering 
strategies: AI-Based Traffic Steering, Traditional Traffic 
Steering Load, Aware Traffic Steering and Random 
Allocation. With the increase of user speed, the average 
handover success rate of all methods shows a downward 
trend. Since the success rate of the AI-based traffic 
steering method is highest and is above 80% even at 100 
km/h. the success also of the load-aware traffic steering 
Method remains right behind, however, as the load-aware 
traffic steering method drops to about 70% at 100 km/h. 
Classic traffic steering drops much faster — almost down 
to 50% success at the maximum speed of 100 km/h, and 
Random Allocation drops down to 30% at that speed. We 
note that the performance gap is large, indicating that 
intelligent traffic steering algorithms can mitigate 
handover failures and enhance user experience in these 
high-mobility contexts. From the quantitative analysis, 
AI-Based Traffic Steering outperforms Load-Aware 
Traffic Steering up to 10%–15% and Traditional Traffic 
Steering up to 30% for all the speeds. At a low speed of 
the user, all types of methods perform well but, AI-based 
steering method performs almost over 99%. Load-Aware 
Traffic Steering is between them, needing better 
performance traditional traffic steering but not being as 
good as AI-based steering. These results indicate that AI-
based optimization at handover is considerable to increase 
handover success rates, allowing continuity in users' 
connectivity while moving at high speeds.  

Figure 4. Handover success rate versus user speed 

The Figure 5 illustrates the Energy Consumption (Watts) 
versus Traffic Load (%) for different traffic steering 
methods. Three traffic steering strategies are compared: 
AI-Based Traffic Steering, Traditional Traffic Steering 
and Random Traffic Steering. As traffic load increases, 

energy consumption rises for all methods. The AI-Based 
Traffic Steering method has the lowest energy 
consumption, staying below 80 W even at full traffic load. 
The Traditional Traffic Steering method consumes more 
energy than AI-based steering, reaching around 110 W at 
100% load. The Random Traffic Steering method has the 
highest energy usage, exceeding 130 W at full load. These 
results indicate that AI-driven traffic steering optimizes 
energy efficiency better than traditional or random 
allocation methods. Other advantages of AI include real-
time power adjustment or reducing unused energy and 
saving more as an enterprise network as a whole. In terms 
of quantitative energy consumption, AI-Based Traffic 
Steering consumes around 20 W less than the traditional 
method at every level of load and around 50 W less than 
Random Traffic Steering at full load.  
The Figure 6 illustrates the Performance Improvement 
(%) versus Traffic Steering Methods for different network 
optimization techniques. Five key performance metrics 
are analysed: Throughput, Latency Reduction, Handover 
Success, Load Balance and Energy Efficiency. 

Figure 5. Energy consumption versus traffic load 

The AI-Based Traffic Steering method achieves the 
highest performance improvement across all metrics, 
particularly in Handover Success and Load Balancing, 
exceeding 90% improvement. The Load-Aware method 
also performs well in these areas, but with slightly lower 
gains compared to AI-based steering. The Traditional 
method exhibits moderate improvement, while the 
Random method consistently shows the lowest 
performance gains across all metrics. The AI-based 
approach offers better throughput, reduced latency and 
improved energy efficiency compared to all other 
techniques. Quantitatively, AI-Based Traffic Steering 
shows a 30% improvement in throughput, a 25% 
improvement in latency reduction, and around 90% 
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improvement in handover success and load balancing. The 
Load-Aware Traffic Steering method also performs well, 
particularly in Handover Success (85%) and Load 
Balancing (65%), but with slightly lower improvements in 
energy efficiency. The Traditional Traffic Steering 
method provides only moderate gains in most areas, with 
Handover Success at around 70% and Load Balancing at 
60%, but significantly lower improvements in latency and 
energy efficiency. The Random method performs the 
worst, with handover success and load balancing below 
50% and minimal improvement in energy efficiency and 
latency reduction. These results highlight the importance 
of AI-driven traffic optimization, which delivers the best 
network performance while improving system efficiency.  
The Figure 7 illustrates the Performance Gain (RIC RL / 
SON2) versus Performance Metrics for two different 
frequency bands: 850 MHz and 3.5 GHz (C-Band). The 
850 MHz band consistently achieves slightly higher 
performance gains across most metrics compared to the 
3.5 GHz band. The Load Balance metric exhibits the 
highest performance gain, reaching approximately 1.2 for 
both frequency bands. 
The Throughput, Handover Success and Energy 
Efficiency metrics show relatively stable performance 
across both frequency bands, with the 850 MHz band 
slightly outperforming the 3.5 GHz band. These results 
indicate that the lower frequency band (850 MHz) offers 
slightly better network performance in optimizing traffic 
steering and resource allocation. 850 MHz has the benefit 
of better propagation properties as well, which leads to 
stronger and more stable connections especially in 
crowded and expansive coverage zones. 
 

 

Figure 6. Performance comparison of different traffic 
steering methods 

In numbers, the Throughput performance benefit is close 
to 1.1 for 850 MHz band and comparably lower 1.05 for 

3.5 GHz band. Latency Reduction exhibits similar trends 
here, with a slight lead in favour of the 850 MHz band. 
Both bands show a Handover Success metric approaching 
nearly 1.2, showcasing the contributions of RIC RL 
towards enhanced seamless connectivity. The Load 
Balance metric further peaks at 1.2, indicating major 
traffic distribution performance improvements. The 
Energy Efficiency on the 850 MHz band is also a little bit 
higher (≈ 1.1) than it on the 3.5 GHz which is lower by 
this critic respectively. The results indicate that compared 
to SON2, RIC RL achieves superior performance across 
all performance metrics and that optimization from a 
lower band (850MHz) is more efficient than a higher band 
(3.5GHz) validation.  
 

 

Figure 7. Comparison of performance gain 

The Figure 8 illustrates the Loss MSE of the Q-function 
Qπ  versus Training Iterations during the training of a 
reinforcement learning model. Two types of loss curves 
are presented: Raw Loss and Smoothed Loss using 
Moving Average. This leads to further decrease in loss 
along the way until it converges close to 0 towards the 
end of training in the exponential decay fashion. The loss 
curve is very noisy, whereas the Smoothed Loss gives a 
much clearer trend; in which we can see that the error is 
decreasing on a gradual and steady basis. Over time, it is 
clear that Q-function learns and stabilizes, resulting in 
more accurate policy. These irregularities in the raw loss 
values indicate that the algorithm is tweaking the weights 
during the first training episodes while honing the Q-
values later on. Between 200 and 600 iterations, the loss 
continues to decline but at a slower rate, reaching about 
0.2 by iteration 600. From 600 to 1000 iterations, the loss 
stabilizes near zero, indicating that the reinforcement 
learning model has successfully minimized prediction 
errors.  
 

EAI Endorsed Transactions on 
Internet of Things 

| Volume 11 | 2025 | 



 
 U.S.B.K. Mahalaxmi et al. 

10 

 

Figure 8: Loss MSE for the Q-function Q˘π for the 
offline training 

The Figure 9 illustrates the Mean Q-Value versus 
Training Iterations during the training of a reinforcement 
learning model. The plot includes two curves: Raw Q-
Value and Smoothed Q-Value using a Moving Average. 
The Raw Q-Values show significant fluctuations at the 
beginning, indicating instability in the learning process. 
However, as training progresses, the values increase and 
gradually stabilize around 10. The Smoothed Q-Value 
follows a similar upward trend but provides a clearer 
trajectory of the Q-function’s improvement over time. 
This demonstrates that the reinforcement learning agent 
improves its decision-making policy by learning better Q-
values for different states and actions. The sharp rise in Q-
values at the start suggests that the model quickly adapts 
to its environment, but fluctuations show that early 
exploration leads to inconsistent decisions before 
stabilizing. Quantitatively, the initial Q-value starts at 
approximately -5 and rapidly increases in the first 200 
iterations, showing a steep learning curve. Between 200 
and 600 iterations, the Q-value continues to rise but at a 
slower rate, reaching around 8. Beyond 600 iterations, the 
Q-values stabilize between 9 and 10, indicating that the 
reinforcement learning model has converged to an optimal 
policy. The Smoothed Q-Value curve closely follows the 
Raw Q-Value but eliminates noise making it easier to 
observe the overall trend.  
 

 

Figure 9. Q-Function convergence over training 

The Figure 10 illustrates the CDF of SINR (dB) for 
different traffic steering methods. Four network 
optimization techniques are compared: RAN RRM, 
SON1, SON2 and RIC RL. The RIC RL method achieves 
the highest SINR values, followed by SON2, SON1 and 
RAN RRM. The RAN RRM curve is shifted farthest to 
the left, indicating the lowest SINR distribution, while 
RIC RL is the rightmost curve showing the best SINR 
performance. This means that RIC RL provides better 
signal quality and interference management than 
traditional methods. Quantitatively, the median SINR for 
RAN RRM is close to 0 dB, while for SON1, it is around 
5 dB. The SON2 method improves the SINR further, with 
a median around 8 dB and RIC RL achieves the highest 
median SINR, reaching approximately 12 dB. The RIC 
RL curve shifts further right compared to other methods, 
demonstrating that it significantly enhances network 
performance, reducing interference and improving signal 
reception. The CDF for RAN RRM reaches 0.9 at around 
5 dB, while for SON1, this occurs near 10 dB. In 
comparison SON2 reaches 0.9 near 12 dB and RIC RL 
reaches 0.9 at nearly 15 dB. This confirms that RIC RL 
outperforms SON-based approaches by ensuring a higher 
probability of better SINR values.  
The Figure 11 shows Mobility Overhead (Hu) versus 
Number of Users in various traffic management methods. 
We compare four methods: RAN RRM, SON1, SON2 
and RIC RL. The RAN RRM method performs poorly in 
mobility overhead, resulting in the maximum overhead 
among all methods: 16 at 50 users and more than 20 at 
500 users. The overhead measurement is considerably 
lower for both SON1 and SON2 when compared with 
RAN RRM, achieving overhead values of approximately 
18 for SON1 and remaining around the value of 16 for 
SON2 at 500 users. RIC RL is the lower handover cost 
and the lowest mobility overhead (10-14) among other 
competing schemes. The RIC RL curve grows more 

EAI Endorsed Transactions on 
Internet of Things 

| Volume 11 | 2025 | 



 
 Enhancing 5G Traffic Management with Programmable Intelligence and Open RAN Integration 

 
 
 

11 

slowly than the aforementioned methods, affirmatively 
confirming the efficacy of AI-based traffic management 
in better restricting mobility overhead with the growing 
size of the network. The wide gap in both metrics 
indicates the inefficiency of static handover mechanisms 
in high-mobility situations, as compared to AI 
mechanisms. 

 

 
 

Figure 10. CDF versus SINR 
 

In terms of exact numbers, the mobility overhead for RIC 
RL is about 4 to 6 units lower than RAN RRM for all 
user counts. At 100 users, RAN RRM exhibits an 
overhead of almost 17 whereas RIC RL remains below 
12. SON1 lowers mobility overhead by 2 units compared 
to RAN RRM, and SON2 reduces it by another unit. 
Again, as the number of users increases, the gap between 
RAN RRM and optimization methods (SON1, SON2 and 
RIC RL) separates further, demonstrating that AI-based 
reinforcement learning (RIC RL ) yields notable benefits 
in user mobility management. The relatively smaller 
increase in mobility overhead for RIC RL over the other 
methods indicates improved network adaptability and 
reduced unnecessary handover process.  

 

Figure 11. Mobility overhead hu versus number of 
users 

The findings affirm that RIC RL emerges as the most 
powerful method for maximising mobility while 
simultaneously minimising signalling expenses and 
enhancing network effectiveness in high-user settings. In 
dense urban areas or high-speed mobility scenarios (e.g., 
highways, trains and large events), frequent handovers 
can degrade network stability and the balance between 
capacity and energy consumption become increasingly 
more important.  
 
The Figure 12 illustrates the Spectral Efficiency 
(bps/Hz/User) versus Number of Users for different traffic 
steering methods. Four optimization techniques are 
compared: RAN RRM, SON1, SON2 and RIC RL. The 
RIC RL method achieves the highest spectral efficiency 
across all user counts, followed by SON2, SON1 and 
RAN RRM. As the number of users increases, spectral 
efficiency decreases for all methods. However, RIC RL 
maintains the highest efficiency, while RAN RRM has the 
lowest efficiency, showing that AI-based traffic steering 
methods are more effective in handling resource 
allocation. The steeper decline in spectral efficiency for 
RAN RRM and SON1 indicates that these traditional 
methods struggle with high user loads, whereas RIC RL 
and SON2 exhibit better scalability in multi-user 
environments. These trends highlight the importance of 
intelligent traffic steering in ensuring consistent 
performance across varying network conditions. 
Quantitatively, RIC RL starts at approximately 6.4 
bps/Hz/user at 50 users and decreases to around 5.8 
bps/Hz/user at 500 users. SON2 begins at nearly 5.9 
bps/Hz/user and declines to about 5.3 bps/Hz/user. SON1 
follows a similar trend, starting at 5.2 and reaching nearly 
4.7 at 500 users. RAN RRM, the least efficient method, 
begins at 4.8 and drops to approximately 3.3 bps/Hz/user 
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at maximum users. The clear performance gap between 
RIC RL and RAN RRM is about 2.5 bps/Hz/user at higher 
user counts, demonstrating the impact of AI-based 
optimizations in ensuring better spectral efficiency.  
 

 

Figure 12. Spectral efficiency versus number of 
users 

6. Conclusion 

 
The findings demonstrate that AI-based traffic steering 
offers substantial improvements over traditional methods, 
making 5G networks more adaptive and efficient. AI-
driven solutions allow real-time network adjustments 
based on traffic conditions, user mobility and base station 
congestion levels. Unlike traditional static policies, AI 
dynamically allocates resources, maintains optimal 
performance. The reinforcement learning approach 
enables continuous learning and adaptation, leading to 
more intelligent and effective network operations. The 
study confirms that AI-based traffic steering increases 
throughput, decreases latency and enhances user 
experience. These improvements ensure better 
performance in real-time applications such as video 
streaming, online gaming and industrial automation. 
Additionally, the AI-based model predicts user movement 
patterns and schedules handovers more effectively. 
Energy efficiency is another area where AI-based 
optimization has a significant impact. By reducing 
unnecessary handovers and optimizing resource 
allocation, power consumption is lowered. This reduction 
in power usage makes the system more sustainable and 
cost-effective, benefiting both network operators and 
users  
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