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Abstract 

INTRODUCTION: Object detection and tracking are essential for computer vision, particularly for vehicle monitoring 
within digital images and video streams. Traditional methods, such as background subtraction and template matching, rely 
on heuristic algorithm and handcrafted features, which often struggles with diverse vehicle appearance and complex 
backgrounds. These techniques, while foundational, exhibit limitations in flexibility and scalability, resulting in lower 
accuracy and high computational costs. 
OBJECTIVES: In contrast, advanced Deep Learning (DL) approaches, particularly those utilizing Conventional Neural 
Network (CNNs), have revolutionized the field by enabling automatic feature extraction from large datasets.  Despite their 
advantages, existing DL models like You Only Look Once (YOLO) face challenges in detecting small or closely packed 
vehicles and can be computationally intensive. 
METHODS:  This study proposed an Attention Driven YOLO v9 architecture that integrates with a proposed mechanism 
combining spatial and channel attention to detect the small size vehicle accurately. 
RESULTS: Additionally the architecture incorporates multi stage cascaded convolution layers to enhance the feature 
extraction and robustness against occlusion and background noise. The model is trained using the UA-DETRAC dataset, 
providing a rich set of images for learning. 
CONCLUSION: Performance evaluation metric such as Mean Average Precision (mAP), precision, recall, and tracking 
accuracy demonstrating significant improvement over traditional methods and existing state of the art models. This research 
contributes to the field by addressing the limitations of previous studies through technique to speed and accuracy in vehicle 
detection and tracking. 
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1. Introduction

Object detection and tracking are critical components of 
computer vision, focusing on identifying and particularly 
in vehicle monitoring objects within digital images or video 
streams. Vehicle detection refers to the process of locating 
and classifying objects in a single framework, typically 
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utilizing algorithms that draw bounding boxes around 
detected items [1]. This initial identification is important 
for subsequence tracking, where the aim is to follow the 
movement of these objects across multiple frames in real 
time [2]. The evolution of these technologies has been 
driven by advancements in Machine Learning (ML) and 
Deep Learning (DL), enabling more exact and efficient 
detection and tracking methods [3]. The integration of 
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these techniques has significant application in various 
fields, including surveillance, and autonomous vehicle and 
human computer interaction, highlights their importance in 
enhancing the safety and operational efficiency in 
numerous domains [4]. Vehicle detection and tracking 
employs a variety of methods that can be broadly 
categorized into traditional techniques and modern deep 
learning approaches [5]. Traditional methods include the 
background subtraction, frame differencing and template 
matching, which rely on analyzing changes between 
consecutive frames to identify moving vehicles. The field 
of object detection has evolved essentially over the past few 
years, transitioning from traditional methods reliant on 
handcrafted features to sophisticated DL techniques that 
leverage large datasets for improved exactness and 
effectiveness [5]. Traditional object detection methods, 
which emerged before the advent of DL, primarily used 
heuristic algorithm and manual feature extraction. These 
approaches, such as viola-jones detector and Histogram of 
Orientated Gradient (HOG), relief heavily on predefined 
criteria to identify vehicles within images [6]. For example, 
the Viola Jones detector employed Haar-like features to 
detect faces by analyzing intensity differences in the 
rectangular region of an image. Similarly, HOG calculated 
gradient orientation in localized portions of an image to 
detect pedestrians. While these methods laid the 
groundwork for vehicle detection, they were limited in 
their flexibility and scalability, often struggling with 
diverse vehicle appearances and complex backgrounds [7]. 

One of the important drawbacks of traditional methods is 
their reliance on handcrafted features, which are not 
universally applicable across various domains. This 
limitation often results in low exactness for common 
models and high computational complexity during region 
selection. Furthermore, traditional techniques typically 
involve a sliding window approach to scan images for 
potential vehicle locations, which can be computationally 
expensive and inefficient, particularly when dealing with 
high resolution images or real time application [8]. With 
the introduction of DL, particularly CNN (Conventional 
Neural Network), the landscape of vehicle detection began 
to shift dramatically. DL model can automatically learn 
relevant features from data, allowing them to generalize 
better across different tasks and datasets [9, 10]. This 
transition led to the development of two primary categories 
of object detection architectures: one stages and two stage 
detectors. One stage detectors, such as YOLO and Single 
Shot Multi Box Detector (SDD), perform object detection 
in a single pass through the network, offering faster 
processing speeds suitable for real time applications [11, 
12]. Whereas, two stage detectors like R-CNN (Region 
based Conventional Neural Network) first generate region 
proposal and then classify these proposal in a second step. 
While two stage models tens to achieve higher accuracy 
due to their more complex processing, they are generally 
slower and less efficient than their one stage counterparts. 
Despite these advantages, the existing DL based models 
also face challenges [13, 14]. The one stage detector may 
struggle with detecting small vehicle or objects that are 
closely packed together due to their reliance on a single 
pass through the network. On the other hand tow stage 
model can be computationally intensive and may not be 

suitable for applications required real time performance. 
Additionally, the both types of models can suffer from 
issues related to occlusion and varying lighting conditional, 
which can importantly impact the detection exactness. In 
recent years, there has been a growing interest in enhancing 
vehicle detection capability through innovative 
architectures that incorporates attention mechanisms and 
multi stage processing [15, 16]. Attention driven models 
aim to improve feature extraction by focusing on relevant 
parts of an image while ignoring less important 
information. This approach allows models to better handle 
occlusions and variations in vehicle appearance, by 
dynamically adjusting their focus based on contextual 
information. 

Moreover, this research addresses some limitation 
observed in previous studies by incorporating advanced 
techniques such as data augmentation which increase the 
diversity of training samples by applying various 
transformation to existing images, thereby improving 
model generalization capability. Overall, this innovative 
approach is expected to outperform existing state of art 
methods in term of both speed and accuracy. To overcome 
such limitation the proposed research focuses on 
developing an Attention Driven YOLO v9 model combine 
with a Multi-stage cascaded conventional Model for 
effective object detection and tracking. The approach lies 
in its ability to integrate attention mechanism directly into 
the YOLO v9 architecture while employing a multi stage 
cascade framework that enhanced feature extraction at 
various levels of abstraction. By leveraging attention 
mechanism, the model can selectively focus on critical 
features within an image, improving its robustness against 
occlusions and background noise. The model trained using 
the UA-ETRAC dataset, which provides a risk set of 
images for learning. This training phase is crucial for 
optimizing the models performance. Following the 
training, the predicted data will be loaded to test the models 
performance effectively. Performance estimation involves 
analyzing key metrics such as Mean Average Precision 
(mAP), Precision, Recall, and Tracking vehicle. Moreover, 
this research addresses some limitation observed in 
detection and tracking vehicles.  

1.1 Research Contribution 

The main contribution of the paper are as follows, 

• To create an attention-driven Yolo v9 object
detection and tracking capabilities. And to
integrate attention mechanism into YOLO v9
architecture, allowing the model to focus on
critical features within images, thereby improving
robustness against occlusion and background
noise.

• To employs a multi stage cascaded framework
that enhanced feature extraction at various levels
of abstraction, leading to improved detection
accuracy and efficiency.

• To assess the models performance using key
metrics such as MAP. Precision and recall
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ensuring a comprehensive evaluation of its 
effectiveness in object detection and tracking.  

• To train the proposed model using the UA-
DETRAC dataset, providing a diverse set of
images for effective learning and evaluation.

1.2 Paper Organization 

The paper is organized in the basis of research on the 
attention driven YOLO v9 model combined with a multi 
stage cascade Conventional model for object detection and 
tracking. Section 1 includes an introduction that outlines 
the research background, contribution of the paper. As well 
as section 2 reviews the related work, analyzing 
conventional methods and identifying existing problems. 
In section 3, the proposed methodology details data pre-
processing and the implementation of object detection, 
including the channel prior attention mechanism and 
spatial attention mechanism. Section 4 presents the result 
and discussion, covering dataset description, exploratory 
data analysis, performance metrics, and a comparative 
analysis. Finally section 5 concludes the paper by 
summarizing finding and discussing potential future work, 
highlights the contribution of the proposed methods to 
advancements in object detection and tracking 
technologies. 

2. Related Work
This section deliberates the analysis of the conventional 
research in the vehicle detection and tracking such as DL 
and ML also computer vision techniques. By exploring 
various methodologies the study address the challenges 
such as occlusion, varying traffic conditions, and the need 
from real time processing.  

In the conventional system, the logistic vehicle speed 
detection method using YOLO (LV-YOLO), which 
enhances traffic management by segmentation vehicle with 
U-Net and detecting their speed based on the Boxy Vehicle
dataset. The YOLO achieves a mAP in better percentage,
outperforming existing systems by up to 5.42% in vehicle
detection and 4.81% in speed Prediction [17]. Similarly the
existing study [18], the use of DL, particularly CNN in
vehicle detection and tracking highlighting framework like
faster R-CNN and YOLO for optimized performance. It
also addresses tracking challenges with algorithm such as
Deep SORT and Tractor, evaluating effectiveness through
metrics like IoU, precision, and recall while emphasizing
the importance of balancing real time processing and
accuracy for traffic surveillance. As well as, the prevailing
study [19], focused on estimating traffic entity to improve
intelligent transportation systems, emphasizing vehicle
recognition  an counting as critical steps in the process. It
leverage deep learning technologies, particularly CNN
utilizing data from open source libraries such as MB7500,
KITTI, an FLIR, with image annotation and augmentation
techniques applied to enhanced dataset size and quality. A
hybrid model combining Faster R-CNN and YOLO with a
majority voting classifier is trained on the processed data,
achieving a detection accuracy of up to 98%, surpassing

YOLO’s 95.8% and faster R-CNNs 97.5%. The proposed 
approach demonstrates superior performance in estimating 
traffic density, indicating its potential to enhance road 
traffic management effectively.  

The study [20], introduced DETR-SPP, a one stage vehicle 
detection network that enhances real time detection speed 
and accuracy by modifying the Detection Transformer 
(DETR) architecture with spatial pyramid pooling, 
focusing on vehicle classes from the MS COCO 2017 
dataset. The model achieves a mAP of 51.31%, surpassing 
the DETR baseline by 5.19%, with a Wilcoxon signed-rank 
test p-value of 0.03, confirming its effectiveness in vehicle 
detection. Similarly, the enhanced Histogram of Oriented 
Gradients (HOG) [21], approach for night time vehicle 
detection, utilizing background illumination removal and 
saliency models to extract vehicle lights, followed by SVM 
classification and non-maximum suppression (NMS) for 
improved accuracy. Experimental result demonstrate 
significant enhancements in vehicle recognition accuracy 
in low light conditions, although specific numerical 
improvements were not detailed. Generally, the study [22] 
in YOLO-GNS, a novel algorithm for detection of special 
vehicles from UAVs, which enhanced feature extraction 
through a single Stage Headless (SSH) context structure 
and reduced computational costs using Ghost Net’s linear 
transformations. Experimental result demonstrate a 4.4% 
increase in average detection accuracy and a 1.6 
improvement in detection frame rate, highlighting its 
effectiveness for monitoring illegal activities in various 
scenario. Correspondingly, the edge intelligence-based 
improved YOLO v4 vehicle detection algorithm that 
enhances detection capabilities using an efficient channel 
attention (ECA) mechanism and a high resolution network 
(HRNet), achieving an average precision increase from 
82.03% to 86.22%. Additionally, an improved 
DeepLabv3+ segmentation algorithm utilizing 
MobileNetv2 and soft pooling boosts Mean Intersection 
over Union (mIoU) from 73.63%, importantly advancing 
traffic information processing. 

The paper [23], presented a vehicle detection and 
classification method using the YOLO v5 architecture, 
leverage transfer learning to fine tune the pre trained model 
on extensive dataset that capture various traffic condition, 
including occlusions and different weather scenario. The 
improved YOLO v5 model outperforms traditional 
detection method in accuracy and execution time, 
demonstrated effectiveness on publicly available dataset 
like PKU, COCO, and DAWN. Similarly, the prevailing 
study [24], used automatic multiple vehicle detection and 
tracking framework that combines computer vision with 
Partial Differential Equation (PDE) based model using a 
Haar Cascade Classifier and Active Contour based 
segmentation for vehicle detection. The tracking method 
employs DL for multi scale analysis and vehicle matching, 
with simulation results demonstrating the effectiveness of 
the proposed approach in various traffic scenario. The 
study [25], present the modified cascade R-CNN that 
enhance vehicle detection by integrating contextual 
information, improving features extraction for small and 
occulted objects through an improved features pyramid and 

EAI Endorsed Transactions 
on Internet of Things 
| Volume 11 | 2025 |



Krishna Mohan A et al. 

predictive optimization module. Experimental results show 
that this method outperforms state of art vehicle detection 
in accurately detecting small and shielded vehicle. The 
existing study [26], showed the automatic vehicle 
classification has become crucial for intelligent 
transportation systems, particularly during mobility 
restriction like those imposed during COVID-19, where 
controlling vehicle classification methods, which often 
prioritize prediction exactness at the expense of real time 
performance and resource efficiency, by proposing a new 
techniques that utilizes adaptive histogram equalization 
and Gaussian mixture model to enhance vehicle image 
quality and employs an ensemble DL approach for 
classification.  

Similarly, to reduce the false detection rate of vehicle target 
caused by occlusion, an improved vehicle detection method 
based on an enhanced YOLO v5 network has been used in 
an existing study [27], utilizing the Flip-Mosaic algorithm 
to enhance the network's ability to observe small targets. 
Investigational results indicate that this data enhancement 
technique significantly improves detection accuracy and 
reduces false detection rates across a multi-type vehicle 
dataset collected in various traffic states. The novel multi 
stage CNN [28], for vehicle detection that operates 
proficiently on a Central Processing Unit (CPU), 
eliminating the need for GPUs commonly required by 
traditional methods. The MSCNN framework, which 
includes stages for boundary detection and vehicle 
classification, achieves an average precision of 72.1% on 
the KITTI dataset, demonstrating it’s effective for practical 
application in intelligent transportation systems. Likewise, 
the study [29], focused to develop a mobile application 
using augmented reality to assist elderly users in 
identifying traffic signals and signboards in real time 
through deep learning techniques. By comparing the single 
shot multi box detector (SSD) model with two stage faster 
R-CNN, the study finds, that the SSD model with mobile
Net is faster and comparably accurate, while also
addressing occlusion challenges through image
segmentation techniques for robust object detection
suitable for mobile deployments.

The paper [30] used, a Normalization-based Attention 
Module (YOLOv5-NAM) integrated into the YOLOv5 
model for vehicle detection and tracking method for small 
target vehicles, and a real-time tracking approach (JDE-
YN) that embeds feature extraction in the prediction head. 
Experimental results on the UA-DETRAC dataset show 
that YOLOv5-NAM improves mAP by 1.6%, while the 
JDE-YN method enhances the MOTA value by 0.9% 
compared to their respective original models. Similarly, the 
prevailing study [31], improved YOLOX_S detection 
model addressed the challenges of misdetection and 
omission of small target in vehicle detection by 
implementing several enhancement. Key modification 
include clipping redundant parts of the original network to 
boost inference speed, integrating a coordinate attention 
module within the residual structure to preserve feature 
information, and adding an adaptive features fusion module 
to enrich small target features, ultimately achieving an 
average detection accuracy of 77.19% on the experimental 
dataset, despite a decrease in detection speed to 29.73 fps.  

The study addressed the limitation of existing vehicle 
detection and tracking methods, particularly the 
challenges of misdetection and omission of small targets, 
especially in complex traffic scenario with occlusion. 
Traditional approaches often struggle with high, small or 
occluded vehicle, leading to issues such as false positive 
and missed detections. To overcome these issues, the 
proposed method for object detection and tracking 
incorporates an attention mechanism into the YOLO 
framework. 

2.1 Problem Identification 
Several conventional research has been limited in vehicle 
detection particularly with YOLO framework, 

• Traditional YOLO struggles with detecting
vehicles that are occluded by other object or
vehicle. This often leads to a significant loss of
key features, making it difficult for the model to
accurately identify and classify vehicle in
complex traffic environment [32].

• Previous YOLO version lack refined attention
mechanism that can prioritize relevant feature in
particular visible vehicles. This limitation hinders
models ability to focus on unobstructed parts of
vehicle when occlusion occurs [33].

Many existing dataset do not adequately represented real-
world scenario involving occlusion, which can lead to over 
fitting, poor generalization of the model in practical 
application, and a declined in both accuracy and efficiency 
[34, 35] 

3. Proposed Methodology

The Attention-Driven YOLO v9 model with a Multi-Stage 
Cascaded Convolutional model represent a significant 
advancement in vehicle detection and tracking technology. 
This innovative approaches leverages the latest 
enhancement in the YOLO architecture, integrating 
advanced attention mechanism to improve feature 
extraction and retention and using UA-DETRAC dataset. 
This combination of cutting edge techniques positions the 
YOLO v9 model as a robust solution for application in 
intelligent transportation systems, detection of object and 
tracking the vehicles.  

Figure 1. Proposed Flow  
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Figure 1 illustrates the end to end pipeline for developing 
and evaluating an object detection and tracking system 
using a proposed YOLO v9 model. By loading the UA-
DETRAC datasets, a well-known dataset designed for 
vehicle detection and tracking. Next the data undergoes the 
pre-processing to prepare it for modelling, which may 
include the step such as resizing images, normalization, or 
annotation refinement. Following this, the dataset is 
divided into training and testing splits, ensuring separate 
data for model training and testing. The core object 
detection and tracking step, powered by the proposed 
YOLO v9 model. This model is trained using the training 
dataset to learn the characteristics and patterns necessary 
for detecting and tracking objects, such as vehicle, 
effectively. After the model is trained, it transition into the 
prediction phase, where it processes the test data to make 
predictions about object location and movement. Finally, 
the proposed model performance is measuring the 
performance metrics, which likely including the indicators 
such as mAP, value of precision, probability of detection, 
and F measures and tracking efficiency. These metric 
provides the insights into effectiveness in real world 
applications, enabling an evaluation of how well the 
proposed YOLO v9 model performs in the context of the 
object detection and tracking. 

3.1 Data Pre-processing 

Data Pre-processing is a crucial step in preparing the UA-
DETRAC dataset for training the attention Driven YOLO 
v9 model for vehicle detection and tracking. The quality of 
the input data directly impacts the models performance, 
making effective preprocessing essential for achieving 
accurate and reliable results. This process involves several 
key techniques tailored to enhance the dataset suitable for 
ML application. 

3.2 Object Detection and Tracking using 
proposed Attention-Driven YOLO v9 Model 
with Multi-Stage Cascaded Convolutional 
Model  
Traditional methods for vehicle detection and tracking 
often struggles with accuracy identifying vehicle lighting 
conditions. These limitations can lead to significant 
degradation in detection performance, as conventional 
algorithm may fail to recognize partially obscured vehicle 
or misclassify them due to overlapping features. To 
overcome these challenges, the proposed attention driven 
YOLO v9 model with a multi stage cascaded conventional 
model is introduce as a robust solution that enhance both 
detection and tracking efficiency. The proposed attention 
driven YOLO v9 model with a multi stage cascade 
convolution model marks a significant advancement in 
vehicle lighting conditions are prevalent. This model 
introduce a novel attention mechanism that enhances 
feature extraction by allowing the network to focus on the 
most relevant parts of the input data, with channel 
mechanism. The proposed novel YOLO v9 model is 
illustrated.  

Figure 2. Proposed Attention Driven YOLO v9 
model 

The Figure 2 illustrate the proposed multi-level CNN 
attention framework employs both channel and spatial 
attention mechanism to enhance feature learning in CNN 
addressing the limitations of traditional object detection 
methods. This framework integrates a channel prior 
attention mechanism and a spatial attention mechanism, 
which works in parallel pathways to refine feature 
representation extracted from the CNN model. By 
processing input feature through these distinct attention 
pathways, the framework identifies and amplifies the most 
relevant channels while simultaneously highlight critical 
spatial regions within the feature maps. The iterative 
application of these attention mechanisms allows for a 
more precise enhancement of features, ultimately leading 
to improved detection accuracy. The final output from both 
attention pathway are combined into a unified 
representation, leveraging the strengths of each 
mechanism. This innovative approach not only capture 
complementary aspects of the feature but also ensure robust 
performance across various tasks, such as image 
recognition and classification, making it a significant 
advancement in the field. Similarly, the architecture of the 
proposed model in figure 3, 

Figure 3. Architecture of the proposed model 

Figure 3, depicts a deep learning model architecture 
designed for object detection processing input images of 
size 64.*640*3. The conventional layer that reduces spatial 
dimension from 640*640 to 320*320. And then to 
160*160, utilizing RepNCSP ELANA blocks for efficient 
features representation. Feature are down sampled using 
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Adown layers to produce higher levels features maps at 
scale of 80*40*40, and 20*20. A spatial pyramid pooling 
layer enhanced (SPPLEN A) extracts multi scale 
contextual information, which is concatenated with other 
feature map for robust fusion. Finally, CB-Fuse and CB-
Linear modules refine the feature maps for detection at 
three scales to 80*80, 40*40, and 20*20 ensuring the 
effectiveness detection of object of varying.  

Correspondingly, the mathematical formalize the 
operations within the proposed attention driven YOLO v9 
model is defined the key components and their interaction 
through a series of equations that capture the essence of the 
models architecture and attention mechanism, 

𝐻𝐻 = 𝛿𝛿�𝑀𝑀2𝜀𝜀(𝑀𝑀1𝑦𝑦)�               
(1) 
In equation 1 𝑦𝑦 = 1

𝐻𝐻×𝑊𝑊
∑ 𝐻𝐻

𝑖𝑖=1
∑ 𝑊𝑊

𝑗𝑗=1
𝐹𝐹𝑖𝑖𝑖𝑖  represent the Global 

Average Pooling (GAP) of the feature map. The parameters 
𝑀𝑀1 ∈ 𝑅𝑅𝑐𝑐×𝐶𝐶𝑟𝑟  and 𝑀𝑀2 ∈ 𝑅𝑅𝐶𝐶 ∗𝐶𝐶𝑟𝑟  are learned weights in the 
attention module, while 𝛿𝛿denotes the sigmoid activation 
function and 𝜖𝜖 represent the Rectified Linear Unit (ReLU) 
activation function.  

𝐻𝐻 = 𝐻𝐻2 ⊗ 𝐻𝐻1 ⊗ 𝐻𝐻,               
(2) 
𝐻𝐻1 = 𝛿𝛿�𝑀𝑀2(𝑀𝑀1𝑦𝑦) + 𝑀𝑀2(𝑀𝑀1𝑧𝑧)�         
(3) 
𝐻𝐻2 = 𝛿𝛿 �𝐴𝐴2𝐵𝐵7�𝑦𝑦(𝐻𝐻1), 𝑧𝑧(𝐻𝐻1)��         
(4) 
Here, equation 3, captures channel attention by combining 
the GAP 𝑦𝑦 and Global Max Pooling (GMP)𝑧𝑧. The shared 
weight parameters ensure the both pooling operations 
contributing to refine the channel importance. Similarly, 
equation 4, applying a 7*7 convolution kernel to the 
concatenated outputs.  

𝐻𝐻 = 𝐻𝐻 × 𝛿𝛿�𝑀𝑀2𝜀𝜀(𝑀𝑀1𝑦𝑦𝑐𝑐ℎ)� × 𝛿𝛿�𝑀𝑀2𝜀𝜀(𝑀𝑀1𝑦𝑦𝑐𝑐𝑤𝑤)�         
(5) 
Where, 𝑦𝑦𝑐𝑐ℎ = 1

𝑊𝑊
𝑊𝑊
𝑗𝑗=1

𝐹𝐹ℎ𝑗𝑗  𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌𝑐𝑐𝑤𝑤 = 1
𝐻𝐻
∑ 𝐻𝐻

𝑖𝑖=1
𝐹𝐹𝑖𝑖𝑖𝑖  represent 

the channel-wise global average pooling for heights and 
width respectively. This mechanism allows for accurate 
localization of objects by considering both horizontal and 
vertical spatial information. 

𝐻𝐻 = 𝛿𝛿�𝐴𝐴1𝐵𝐵𝑘𝑘(𝑦𝑦)�                                                                        
(6) 
Whereas, equation 6, introduce 1D conventional with 
kernel size𝑘𝑘, represented as𝐴𝐴1𝐵𝐵𝐵𝐵(𝑦𝑦), demonstrating that 
efficient channel attention can be achieved without relying 
on complex parameter designs. 

𝐻𝐻1 = 𝑓𝑓𝑐𝑐[𝐹𝐹𝑖𝑖𝑖𝑖] ⊗𝐹𝐹𝑖𝑖𝑖𝑖                                                                        
(7) 
𝐻𝐻2 = 𝑓𝑓ℎ[𝐻𝐻1] ⊗𝐻𝐻1                                                                           
(8)   
𝐻𝐻3 = 𝑓𝑓𝑤𝑤[𝐻𝐻2] ⊗𝐻𝐻2         
(9) 

𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑓𝑓𝑐𝑐[𝐻𝐻3] ⊗𝐻𝐻3         
(10) 
The equation 7, 8,9,10 represent the channel, height, width, 
while considering both channel and height information, and 
final feature map. The final output feature map 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜 is 
generated by reapplying the channel attention mechanism. 

𝑓𝑓𝑐𝑐[𝐻𝐻] = 𝛿𝛿 �𝐴𝐴1𝐵𝐵𝑘𝑘1�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐻𝐻)�� = 𝛿𝛿 �𝐴𝐴1𝐵𝐵𝑘𝑘1 , (𝑦𝑦)�         
(11) 

The equation defines the channel attention function, where 
𝐴𝐴1𝐵𝐵𝑘𝑘1 represent a convolution operation with kernel size 
determined by the function defined in equation 11.  

𝑘𝑘 = 𝛷𝛷(𝐶𝐶) = �𝑙𝑙𝑙𝑙𝑔𝑔2(𝐶𝐶)
2

+ 1
2

+ 1
10
�
𝑜𝑜𝑜𝑜𝑜𝑜

(12)The kernel size 𝐾𝐾 is derived based on the number of
channel𝐶𝐶. The function ensures that the result is rounded to
the nearest odd number to maintain compatibility with
conventional operations.
𝑓𝑓ℎ[𝐻𝐻] = 𝛿𝛿 �𝐴𝐴1𝐵𝐵𝑘𝑘2�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐻𝐻)�� = 𝛿𝛿 �𝐴𝐴1𝐵𝐵𝑘𝑘2(𝑦𝑦)�         
(13) 
𝑓𝑓𝑤𝑤[𝐻𝐻] = 𝛿𝛿 �𝐴𝐴1𝐵𝐵𝑘𝑘2�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐻𝐻)�� = 𝛿𝛿 �𝐴𝐴1𝐵𝐵𝑘𝑘2(𝑦𝑦)�         
(14) 
The equation 12, 13 outlined the calculation of height 
attention and width attention, employing a similar approach 
as height attention to effectively capture width specific 
information. 

3.2.1 Channel Prior Attention Mechanism 

Figure 4. Channel Attention Mechanism 

The figure 4 outlines the channel prior attention 
mechanism, which selectively emphasizes the important 
features channel in a feature map. Initially, the input feature 
pass through the average pooling and the max pooling 
operations along the spatial dimension, producing two 
separate representations. These outputs are then fed into 
two shared Fully Connected (FC) layers, which act as 
learnable mechanism to capture channel wise 
dependencies. The result from the two pathways are 
merged using an element wise addition operation. Finally, 
a sigmoid activation function is applied, generating a 
channel wise attention map that highlights essential 
channels while suppressing less relevant ones. 
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3.2.2 Spatial Attention Mechanism 

Figure 5. Spatial Attention Mechanism 

The Figure 5, illustrate a Spatial Attention Mechanism, 
which focuses on spatial regions within a feature map that 
are more significant for the task. The input feature map 
undergoes average pooling and ma pooling, but this time 
across the channel dimension, resulting in two 2D spatial 
maps. These maps are combined using an elements-wise 
addition operation and processed by a 2D conventional 
layer (Conv2D) to capture spatial relationships. The output 
is passed through a sigmoid activation function, creating a 
spatial attention map that assigned higher weights to 
relevant spatial regions.  

Figure 6. Proposed Channel attention mechanism 

The channel attention mechanism is a clear approach in DL 
aimed at enhancing the performance of CNNs by 
selectively emphasizing or suppressing information across 
feature map channels. The process begins with an input 
feature map, represented as a 3D tensor (Height* width* 
channels) which is visualized as a cube as labelled “A”. 
This feature map undergoes global spatial average pooling, 
collapsing its spatial dimensional into a single scalar values 
for each channel, thereby generating a channel descriptor 
that captures the global importance of each channel 
subsequently, a channel wise weight generation process 
employs a compact multi-layer structure, including full 

connected layer connected layers and nonlinear activities 
like ReLU and sigmoid, to refine these channel weights 
into a normalized vectors that indicated the significance of 
each channel. The computer weights are then applied to the 
input feature map through an element-wise multiplication, 
scaling each channels based on its importance and resulting 
in an output features map where relevant channels are 
emphasized while less significant ones are suppressed. 

4. Result and Discussion

4.1 Dataset Description
The UA-DETRAC dataset as a critical resource for training 
and evolution the attention driven YOLO v9 model in 
vehicle detection and tracking applications. This 
benchmark dataset comprise 100 challenging video 
sequence captured from real world traffic environment, 
totaling over 140000 frames, each annotated with vehicle 
types, occlusion levels, illumination conditions, and 
truncation ratios. It encompasses diverse traffic scenarios 
such as urban highways and intersections, allowing the 
model to learn vehicle detection under various conditions. 
The dataset contains annotation for over 8250 vehicle and 
approximately 1.21 million bounding boxes, providing a 
solid foundation for robust vehicle detection algorithm. 
The image serve as input for the model, which is divided 
into an 80% of training set and 20% test set to facilitate 
evaluation and prediction. During training the proposed 
attention driven YOLO v9 model with a multi stage 
cascade convolution model is utilized. The challenging 
attributes, including occlusion and varying lighting 
conditions, enhance the model’s ability to recognize 
vehicle that may be particularly hidden. 

4.2 Exploratory Data Analysis 

Figure 7. Labelling of object in Dataset 

From Figure 7, it shows the analysis of dataset and it’s 
surmised. The dataset comprised of a huge number of 
vehicle that can be existed in uneven and dense 
distribution. A first illustration shows the number of 
vehicle in each type and their instance. Where the second 
subfigure shows the vehicle locating points which is 
bounded in the dataset. The below subfigures demonstrate 
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both x-axis and y-axis, similarly height and width of the 
radiation. Moreover the figure 7, presents the correlogram 
labels.  

Figure 8. Correlogram Label 

The figure 8, deliberates the Correlogram labels. The 
Correlogram is known as the graphical representation 
which shows the correlation co-efficient among variables 
in the dataset. Moreover the labels in correlation denotes 
the feature or variables that are being examined. The 
YOLO v9 model ensures training on UA-DETRAC dataset 
for its challenging detecting vehicle along with limited 
data.  

Figure 9. Sample 
Dataset Images 

Figure 10. Object 
Detection 

From the figure 9 and 10 the sample images have identified 
various objects, including cars, buses, vans and truck. The 
model not only detect the types of vehicle present but also 
detect their movement, providing valuable insights into the 
dynamic of the scene.  

Figure 11.Object 
Detection and Tracking 

Figure 12. Object 
Tracking  

In figure 11 the model has accurately detected the type of 
vehicle present, identifying it as a specific category, such 
as car, bus, van and truck. Alongside this classification, the 
model also provide the name of the vehicle and quantifies 
its movement values, offering detailed insights into both 
the type and dynamics of the vehicle within the image. This 
comprehensive analysis enhances understanding of vehicle 
behavior and contribution to effective monitoring in 
various applications. 
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4.3 Experimental Research 

(a) (b) (c) 

(d) (e) (f) 

Figure 13. Experimental Results of Vehicle 
Detection  

Figure 13 shows the experimental result of vehicle 
detection on UA-DETRAC. The proposed framework 
detects different vehicle of different sizes with their class 
labels by using YOLO v9 with multi stage cascaded 
conventional model. 

4.4 Performance Metrics 
Performance Metrics are primarily used for observing the 
efficiency of thee projected research by utilizing various 
metrics such as mAP, Precision, Probability of Detection, 
F1 measures. 

Accuracy: The primary measure used to assess the model 
is accuracy, calculated as the proportion of accurate 
prediction to total prediction according to the equation 
(15). 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

                                                                   

(15) 

Precision: It is defined as the number of accurate positive 
prediction made and can be represented by an equation 
(16). 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑁𝑁𝑁𝑁.𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛.𝑜𝑜𝑜𝑜  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

(16) 

Recall: Probability of detection is the proportion of 
positive instance correctly predicted by the model among 
all positive instance in the data, as defined by an equation 
(17).  

F1-Measure: also known as F1 score is represented by an 
equation (17) and combines the harmonic mean of 
probability of detection and value of precision.  

𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

(17) 

Mean Average Precision: The weight for each threshold 
in the measurement is determined by t increase in recall 
from the previous threshold, as shown in equation 18,  

𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝑁𝑁 
∑𝑁𝑁
𝑖𝑖=1 𝐴𝐴𝑃𝑃𝑖𝑖          

(18). 

4.5 Performance Analysis 
The performance of proposed algorithm is examine 
utilizing metrics like precision, probability of detection, F1 
measures and mAP. Likewise, the Confusion Matrix (CM) 
is utilized for identifying the performance of proposed 
research. It summarizes and anticipates the function of the 
classification algorithm. Therefore, the confusion matrix 
shows the number of positive and negative predictions for 
each class. Figure 13, represent the confusion matrix of the 
model. 

Figure 14. Confusion Matrix 

From figure 14, the confusion matrix is demonstrated the 
performance of a classification model distinguishing 
between five classes namely background, bus, car, truck 
and van. The diagonal cells indicate high accuracy, with 
values close to 1.0 for most classes, suggesting effective 
classification. Specifically, the model achieves perfect 
classification for bus (1.00) and near perfect accuracy for 
cars and van (99%). However, it struggle with truck, 
correctly identifying only 81% with 17% misclassification 
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as van and background for 2%. The classification of 
background is accurately predicted 97% of the time, with 
minimal confusion from other classes. Key insights 
highlights the strong performance of car, van, and bus. 
Whereas the misclassification is between van and truck.  

Figure 15. Precision Confidence Curve 

From figure 15, the precision confidence curve assesses the 
relationship between the models prediction confidence as 
x-axis and precision as y-axis. The thick blue line represent
average performance across all classes, attains high
precision for >0.95 at most of the confident levels, peaking
near 1.0 as confidence rises. The Bus in blue and car in
orange categories consistently exhibits the highest
precision, closely aligning with the overall curve. In
contrast thee truck in green shows the initial performance
and the van in red class has low precision overall.

Figure 16. Recall Confidence Curve 

The figure 16, illustrates recall confidence curve of the 
relationship between prediction confidence threshold and 
recall, measuring the proportion of true positive identified. 
Recall is highest at lower threshold but declines sharply as 
confidence increase. The van and truck classes experience 
a rapid drop in recall indicating reduced detection ability, 
while the car class maintains more stable performance. The 
aggregated curve for all classes shows balanced overall 
performance. This suggests a need to enhance detection for 

van and truck classes an consider adjusting confidence 
thresholds to balance high recall with low false positive. 

Figure 17. F1 Measure Confidence Curve 

Similar to figure 15, 16 the F1 confidence curve evaluates 
the F1 score, which is illustrated in figure 17, a harmonic 
mean of precision and recall as a function of confidence 
thresholds. The thick blue lines shows the average F1 score 
peaks at the 0.95 but drops significantly at higher 
thresholds due to the decreasing recall. The bus category 
maintains the highest F1 measures across the range, while 
the car orange drops sharply after a threshold of 
approximately 0.8. The truck which is green are 
categorized to initial F1 measure. And the van in green 
class consistently exhibits lower F1 measures, indicating 
weaker performance.  

Figure 18. Training and Validation Metrics 

The figure 18, illustrate the progression of training and 
validation metrics, indicating successful model 
optimization. The training loss curves for box loss, 
classification loss, and distribution focal loss show the 
downwards trends, with an initial rapid decrease flowed by 
a plateau, significantly convergence and improved 
predictions. Validations loss values remains the close to 
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zero, suggesting effective generalization without over 
fitting. Precision increase and plateaus near 0.95, while 
recall stabilized above 0.9 reflection strong detection of 
true positive, mAP shows robust performance, with mAP 
at 0.5 stabilizing around 0.95 and mAP at 0.5:0.95 reaching 
approximately 0.8 across various intersection over union 
threshold. 

Table 1. Proposed Model Result 

Cla
ss 

Ima
ges 

Insta
nce 

Precis
ion 

Rec
all 

mAP
50 

mAP
50-95

Bus 500 288 0.93 1 0.995 0.929 

Car 500 3554 0.927 
0.99

1 0.992 0.766 
Tru
ck 500 42 0.975 

0.94
1 0.988 0.819 

Van 500 338 0.88 
0.98

5 0.973 0.773 

All 500 4222 0.928 
0.97

9 0.987 0.822 

Table 1, exhibits the proposed model performance in 
vehicle detection across various classes, processing 500 
images and detecting 4222 instances with an overall 
precision of 0.928 and Probability of detection of 0.979. 
The mAP at 50% IoU is 0.987, which the mAP across IoU 
thresholds from 50% to 35% is 0.822, indicating strong 
detection capabilities. For bus the model attains a value of 
precision of 0.93 and the perfect recall of 1.0, with mAP50 
at 0.995 and mAP 50-95 at 0.929. In Car detection, it 
maintains a precision of 0.927 and recall of 0.991, with 
mAP50 at 0.992 and mAP 50-95 at 0.766. Truck detection 
shows high precision 0.975 and solid recall 0.941, with 
mAP 50 at 0.988 and mAP 50-95 at 0.819. For Vans, the 
model records a precision of 0.88 and recall of 0.985, with 
mAP50 at 0.973 and mAP 50-95 at 0.773. Overall, the 
model demonstrates robust detection performance, 
particularly surpassing in Bus and Truck categories while 
maintaining strong results for Cars and Vans, representing 
its reliability for practical applications in vehicle detection 
tasks. 

4.6 Comparison Analysis 
This section illustrate the comparative analysis of the 
proposed mechanism, with the existing approaches 
depending on the performance metrics. The table 1 
deliberates the comparative analysis of YOLO v9 with 
YOLO v8 model at mAP values.  

Table 2. Comparative Analysis of Proposed 
Model with Existing Methods [36] 

Exist
ing 

Stud
y 

Fast
er-
RC
NN 

SSD
300 

SSD
512 

YOL
O-
V2 

Basel
ine 

YOL
Ov5 

Prop
osed 
mode

l 

Bus 
85.4

9 
81.5

6 
84.5

6 80.86 84.61 99.5 

Cars 84.4 
84.0

5 
84.4

6 82.63 86.03 99.2 

Van 
70.4

9 
71.8

5 
76.6

4 72.22 77.25 97.3 
Othe

r 
Vehi
cle 

50.2
9 

50.2
9 

50.2
9 59.57 63.15 98.8 

mAP 
72.6

7 
73.0

8 
75.9

9 73.82 77.6 98.7 

The table 2 compares the performance of various object 
detection model in Faster- RCNN, SSD300, YOLO V2 
baseline, YOLO v5 and the proposed model across 
different vehicle categories and their overall mAP. The 
proposed model significantly outperformance all other in 
bus detection with an accuracy of 99.5%, surpassing Faster 
RCNN attains 85.49%, SDD300 for 81.56%, SSD512 for 
84.56%, and YOLO-v2 for 80.86%. It also attains 99.2% 
accuracy for car detection, with YOLO v5 being the closest 
competitor at 86.03%. For van detection other vehicles, it 
excels at 98.8%, well above the 50.29% to 63.15% range 
of other models. Overall, the proposed model attains a mAP 
of 98.7% significantly higher than YOLO v5. This 
demonstrates the proposed model greatly enhances vehicle 
detection performance across all categories compared to 
existing state of art models, making it a strong candidate 
for higher accuracy vehicle recognition application.  

Table 3. Comparative Analysis of Proposed 
Model [30] 

Model Cars Buses Vans Other mAP 
YOLOv5s 69.7 43.3 74.3 13.9 50.3 
YOLOv5-

NAM 
0.7 4.60 73.1 17.5 51.7 

YOLOv5s 7.12 42.4 73.5 14.3 50.4 
YOLOv5-

NAM 
72 44.6 72.6 18.6 51.9 

Proposed 
model 

99.2 99.5 97.3 98.8 98.7 
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Similarly, table 3 compares the performance of various 
models including two configurations of YOLO v5 and 
YOLO v5-NAM and a proposed model across four vehicle 
categories, like Car, Bus, Van and other, along with that 
mAP. The YOLO v5s model achieves mAP values of 0.503 
and 0.504, with its highest accuracy for van at 0.743 and 
it’s lower for buses at 0.433. The YOLO v5-NAM model 
shows slight improvement with mAP values of 0.517 and 
0.519, performing best with buses 0.46 and other vehicle 
for 0.175, but still lacks high accuracy. In contrast, the 
proposed excels across all categories, achieving a mAP of 
98.7, with scores of 99.2 for cars, 99.5 for buses, and 97.3 
for van and the other vehicle is 98.7, demonstrating a 
significant improvements in detection accuracy compared 
to the YOLO v5 models. 

The proposed method demonstrate high performance in 
vehicle detection, achieving an impressive of 98.7, 
significantly surpassing the moderate accuracy levels of 
existing YOLO v5 models. 

5. Conclusion
The proposed attention driven YOLO v9 model with Multi 
stage cascaded convolutional model demonstrated 
exceptional performance in object detection and tracking 
tasks. The model attained a remarkable mAP of 98.7, with 
precision values of 99.2 for cars, 99.5 for buses, 97.3 for 
vans, and 98.9 for other vehicle, showcasing its high 
accuracy across various classes. Additionally, the model 
maintains excellent recall rate, ensuring effective 
identification of objects in diverse scenarios. By integrating 
advanced techniques such as attention mechanism a multi 
stage processing, the proposed model addressed the 
limitation of previous approaches, enhancing both 
accuracy and real time application. The result indicates that 
this innovative approach not only outperforms existing 
state of art model but also sets a new benchmark for future 
research in vehicle detection and tracking systems. Future 
work may explore further enhancement by applying the 
model to more complex dataset and varying environmental 
conditions to improve its robustness and adaptability. 
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