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Abstract 
This research investigates the use of quantum machine learning (QML) to classify asteroids into non-hazardous and 
hazardous groups, which yields successful results in detecting the hazard. In addition to the complexity involved in analyzing 
orbits and physical objects, QML performs better than traditional machine learning in modeling the relationship between 
data. This method involves data-intensive preprocessing steps, such as feature selection by removing unnecessary features 
and correlation analysis to find predictors. Quantum circuits are used for specification and classification, and the standard 
evaluation is based on accuracy, recall, F1 score, and precision. A strong and weak method is provided by cross-validation 
and hyperparameter tuning. The best classical model here is the decision tree, which is a good model for high-resolution and 
low-budget social benefit with 0.883 accuracy, 0.955 recovery rate, 0.981 F1 score, and 0.883 sensitivity. However, the 
quantum model has made great leaps. AMSGRAD QCNN (Adaptive Moment Estimation with Gradient Thresholding 
Quantum Convolutional Neural Networks) achieves a non-uniform accuracy of 0.997, which is 13% higher than the decision 
tree with 0.984 accuracy, 0.955 recovery rate, and 0.981 F1 score. The accuracy of SPSA QCNN(Simultaneous Perturbation 
Stochastic Approximation) is 0.993, the recall is 0.974, and the F1 score is 0.977. This improvement shows the excellent 
ability of the quantum model to better resolve correlation data and, more importantly, to reduce false negatives in detecting 
stars. These results demonstrate the ability of quantum computing to analyze complex data and provide the best results. Our 
future work will focus on identifying and repairing quantum circuits, as well as exploring hybrid quantum classical models 
to improve model accuracy and interpretation. The findings open the door to new ways to predict the simplest solutions and 
the most powerful and accurate way to date of estimating the danger zone. 
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1. Introduction
The increasing volume of asteroid-related data makes analysis 
more complex, and the need for more accurate, effective 
models to assess potential hazards is critical. High 
dimensionality is often the problem of complexity in asteroid 
data, limiting the efficiency of classical machine learning 
(ML) algorithms used to perform task. They often fail to
capture subtle, complex patterns required for accurate hazard

classification and prediction[1]. Recent years have seen the 
emergence of quantum computing as a feasible alternative to 
traditional computer techniques. Ideas in quantum physics 
help researchers process and analyse massive and 
complicated datasets in manners that could not even be 
perceived through ordinary systems because of quantum 
computing. Quantum machine learning (QML), which 
combines techniques from machine learning with quantum 
computing, has also been an interest. QML takes advantage 
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of quantum phenomena, like superposition and entanglement, 
for example, phenomena which enables the quantum system 
to analyses multiple answers simultaneously, thus making it 
possible to handle high-dimensional data more efficiently. 
Using quantum circuits to examine asteroid characteristics 
such as orbital paths, diameters, and physical characteristics. 
The study [2] investigates the use of QML for asteroid hazard 
prediction. The ability of QML to deal with complex data sets 
much better has been its primary advantage over traditional 
ML, as discussed in [3]. In comparison with classical 
computers, quantum systems can represent and analyse data 
much more compactly and in parallel. This will make it easier 
to find patterns that could be obscured in high-dimensional 
landscapes.  

Quantum circuits allow for better encoding of asteroid data in 
the context of asteroid hazard prediction, which may mean 
improved classification accuracy with increased processing 
speed and scalability. This is very important when dealing 
with big datasets.  In this study, we used more than a million 
records of asteroids. The study made use of Quantum 
Convolutional Neural Networks for feature mapping and 
classification to formulate the model. A type of quantum 
circuit especially useful for feature encoding in machine 
learning domain is the QCNN. While classical machine 
learning has long been in use, quantum circuits were 
especially designed to encode the asteroid data in a manner 
that would help in categorization, thus making high accuracy 
and computing efficiency possible. Our hybrid quantum-
classical model, which therefore focused on finding a balance 
between speed and accuracy, was especially suited for large-
scale asteroid hazard prediction tasks. The efficacy of the 
model has been tested using standard measures such as 
precision, recall, and accuracy for classifying the asteroids as 
hazardous or non-hazardous. The success of the 
categorization task was mainly based on these indicators. In 
order to ensure that the model was not overfitting and, 
therefore, generalizing well to unknown data, cross-validation 
as well as hyperparameter optimization has also been 
performed. High classification performance was attained 
through meticulous model optimization, which is essential for 
accurate hazard prediction.  

2. Related Work
As more near-Earth asteroids (NEAs) are discovered, it is 
important to develop reliable methods to assess the associated 
risks. Machine learning models have traditionally been used 
to identify near-Earth objects, but they often struggle to cope 
with the complexity of high-dimensional data and 
astrodynamics.  

Authors of [3]  carried out an in-depth analysis of different 
QML techniques to identify potentially hazardous asteroids. 
The authors pointed out the limitations of current machine 
learning approaches and underlined the necessity of 
innovative QML methods for efficiency and accuracy in 
asteroid categorization. 

This study proposes a Quantum Convolutional Neural 
Network (QCNN) to improve the precision and efficiency of 
impact risk evaluations for NEAs, leveraging the potential 
advantages of quantum computing. Since its inception, a vast 
and complexly structured universe has inspired curiosity in 
humans, offering countless scientific inquiry and theories for 
centuries. The field of astronomy has greatly contributed to 
our appreciation of the solar system, galaxy formation, and 
stellar life cycles. Space probes and rovers have provided 
necessary information concerning geology, atmospheres, and 
habitability of planets. Asteroids and meteorites provide 
windows into early stages of the formation of the solar 
system, especially those coming from regions like the Kuiper 
Belt and Inner Main Belt. These objects are considered pieces 
that formed the building blocks of planets, making it possible 
to study the conditions at the nascent phases of the 
development of planetary bodies. Despite the scientific 
significance of the asteroids and meteorites, they are a real 
threat to Earth. There has been a great rise of detection of such 
objects within the last decade. For example, facilities like the 
Zwicky Transient Facility (ZTF) already detected about 100 
Fast Moving Objects per year. While catastrophic impact 
fears appear exaggerated, such historical events as the 
Tunguska explosion of 1908, with energy equivalent to 15 
megatons of explosives, have devastated more than 2,150 
square kilometres of Siberian Forest and show how serious 
this matter was at that time[6]. Thus, developing accurate 
predictive methods for asteroid trajectories becomes an 
urgent necessity, allowing for preemptive action against 
potential dangers. 

 With the advent of advanced space telescopes and 
comprehensive earth-based surveys, the identification rate of 
rogue objects and NEAs has surged. Currently, more than 1.8 
million known asteroids include approximately 25,000 NEAs, 
with an average of 1,100 new NEAs discovered annually[7]. 
This growing detection rate emphasizes the necessity for 
accurate trajectory prediction methods to support collision 
avoidance strategies. Traditional trajectory prediction models 
rely on extensive mathematical modelling, incorporating 
parameters such as asteroid mass, velocity, and gravitational 
influences. While these models are reasonably accurate, they 
also depend on known variables and face challenges from 
random variations due to thermophysical changes, non-linear 
gravitational interactions, and observational inaccuracies. 

 A good application of ML to statistical estimation of asteroid 
orbital parameters and physical characteristics has been its 
promise in handling complex calculations. Yet, most 
algorithms as they stand pose a problem of computational 
intensity and scalability for large-scale computations. 
Quantum Machine Learning breaks the revolution that could 
be offered by quantum computers with intractable 
computations that are impossible to be solved by classical 
methods. Research work performed by Biamonte et al has 
verified that quantum algorithms enhance pattern recognition, 
data clustering and optimization tasks in astronomy and 
planetary defence. They  proposed a QML approach based on 
Support Vector Machines (SVM) and Variational Quantum 
Classifiers (VQC) to overcome the limitations of the classical 
approaches. According to  approach in [8], the identification 
and classification accuracy of dangerous asteroids will be 
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enhanced in this research. VQC implements quantum circuits 
and classical optimization to develop highly efficient hybrid 
quantum-classical classifiers for detecting complex patterns 
in data in high-dimensional space. VQC is a suitable choice 
for the prediction problem of asteroid hazards, especially due 
to its representation capability for such data and robustness 
against noise. This method optimizes categorization 
boundaries and enhances modelling of celestial phenomena 
by exploring larger solution spaces using quantum 
superposition and entanglement.  

 The method in [9] encodes orbital parameters and asteroid 
characteristics into quantum states and uses parameterized 
quantum circuits for classification. Preliminary results 
demonstrate that VQC outperforms traditional classifiers both 
in terms of accuracy and computational efficiency, making it 
a potentially significant tool for astronomers and planetary 
defence agencies. This approach has implications beyond 
enhanced potential for the prediction of asteroid hazards; it 
also helps understand solar system dynamics and strengthens 
the protection against potential impactors from space. In fact, 
it seems like the integration of QML, or specifically VQC, can 
revolutionize space security and prevent asteroid impacts by 
advancing quantum machine learning and planetary defence 
strategies.  

The results of some studies as in [49] are encouraging; they 
show that the method is chemically accurate even with 
imperfect quantum inputs, such as those generated by present 
noisy intermediate scale quantum (NISQ) devices. This 
means a significant potential for quantum advantage, 
especially in simulating large molecular systems, which are 
presently intractable for conventional methods alone. 
Interestingly, the paper also explores quantum input 
robustness by how imperfections influence overall accuracy 
and gives strategies for optimizing wavefunction preparation 
in view of practical applications of quantum-classical hybrid 
algorithms toward computationally efficient chemistry, where 
a balance between efficiency and accuracy is paramount. In 
general, this research gives evidence to the capability of 
quantum computing in the augmentation of classical 
approaches to provide a bypass to limitations in molecular 
simulations. This approach is enhanced with an enhancement 
in treatment of electron correlation and an augmented scale of 
feasible simulations and could be termed as a step forward in 
using quantum computing abilities in actual practice in 
chemistry and material science. The research work [13] puts 
special focus on two QSVMs, QNNs and centres on their 
practice performance on smaller-sized real-world datasets; 
such an area remains hardly investigated in even empirical 
studies. The methodology consists of implementing both 
quantum and classical versions of SVMs and NNs on five 
datasets: Iris, Rain, VLDS, Custom, and AD HOC. The 
quantum models used several types of feature maps, such as 
Z-feature, ZZ-feature, and Pauli-feature maps. The work also
evaluated different circuit depths and four different strategies
for entanglement: none, linear, circular, and full. QNNs were
designed as variational quantum circuits, and optimization
was done with classical algorithms. Therefore, they can be

tested on real quantum hardware and simulators. The results 
indicated that QSVMs, on average, outperformed classical 
SVMs by 3-4% in accuracy. More notably, QNNs outshone 
classical NNs, showing an average accuracy increase of 7%.  

The Z-feature map, which operates without quantum 
entanglement, proved most effective across all datasets, 
suggesting that the current limitations of quantum hardware 
may hinder the application of more complex, entanglement-
dependent feature maps. Despite the noise and imperfections 
in existing quantum technology, the study demonstrated that 
quantum algorithms are already showing promise. However, 
the research pointed to the need for further advancements to 
refine quantum circuit design and deepen the understanding 
of entanglement's role in handling larger, more complex 
datasets. Classical models were structured as entirely 
connected neural networks with one to three hidden layers, 
developed using PyTorch, with hyperparameters optimized 
through Ray Tune. The best validation accuracy from ten runs 
was selected for analysis. On average, classical NNs achieved 
an accuracy of 78% across the datasets. In the case of QNNs, 
various optimizers such as AMSGRAD, SPSA, BFGS, and 
COBYLA were tested, yielding different outcomes 
depending on the dataset. For the Iris dataset, nearly all 
optimizers reached perfect accuracy on both simulators and 
hardware. AMSGRAD showed the highest performance for 
the Rain dataset on simulators, while SPSA led on actual 
quantum hardware. BFGS was most effective for the VLDS 
dataset, and COBYLA achieved the best results for the 
Custom and AD HOC datasets, highlighting how dataset 
characteristics and size influenced performance outcomes. In 
summary, QNNs achieved an average accuracy of 85.8% on 
quantum simulators and 84.7% on real quantum hardware, 
outperforming QSVMs by approximately 5% and classical 
NNs by 7%, even with fewer parameters. These findings 
suggest that QNNs hold notable potential for improved 
efficiency, even with current hardware constraints. 

 The paper [15] investigates how ML algorithms can be 
integrated onto small satellite systems, with emphasis on the 
use of CubeSats, to improve onboard autonomy and data 
processing. CubeSats offer benefits such as cost and 
development time savings, but they also pose significant 
challenges such as computationally constrained resources and 
high vulnerability to environmental failures in space. In this 
work, the authors address these issues to improve the 
autonomy of satellites, their operational effectiveness and 
communications requirements using TensorFlow and 
TensorFlow Lite to onboard the installation of machine 
learning models that allow data analysis onboard. An 
approach based on the use of a dataset consisting of 
approximately 8,000 images of photos captured by the STP-
H5/CSP mission aboard and the ISS was used. The images, 
through these photos, were used to train convolutional neural 
networks (CNNs) to execute image categorization tasks. To 
pace up the training time and achieve high classification 
accuracy, the authors applied transfer learning using pre-
trained CNN architectures, such as MobileNetV1, 
MobileNetV2, Inception-ResNetV2, and NAS-Net Mobile. 
The trained models were bench tested against their 
performance metrics-accuracy, execution time, and memory 
usage-on a low-power, space-grade processor, namely Xilinx 
Zynq-7020, which is known for its deployment in CubeSat. 
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The experiment concluded that MobileNetV1 outperformed 
with regard to best overall performance on the dataset, 
excelling both in terms of accuracy and computation 
efficiency on the resource-limited space-grade processor. The 
tested CNN models all achieved more than 90% top-1 
accuracy, and the model that achieved the best classification 
performance is MobileNetV1. It also ensured optimized use 
of memory and execution time, thereby confirming its 
potential for real-time onboard image classification tasks. 

Recent attention in the field has been toward applying 
Quantum Machine Learning (QML) for the prediction of 
asteroid hazards. The Study [50] proposed a QML-based 
framework using VQC and Pegasos QSVC for the task of 
asteroid hazard prediction, thereby showing that QML might 
potentially improve prediction accuracy. 

Our work improves upon these with the implementation of 
AMSGRAD and SPSA optimized Quantum Convolutional 
Neural Networks (QCNNs). This method not only increases 
the accuracy of classification but also reduces false negatives 
to a critical level in planetary defense. Quantum superposition 
and entanglement allow our model to capture finer orbital 
patterns and physical properties of asteroids than ever before. 

3. Motivation

 Ignoring the distribution of potentially hazardous asteroids 
(PHAs) can cause catastrophic damage. Asteroids 
approaching Earth pose a real threat with the potential to 
cause catastrophic damage. Similarly, the asteroid impact that 
wiped out the dinosaurs about 66 million years ago had global 
consequences. Finding and accurately classifying asteroids is 
difficult due to the complexity and size of the data. As of now, 
NASA’s Near-Earth Object Program tracks over 27,000 near-
Earth objects (NEOs), yet only a fraction of these are 
classified as hazardous, with many still awaiting full analysis. 
If incorrect classifications are made or if hazardous asteroids 
are missed due to limitations in existing models, the risk to 
Earth remains underestimated. In 2020, a study by the 
National Academy of Sciences highlighted the limitations of 
current asteroid detection technologies and emphasized the 
need for more sophisticated approaches to improve prediction 
and risk assessment. Thus, there is an urgent need for more 
effective classification systems. Neglecting this issue could 
delay detection of a potentially catastrophic asteroid impact, 
leaving inadequate time for mitigation efforts, such as 
deflection or evacuation. Improving asteroid classification 
using advanced methods, such as quantum machine learning, 
is critical to enhancing prediction capabilities and ensuring 
the safety of our planet. 

The need to use quantum algorithms, especially quantum 
convolutional neural networks (QCNN), is due to the 
computational and representation problems encountered by 
modern classical models when performing daily asteroid data. 
Datasets characterized by high features, correlations, and 
correlations should be represented using advanced models  to 
find useful models without causing too many problems or 
inefficient computations. Usual models like decision trees or 
support vector machines (SVM) rely on decision-making and 
evaluation parameters as the size of the data or the complexity 

of the process increases. For example, consider a decision tree 
with an accuracy rate of 88.2%. It  does not simply model the 
subtle interactions between variables such as orbital 
eccentricity and albedo values. It also has an excellent balance 
between sensitivity and specificity. Paradigm shift to better 
structure the complex information space: superposition and 
entanglement. QCNN is designed as a classical  neural 
network with hierarchically extracted features, but with the 
added advantage of quantum parallelism. This model is 
particularly suitable for hierarchical and spatial data, as well 
as orbital and positional data of asteroids,  allowing QCNN to 
show what classical models would miss. The scalability of 
quantum algorithms is also an issue to consider. While  deep 
learning models face huge computational costs when scaling, 
QCNN leverages quantum gates to perform exponentially, 
potentially speeding up training and inference. This  quantum 
computing work is not only an alternative, but also an 
inevitable change in  the search for state-of-the-art and 
reliable deployment. 

4. Methodology

4.1. Data Accumulation and Exploration

This dataset focuses on rogue entities, which have been 
characterized by having specific recognizable features, 
channelled systematically through centres. The results are 
kept and updated safely through the Jet Propulsion 
Laboratory, which is a part of NASA Space Research Centre. 
This Kaggle dataset was prepared by Hossain and Zabed 
using resources managed by NASA JPL. The dataset has one 
million deep space entities, which are defined with 45 distinct 
parameters as well as two primary target indicators: the NEO 
Flag and the PHA Flag. In this context, of course, the focus is 
specifically on the Potential Hazard Flag as the primary target 
column for this analysis. Of the entries, 2,066 objects are 
considered as PHAs, while the rest, 956,458, remain non-
hazardous. To overcome the computational challenges 
associated with segregation in quantum computers, a 
balanced sample with 4,132 entries was determined. This 
sample includes all 2,066 harmful objects, and an equal 
number of non-harmful ones, selected using random sampling 
methods. There is rich information related to space junk 
regarding orbital elements-like inclination and perihelion 
distance-topography, and identification specifics. The dataset 
was primarily pre-processed and cleaned with extensive 
results before analysis to ensure optimal performance for 
quantum algorithm-based evaluations. 

4.2. Data Pre-processing 
Originally, the dataset was stored in CSV format, the dataset 
was further processed and optimized by converting it into 
Feather, Parquet, and HDF5 formats, each selected for their 
unique strengths and limitations in handling and storage 
efficiency. The translation was done using optimized loading 
functions (Eq. 1) and pyarrow engine. 

𝑅𝑅𝑅𝑅𝑅𝑅 𝐷𝐷𝑅𝑅𝐷𝐷𝑅𝑅
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿( )
�⎯⎯⎯⎯⎯⎯�

⎩
⎨

⎧
𝐷𝐷𝑅𝑅𝐷𝐷𝑅𝑅𝐷𝐷𝐷𝐷𝑅𝑅𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶

𝐷𝐷𝑅𝑅𝐷𝐷𝑅𝑅𝐷𝐷𝐷𝐷𝑅𝑅𝐷𝐷𝐷𝐷𝑃𝑃𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝐷𝐷𝑅𝑅𝐷𝐷𝑅𝑅𝐷𝐷𝐷𝐷𝑅𝑅𝐷𝐷𝐷𝐷𝐹𝐹𝑃𝑃𝐿𝐿𝑃𝑃ℎ𝑃𝑃𝑃𝑃
𝐷𝐷𝑅𝑅𝐷𝐷𝑅𝑅𝐷𝐷𝐷𝐷𝑅𝑅𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻𝐹𝐹5

(1) 

EAI Endorsed Transactions 
on Internet of Things 
| Volume 11 | 2025 |



 Synergistic Integration of Quantum and Classical Machine Learning Models for High-Fidelity Asteroid Hazard Detection 

 

5 

Subsequently, each data frame underwent a comprehensive 
data cleaning process, with memory usage carefully 
monitored throughout as depicted in Eq.2 

𝐷𝐷𝑅𝑅𝐷𝐷𝑅𝑅𝐷𝐷𝐷𝐷𝑅𝑅𝐷𝐷𝐷𝐷𝐿𝐿
𝑁𝑁𝐿𝐿𝑁𝑁 𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝐷𝐷𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿,   𝐶𝐶𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐷𝐷 𝐻𝐻𝐿𝐿𝑃𝑃𝐿𝐿 𝑃𝑃𝑃𝑃𝑟𝑟𝐿𝐿𝑟𝑟𝐿𝐿𝑟𝑟
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�  𝑑𝑑𝐷𝐷𝐷𝐷𝑟𝑟𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿   (2) 

Let 𝐷𝐷𝑅𝑅𝐷𝐷𝑅𝑅𝐷𝐷𝐷𝐷𝑅𝑅𝐷𝐷𝐷𝐷𝐿𝐿 denote the dataset in one of the specified 
formats, where 𝑖𝑖 ∈ {𝐶𝐶𝐶𝐶𝐶𝐶,𝑃𝑃𝑅𝑅𝐷𝐷𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷,𝐹𝐹𝐷𝐷𝑅𝑅𝐷𝐷ℎ𝐷𝐷𝐷𝐷,𝐻𝐻𝐷𝐷𝐹𝐹5} , 
representing the file formats used for data storage and 
exchange. Preliminary data includes two main steps: it detects 
missing or NaN (not a number) values and suggests removing 
irrelevant or useless data. This operation results in the cleaned 
data frame, denoted as 𝑑𝑑𝐷𝐷𝐷𝐷𝑟𝑟𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿 , which serves as the refined 
input for further analysis. The notation represents the 
transformation process where raw data in any of the formats 
undergoes NaN detection and strategic data removal, yielding 
a cleaned version of the dataset. Although imputing missing 
values using statistical methods may appear to be a viable 
approach, it has been observed that eliminating such data 
points altogether often yields significantly better accuracy 
compared to addressing missing values through imputation 
techniques. To streamline the data, we divided columns into 
two categories: Eliminated Columns (𝐿𝐿𝑃𝑃) that are columns 
removed due to irrelevance or excessive missing data and 
Retained Columns  (𝐿𝐿𝑃𝑃)  that are columns deemed essential 
for further analysis by following process: 

𝐿𝐿𝑁𝑁𝐿𝐿𝑁𝑁
𝐶𝐶𝑃𝑃𝑆𝑆𝐿𝐿𝑃𝑃𝐿𝐿𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿
�⎯⎯⎯⎯⎯⎯⎯� 𝐿𝐿𝑃𝑃 ∨  𝐿𝐿𝑃𝑃  (3) 

𝐷𝐷𝑅𝑅𝐷𝐷𝑅𝑅𝐹𝐹𝐷𝐷𝑅𝑅𝐷𝐷𝐷𝐷𝐿𝐿 − 𝐿𝐿𝑃𝑃
𝑅𝑅𝑃𝑃𝐿𝐿𝑃𝑃𝐷𝐷𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿
�⎯⎯⎯⎯⎯⎯� 𝐷𝐷𝑅𝑅𝐷𝐷𝑅𝑅𝐹𝐹𝐷𝐷𝑅𝑅𝐷𝐷𝐷𝐷𝑅𝑅𝑃𝑃𝐿𝐿𝑃𝑃𝐷𝐷𝑃𝑃𝐿𝐿 (4) 

  After completing the data cleaning process and finalizing the 
dataset, we used a combination of visualizations that include 
histograms, pair plots, box plots, and violin plots, to assess 
the nature of the data for further processing, as depicted in 
Figure 1. This visual exploration provided valuable insights 
into various aspects of the dataset, including identifying the 
univariate and multivariate distributions, as well as 
recognizing linear and non-linear relationships between 
features. The data distribution patterns helped guide the 
outlier removal process and influenced our feature selection 
strategy. 

(a) 

(b) 

Fig. 1. (a) Pair plot showing the relationships between orbital 
eccentricity (e) & mean motion (n); (b)Box plot illustrating 

the statistical distribution and outliers of the absolute 
magnitude (H)) 

Additionally, we performed Pearson (in Eq.5) and Spearman 
(in Eq.6) correlation analyses, along with generating 
correlation matrices, to evaluate the linear and non-linear 
dependencies between the features. 

𝐷𝐷 =  
∑(𝑋𝑋𝐿𝐿 − 𝑋𝑋�)(𝑌𝑌𝐿𝐿 − 𝑌𝑌�)

�∑(𝑋𝑋𝐿𝐿 − 𝑋𝑋�)2(𝑌𝑌𝐿𝐿 − 𝑌𝑌�)2
(5) 

𝜌𝜌 = 1 −  
6∑𝑑𝑑𝐿𝐿2

𝑛𝑛(𝑛𝑛2 − 1)
(6) 

In the for-correlation coefficient formulas, 𝑋𝑋𝐿𝐿  & 𝑌𝑌𝐿𝐿  are 
separate data points for respective variables 𝑋𝑋  and 𝑌𝑌 . The 
symbols X� and Y�  symbols represent the mean value of the 
variable. The symbol  ∑  indicates that the function is carried 
out on every single data points. For Spearman rank 
correlation, 𝑑𝑑𝐿𝐿  will be taken as the difference of ranks of 
corresponding values of 𝑋𝑋𝐿𝐿 and 𝑌𝑌𝐿𝐿, given as 𝑑𝑑𝐿𝐿 = 𝐷𝐷𝑅𝑅𝑛𝑛𝑟𝑟(𝑋𝑋𝐿𝐿) −
𝐷𝐷𝑅𝑅𝑛𝑛𝑟𝑟(𝑌𝑌𝐿𝐿) . The variable 𝑛𝑛  refers to the total number of 
observations in the dataset. These then make up the 
framework to compute Pearson and Spearman correlation 
coefficients to evaluate the linearity and monotonicity of 
relationships between variables, respectively. Grounded on 
the outcomes of these analyses, we dropped certain features 
that exhibited low correlation or redundancy, ensuring a more 
refined and efficient dataset for model training. After a 
thorough visual assessment and correlation analysis, we 
implemented Isolation Forest and Autoencoders to effectively 
detect outliers within the dataset. It is quite effective for 
outlier detection in high-dimensional data because it can 
recognize instances that require fewer partitions to isolate. 
Conversely, autoencoders are unsupervised neural networks 
that minimize reconstruction error during the encoding and 
decoding of data. Because they emphasize data points that 
dramatically depart from the learnt reconstruction pattern, 
they are very good at identifying abnormalities. 
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(a) 

(b) 

Fig. 2. Heatmaps depicting the correlation among numerical 
features in the asteroid dataset: (a) Spearman 

correlation heatmap highlighting monotonic relationships; 
(b) Pearson correlation heatmap capturing linear

relationships between variables. 

 For the Isolation Forest algorithm, contamination represents 
the percentage of data points expected to be considered 
outliers in the dataset, and it is set as 0.054 meaning that 5.4% 
of the data is assumed to be an outlier. The parameter 𝑛𝑛 
denotes the number of data samples; this is set to 200. The 
parameter max samples are set to 0.7, therefore 70% of the 
dataset is used to train each base estimator in the forest. 
Finally, a fixed random state of 42 ensures reproducibility of 
the results. For the Autoencoder, Dim is the size of latent 
space, or compressed representation and is determined as 30. 
The epochs are set to 200, referring to the iterations to train 
the model. The threshold is defined as 90, which probably 

relates to the reconstruction error above which points will be 
considered as outliers. These parameters determine the 
configuration and functioning of both anomaly detection 
approaches categories while allowing machine interpretation, 
each unique category is represented as a separate binary 
column, which allows models to process categorical data 
efficiently without introducing bias from any numerical 
hierarchies. The overall pre-processing ensured a clean 
dataset that is efficient, normalized, and optimally prepared 
for training and testing using any subsequent models. The 
observed mean and median values for the features are closely 
aligned with each other, thus suggesting a higher degree of 
normality and reduced collinearity. These changes also 
contributed to dimensionality reduction, thus further 
increasing the optimality of the dataset. At the last stages of 
pre-processing, all categorical features were encoded using 
one-hot encoding. 

Table 1.  Comparison of numerical features before and after 
outlier removal. E denotes eccentricity, a denotes semi-major 

axis, and q denotes perihelion distance 

One-hot encoding transmutes categorical variables to a binary 
matrix, ensuring that the data does not have any ordinality 
issues with the representation of categories while allowing 
machine interpretation. Each unique category is represented 
as a separate binary column, which allows models to process 
categorical data efficiently without introducing bias from any 
numerical hierarchies. The overall pre-processing ensured a 
clean dataset that is efficient, normalized, and optimally 
prepared for training and testing using any subsequent 
models. 

4.2. Model Training 
A list of pre-existing data should be evaluated to ensure that 
all support is equal to the study. Measurement is especially 
important in data with different measurement properties of 
indicators, otherwise the model will give unnecessary weight 
to many differences in quantities, leading to the study being 
dishonest. To solve this problem, we use MinMaxScaler, 
which transforms each feature to a certain range (typically [0, 
1]) while preserving its distribution and correlation. 

𝑋𝑋𝑠𝑠𝐷𝐷𝐿𝐿𝑟𝑟𝑃𝑃𝐿𝐿 =  
𝑋𝑋 − 𝑋𝑋𝑟𝑟𝐿𝐿𝐿𝐿

𝑋𝑋𝑟𝑟𝐿𝐿𝑚𝑚 − 𝑋𝑋𝑟𝑟𝐿𝐿𝐿𝐿
(7) 

In formula 7, X represents the original value of the 
characteristic and  𝑋𝑋𝑟𝑟𝐿𝐿𝐿𝐿  and 𝑋𝑋𝑟𝑟𝐿𝐿𝑚𝑚  are the minimum and 

Metric 
Features 
Epoch e a q 

Mean 
Before 2458895.228 0.156 2.933 2.399 

Mean After 2458999.803 0.148 2.684 2.289 
Median 
Before 2459000.500 0.145 2.648 2.227 
Median 
After 2459000.500 0.143 2.650 2.237 

∆ Mean 104.575 -0.008 -0.249 -0.110 

∆ Median 0.000 -0.002 0.002 0.010 
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maximum values of the characteristic in the dataset. The 
result 𝑋𝑋𝑠𝑠𝐷𝐷𝐿𝐿𝑟𝑟𝑃𝑃𝐿𝐿  represents the standard value of the 
characteristic. This model simultaneously transforms and 
redistributes the data such that all values are within the 
defined range, ensuring that no behaviour affects the model 
due to differences in measurement. This approach is very 
simple to preserve translation but is compatible with data 
value-aware models like support vector machines. Scaling, 
sampling, and measurement techniques are performed from 
datasets based on the distribution of different plots. These 
become necessary due to heterogeneity in the class, which can 
lead to a better performance model for the class in 
classification problems. Data balance ensures that the samples 
from each class are equal so that there is no risk of overfitting 
to most classes. In fact, sampling techniques such as under 
sampling, oversampling, or shuffling are used depending on 
the purpose of the distribution to ensure that each category is 
adequately represented in the data clocks. 

With the numerical data points ready for training, 
dimensionality reduction was done to be able to overcome the 
challenges involved with QML. Since QML relies on working 
with quantum states, which becomes unmanageable with 
growing dimensions in the data, an exponential number of 
quantum resources required to represent high-dimensional 
data is one of the challenges. This problem is relieved by 
reducing the dimensionality of the data before attempting to 
apply the QML techniques, using the classical machine 
learning algorithms. Such reductions in dimensionality 
reduces the required quantum resources but also help diminish 
the intrinsic effects of noise and errors in the quantum system 
itself, thereby making the QML algorithms more accurate and 
feasible. After sampling and balancing, the feature 
importance is calculated using the classical machine learning 
models. These algorithms include K-Nearest Neighbors 
(KNN), Random Forest, Decision Tree, and SVM based on 
the requirement. Each of these algorithms was chosen for its 
capability to provide insights that the previous one could not. 
For instance, Random Forests and Decision Trees easily give 
interpretability in terms of feature importance metrics 
whereas SVM identifies complex boundaries between classes. 
Classical models provided insights in the relevance of features 
and what might guide the process to select those features 
mainly informative for the subsequent quantum 
computations. In doing so, the dataset was bridged between 
classical and quantum methodologies while being optimized 
to handle the challenges of quantum computing. 

Encoding classical data into quantum states allows us to use 
quantum algorithms with the help of quantum machine 
learning for resolving non-quantum challenges such as 
categorization. There are many data encoding techniques, 
each with their own advantages and disadvantages depending 
on the specific problem. The best way to access classical 
information in quantum systems efficiently and cost-
effectively is through QRAM. However, due to the increased 
sub-memory size and system complexity, it needs to be used. 
Grover encoding requires the encoder to use the Grover 
search algorithm to search for random data, but it cannot be 
used for data transformations required for machine learning.  

Fig. 3. A 6-qubit quantum circuit: Hadamard gates produce 
superposition in qubits; CNOT gates establish 

entanglement between qubits; and the parameterized 
𝑅𝑅𝑧𝑧(𝜃𝜃) rotations introduce a phase shift. Completed with 

measurement of all the qubits, the circuit produces a 
classical output. 

Density matrix encoding encodes classical messages into 
quantum entangled states. In other words, it is useful in terms 
of negative information and probability, but computationally 
expensive because quantum states have long dimensions. 
Data is mapped to quantum states, especially when dealing 
with periodic or high-dimensional distributed data. QFT uses 
multiple passes to combine the data, allowing correlations in 
the data to be implemented using quantum superposition and 
entanglement. This is especially true when dealing with large 
datasets such as star signatures, where traditional models fail 
to capture some relationships between variables in a different 
way. QFT maps data into the Fourier domain, so quantum 
algorithms can process the same data with fewer resources, 
resulting in better performance than traditional algorithms. 
QFT also always stores the current time in a different format. 
Therefore, QFT is the best encoding strategy for large, 
complex data, such as that often used in asteroid 
classification, where the data can still be represented 
accurately and efficiently.  

| 𝜓𝜓⟩ =  �𝑐𝑐𝑘𝑘| 𝑟𝑟⟩
𝑁𝑁−1

𝑘𝑘=0

(8.1) 

𝑄𝑄𝐹𝐹𝑄𝑄(| 𝜓𝜓⟩)  =  
1
√𝑁𝑁

���𝑐𝑐𝑘𝑘𝐷𝐷
2𝜋𝜋𝐿𝐿𝑗𝑗𝑘𝑘𝑁𝑁

𝑁𝑁−1

𝑘𝑘=0

�
𝑁𝑁−1

𝑗𝑗=0

| 𝑗𝑗⟩  (8.2) 

In fact, QFT is the quantum edition of a separate classical 
Fourier transform that transforms a quantum state in 
computational basis to its representation in the Fourier basis, 
as represented by Eq.8.1 and Eq.8.2. The total dimension of 
the space of the quantum state is denoted by N. Normally one 
finds it as for an n-qubit system. These coefficients  are the 
amplitudes of the input state and  denote the indices for the 
quantum basis states. The exponential term  seems to hint at 
a good way of computing the relationships between states. 
This transformation is the essence of quantum algorithms, 
such as phase estimation and integer factorization. Encoding 
data points as quantum states allows the model to probe and 
capture complex relationships in data. Normalize features into 
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rotational angles and prepare the dataset for quantum 
processing and enhance the presentation of information in a 
multi-dimensional space of quantum states. Through these 
circuit simulations, we come to realize the encoding process 
which ensures data is optimally conditioned to have proper 
application of quantum algorithms; hence it spans from 
classical pre-processing techniques to the widely known 
capabilities of quantum computing in developing robust 
quantum models. This essentially meant a critical turning 
point in merging classical and quantum approaches to attack 
challenging classification problems with better accuracy and 
more rapidness. 

The quantum circuit created, uses a simple quantum gate to 
create a quantum convolutional neural network (QCNN) 
architecture. While many other quantum circuits exist for 
similar tasks, this particular circuit strikes a balance between 
the efficiency and effectiveness of existing quantum devices. 
In contrast, circuits such as quantum support vector machines 
(QSVMs) employ quantum kernels to represent classical 
information into high-dimensional quantum feature spaces, 
but these tend to be more complex and require prioritization. 
Variational quantum feature solvers (VQEs), on the other 
hand, are designed for development problems rather than 
machine learning, making them unsuitable for classification 
or reprocessing. Deep QCNNs typically use multiple layers of 
entanglement functions and quantum filters, which, while 
powerful, often require assistance and can suffer from 
quantum noise and decoherence challenges with existing 
equipment. 

 The reason quantum circuits use Hadamard gates for 
superposition, CNOT gates for entanglement, and 
parameterized Rz gates for adaptability is because they are 
simple and efficient. Hadamard gates provide superposition, 
allowing qubits to represent multiple states simultaneously, 
thus achieving quantum parallelism. CNOT gates create 
entanglement, a quantum structure that essentially allows 
qubits to describe states at multiple locations. The 
parameterized 𝑅𝑅𝑧𝑧 gate gives the model the flexibility to adjust 
and adapt to the data during training, much like weight 
updates in a classical mechanical model. The choice of these 
gates ensures that the model remains robust, flexible, and 
well-suited to quantum machine learning. It is often affected 
by noise and the limited number of qubits. More complex 
models may require more qubits and entanglement, which 
increases the quantum material required and can be affected 
by quantum noise, leading to incorrect results. Simple models 
reduce the risk of overfitting and reduce the error caused by 
quantum noise, which is important in today’s popular era of 
medium-scale quantum (NISQ) devices. They also provide 
practical solutions by focusing on quantum principles while 
making them easy to use. This makes them highly scalable 
and flexible as quantum hardware continues to evolve. 
Finally, this electronic design offers great advantages in terms 
of efficiency, simplicity, and usability, making it an ideal 
candidate for mature quantum machine learning in the future.  

𝑅𝑅𝑧𝑧(𝜃𝜃) =  �𝐷𝐷
−𝐿𝐿𝜃𝜃 2⁄ 0

0 𝐷𝐷𝐿𝐿𝜃𝜃 2⁄ � (9) 

  For every qubit in the quantum circuit, it applies the 
parameterized rotation gate  𝑅𝑅𝑧𝑧(𝜃𝜃) (Eq.9) where 𝜃𝜃𝐿𝐿  for i-th 
qubit. Because rotation gates are always phase shifts, the 
relative phase between the components of the quantum state 

depends on the phase factor 𝐷𝐷−𝐿𝐿
𝜃𝜃
2 . This ensures that the

rotation takes place in the proper direction and that the 
quantum state can really evolve in the space of the Bloch 
sphere. The parameters  𝜃𝜃  are then updated in the training 
process to be able to fit the quantum state, so that the QCNN 
will learn and adapt and have more possibilities to find more 
solution space, increasing performance by lowering the error. 
Finally, all the qubits are measured and collapse the quantum 
state to get the final output for analysis or classification. An 
optimization algorithm to find the best QCNN model was 
AMSGRAD and SPSA. These were chosen because of their 
strong abilities in stabilizing training and handling high-
dimensional parameter spaces. The AMSGRAD optimizer is 
a variation of Adam that modified the second moment 
estimates to be non-decreasing, ensuring convergence 
stability. 

𝜃𝜃𝑃𝑃+1 =  𝜃𝜃𝑃𝑃 −  𝜂𝜂
𝐷𝐷𝑃𝑃

�𝑣𝑣�𝑃𝑃 +  𝜖𝜖
(10) 

In AMSGRAD update rule (Eq.10), 𝜃𝜃𝑃𝑃 is the parameter vector 
at iterator t, and η is the step size, meaning the learning rate. 
It provides an exponentially weighted average of past 
gradients, which is essentially the first moment 𝐷𝐷𝑃𝑃, and 𝑣𝑣�𝑃𝑃 is 
the corrected second moment, or the maximum over past 
squared gradient averages to stabilize at times of update. 
Finally, 𝜖𝜖  is a small constant added to prevent division by 
zero during normalization of the gradient. This is trained at a 
learning rate of 0.1 and 100 as the maximum number of 
iterations where AMSGRAD updated parameters for the 
QCNN circuit obtained from a 6-qubit quantum circuit to 
achieve smooth convergence during training. Meanwhile, 
Simultaneous Perturbation Stochastic Approximation (SPSA) 
is excellent at noisy high-dimensional optimization problems 
by approximating gradients through random perturbations. 

𝜃𝜃𝑘𝑘+1 =  𝜃𝜃𝑘𝑘 − 𝛼𝛼𝑘𝑘𝑔𝑔𝑘𝑘 (11.1) 

𝑔𝑔𝑘𝑘 ≈
𝐷𝐷(𝜃𝜃𝑘𝑘 + 𝑐𝑐𝑘𝑘∆𝑘𝑘) − 𝐷𝐷(𝜃𝜃𝑘𝑘 − 𝑐𝑐𝑘𝑘∆𝑘𝑘)

2𝑐𝑐𝑘𝑘∆𝑘𝑘
(11.2) 

For SPSA, as depicted by Eq.11.1 and Eq.11.2, 𝜃𝜃𝑘𝑘 is the k-th 
iteration of the parameter vector and αk the learning rate, 
which controls the size of each updating step. The stochastic 
gradient 𝑔𝑔𝑘𝑘  update is derived from 𝐷𝐷  (𝜃𝜃 ), the value of the 
objective function at a perturbed version of the current 
parameter. The amount of perturbation is controlled by ck. 
The perturbation ∆𝑘𝑘 , typically with a Rademacher 
distribution with values ±1, is a vector which is randomly 
generated. These parameters thus combine to provide an 
estimate of gradients of high-dimensional optimization  
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problems that could be too expensive to compute exactly. The 
parameters of the game with SPSA are as c = 0.1 and α=0.5, 
with a maximum number of iterations 100.  

5. Result and Analysis           

5.1. Experimental Setup
 A 32-qubit context-aware QASM simulator and seven-qubit 
publicly available quantum processors spread across three 
different locations were among the quantum resources used in 

Table 2. The Simulation Parameters and their respective 
values that were utilized for this study. 

the experimental setting for this investigation, which was 
carried out utilizing the IBM Quantum experience cloud 
platform. These resources also provided the computational 
power required for in-depth simulations and experiments. 

Several repeated runs were performed to assess the 
performance of algorithms in a thorough manner. This process 
involved testing the algorithms across different dataset sizes 
to evaluate their performance and efficiency on various 
quantum systems. It was found that the available Noisy 
Intermediate-Scale Quantum (NISQ) devices are not 
sufficient to perform an analysis on larger, high-dimensional 
datasets as part of Quantum Machine Learning (QML) 
algorithms. NISQ devices with up to seven qubits can be used 
effectively without significant noise or errors while keeping 
the computational time much shorter and allowing dataset 
sizes in between around 5,000 and around 10,000 records. The 
expected simulation must consider, the unique constraints and 
properties of each quantum system to capture the real-world 
behaviour of the implementing algorithm. This means that 
certain properties and limitations apply to all quantum 
applications. Simulation and test functions are supported by 
the QISKIT library. There is quantum Fourier coding that can 
map 16 quantum bits and 9 inputs to the quantum space. 
Quantum convolution kernel is used for data processing and 
the panel structure is associated with the efficient ANSATZ 
product. QISKIT’s sampling tool is measured and runs over 
100 iterations; ANSATZ repeats this twice to ensure the depth 
and expressiveness of the circuit. This configuration is 
suitable for quantum machine learning or optimization. 

Runtime services are Next, the “General Parameters” section 
describes the structure and configuration of the quantum 
algorithm. Qubits are the essence of quantum information and 
are set to 16 qubits for the cluster simulation, which shows the 
complexity of quantum circuit analysis. The specific mapping 
used here is quantum Fourier coding, a method of mapping 
classical data to quantum states using the Fourier transform, 
which is commonly used to encode data in quantum machine 
learning. The number of features represents the number of 
classical features that go into the quantum circuit, and in this 
case, it is set to 9. Kernels define the type of quantum 
operations used for the features encoded in this language, 
quantum convolutional kernels are particularly used for tasks 
such as image recognition and classification in quantum 
machine learning. Ansatz refers to the initial quantum circuit 
used to estimate the solution, and for this site, hardware-
optimized Ansatz is chosen, a method for optimizing quantum 
circuits in the hardware world. The model refers to a way of 
sampling the quantum state after the quantum circuit has been 
implemented. Iterations does not indicate how many times the 

quantum algorithm is run, in this case it is set to 100, providing 
more data points to increase the accuracy of the results. 
Finally, the Reps parameter defines the number of repetitions 
or iterations of certain steps in the quantum algorithm, here 2 
repetitions are used to increase the strength of the quantum 
results. 

Table 2 provides detailed information about the parameters 
related to quantum configurations, especially for quantum 
circuits running on the IBM Cloud Quantum Computing 
Service. The first row introduces the quantum computer 
parameters and sets the stage for the following concepts. IBM 
Cloud Service refers to the email address associated with the 
account used to access the IBM Quantum Computing 
Platform. Quantum computers do not define a specific 
simulator to be used; in this case, the QASM simulator, a tool 
used to simulate quantum circuits and obtain measurements in 
the context of quantum computing.  

5.2. Model Evaluation 
Testing is necessary to quickly compare samples. It allows the 
performance of the model to be compared globally on test and 
training data. This simplifies the process of creating a good 
training model that will be effective. Therefore, evaluation is 
important to ensure the validity and reliability of the model, 
especially when the performance of the model is well 
understood. The following discussion describes the 
evaluation criteria used to select the best quantum machine 
learning model from a set of candidate algorithms, including 
algorithms with different hyperparameters. Since the given 
function is a binary classification function, F1 score, 
accuracy, recall and confusion matrix constitute the 
performance measures. F1 Score If the data set is unequal, the 

Parameter Value 

Quantum Parameters 

Cloud Service IBM 

Quantum 
Computer 

qasm simulator 

  Fundamental Parameters 
Qubits 16 

Feature Map Quantum Fourier Encoding 

Number of 
Features 

9 

Kernel Quantum Convolutional Kernel 

Ansatz Hardware-Efficient Ansatz 

Sampler Qiskit's Sampler 

Optimizer 
one 

AMSGRAD 

Optimizer 
two 

SPSA 

Iterations 100 

Reps 2 
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best measure is F1 score because it calculates the correlation 
between the true and the inverse. It has the advantage of 
considering the ability of the model to avoid errors because it 
measures the correct prediction as a percentage of all good 
predictions. Sensitivity, often called recall, is the number of 
true positive events predicted by a model and can be an 
indicator of the model's ability to correctly identify the entire 
layer of events. More information about the resource 
allocation model can be obtained from the confusion matrix, 
which is a tabular summary of true positives, negatives, true 
negatives and false positive predictions. Together, these 
metrics provide a good assessment of model performance to 
determine the best QML model. 

 The confusion matrix is a summarized measure of the model's 
classification function, describing four elements of its results. 
There are: TP is called true positive, meaning correctly 
classified positive examples. In this case, the main goal is to 
determine whether the asteroid is dangerous or not, so mark it 
as "1". The change in the model's performance in the 
confusion matrix is due to the difference between the 
algorithm features and the training quality, which will be more 
significant (TP > TN), higher specificity (TP < TN), or equal 
distribution (TP - TN). Calculates the proportion of true 
positive events or true positive events identified as expected. 
Similarly, the proportion of true negative cases that are 
correctly classified is measured as true or true negative. 
Therefore, the balance between sensitivity and specificity is 
important for effective PHA detection and minimizing false 
positives. In machine learning, precision, recall, and F1 score 
are important metrics, especially for task classification. These 
metrics provide important information about the effectiveness 
of the model in classification. Regression measures the ability 
of the model to find all good problems, while accuracy 
measures the ability of the model to predict good cases. The 
F1 score is particularly useful for evaluating models because 
it provides a compromise between precision and recall. 
Understanding and interpreting these metrics is important for 
researchers to accurately assess the strengths and weaknesses 
of their models and to aid in model selection and development 
decisions. 

Let the following notations be used: σ (True Positives), λ 
(True Negatives), χ (False Positives), and θ (False Negatives). 
The definitions of precision (ρ), recall (τ), and F1-score (Λ) 
are given as: 

ρ =
𝜎𝜎

(𝜎𝜎 + 𝜃𝜃)
(12.1) 

τ =  
𝜎𝜎

(𝜎𝜎 + 𝜃𝜃)
(12.2) 

𝛬𝛬 =
2 ∗ (2𝜎𝜎)

(2𝜎𝜎 + 𝑥𝑥 + 𝜃𝜃)
(12.3) 

These expressions provide a quantitative view of the model’s 
ability to correctly identify positive cases, balance between 
true positive predictions, and the trade-off between precision 
and recall. Another key measure of evaluating the 
performance of a classification algorithm is its accuracy, 
especially when the task may involve identifying hazardous 
asteroids. The accuracy measures the number of correctly 
classified positive and negative cases against all those 
considered. Such precise predictions are essential: 
misclassifying harmless objects as hazardous without cause 
can lead to alarm unnecessarily, whereas failure to classify 
hazardous objects correctly can have serious implications. 
The formula for accuracy is expressed here as: 

 𝜅𝜅 = (𝜎𝜎+𝜆𝜆)
(𝜎𝜎+𝜆𝜆+𝑚𝑚+𝜃𝜃)

 (13) 

    This equation (Eq.13) shows the ratio between positive and 
negative values for all cases, provides a measure of the overall 
performance of the model, and helps compare different 
models for the task of determining the formation of hazardous 
asteroids. 

Table 3. The Comparative Performance Metrics Of Several 
Classical And Qcnn, Evaluated Using Precision, Recall, F1-

Score, And Accuracy 

The table 3 shows the comparison metrics evaluated in terms 
of precision, recall, F1 score, and accuracy for machine 
learning and quantum convolutional neural network 
(QCNN) algorithms. Random Forest algorithm is designed 
as a reliable model for classical performance as it offers a 
balanced evaluation with precision of 0.825, recall of 0.834, 
F1 score of 0.830, and precision of 0.834. SVM is effective 
but scores lower with accuracy of 0.776, showing a minor 
performance compared to other methods. KNN (K Nearest 
Neighbor) model performed well with F1 score of 0.801 and 
accuracy of 0.801 but fell behind more powerful tree models. 
Among the classical models, decision tree algorithm 
performs best in terms of high performance, recovery rate, 
and its F1 value is close to 0.883 and accuracy value reaches 
0.882, indicating a strong capacity in knowledge sharing. 
AMCQ-CNN(Attention-Mechanism-based Convolutional 
Neural Network) outperforms the classical model with an 

Model Precision Recall F1-score Accuracy 
Random 
Forest 

0.825 0.834 0.830 0.834 

SVM 0.774 0.771 0.773 0.776 

KNN 0.799 0.804 0.801 0.801 

Decision 
Tree 0.883 0.884 0.883 0.882 

AMSGRAD 0.984 0.955 0.981 0.997 

SPSA 0.952 0.974 0.977 0.993 
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uncertainty of 0.984, a recall of 0.955, an F1- score of 0.981 
, and an accuracy of 0.997, indicating that it can be very 
accurate. The same applies to SPSA QCNN (Simultaneous 
Perturbation Stochastic Approximation) with a precision of 
0.952, a recall of 0.974, an F1-score of 0.977, and a precision 
of 0.993. This shows that quantum-based models have very 
good distribution capabilities and thus have an advantage 
over traditional methods when dealing with complex data. 

5.3. Model Evaluation 

5.3.1 Confusion Matrices 

(a) 

               

(a) 

(b) 

(c) 

(d) 

(e) 
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(f) 

Fig. 4 Confusion Matrix comparison (a) to (f) 

The controversial analysis of AMGRAD QCNN and SPSA 
QCNN quantum models compared with traditional models 
such as SVM, KNN, decision trees,(Support Vector Machine, 
K Nearest Neighbour) and random forests showed significant 
differences in performance. Each of these classical models 
reveals its own weaknesses in some areas, especially in the 
reliability of different data and features, which violates the 
assumptions of the classical algorithm. Each of these classical 
models reveals its own weaknesses in some areas, especially 
in the reliability of different data and features, which violates 
the assumptions of the classical algorithm. For example, SVM 
has TP = 14.36, FN = 9.341, and the TP/FN ratio is 1.54, 
which means that it can detect dangerous asteroids but misses 
many important threats. FP = 9.341 and 9.555 are close to the 
TN value, and safe asteroids are almost equally classified as 
dangerous. In the case of asteroids, the false positive rate of 
SVM is almost equal to the true detection rate, which leads to 
resource allocation errors. TP = 9.344 and FN = 13.618 gives 
a low TP/FN of 0.69, a number that represents low pressure. 
This problem can be attributed to the inability of KNN to 
measure overlap, especially when some important factors 
such as orbital dynamics cannot be separated by simple 
distance measurements. With a FP/TN ratio of 0.85 compared 
to a TP/FN ratio of 2.39, it also suffers from a larger false 
positive, making it unsuitable for critical tasks. FP = 8.965 is 
still problematic, indicating that the given data may be 
overestimated, thus reducing the overall requirement. 
Although the recovery accuracy is better than SVM or KNN, 
the decision tree can classify asteroids without any problems, 
which need to be unnecessarily warned. TP = 14.393, FN = 
13.299, so the TP/FN ratio is 1.08, which is worse than KNN 
but not as good as decision tree. Although the combination 
often has shortcomings, especially when the information is 
noisy or the features cannot be completely separated, random 
forest still has some problems, as shown by the FP/TN ratio 
of 1.39. AMSGRAD obtained TP = 38.200 and FN = 1.800, 
which represents a TP/FN ratio of 21.22. The high ratio means 

that it reduces the danger to the star, which is important for 
the protection of the planet. In addition, the FP/TN ratio is 
0.045, which shows high accuracy and no defects. SPSA 
QCNN goes one step further and obtains TP = 39,600 and FN 
= 400, resulting in a TP/FN ratio of 99 and a FP/TN ratio of 
0.028. The image shows an almost perfect distribution, which 
reduces all the shortcomings of the classical model. 
AMSGRAD can learn quickly and adapt to changes in the 
optimization environment, so it works well when the dataset 
is not noisy or variable. It always tries to obtain a stable 
combination given the distribution of changes. SPSA 
performs very well in high-dimensional parameter settings, 
where gradient estimation can be computationally expensive. 
Its stochastic structure allows it to explore more complex 
landscapes, making it suitable for data with complex 
interactions. For example, the state-of-the-art classical model 
SVM with 39.4% FN will miss about 394 dangerous asteroids, 
while AMSGRAD QCNN with 4% FN will miss about 394 
dangerous asteroids. While only 40 dangerous events are 
missed, SPSA QCNN reduces the final missed rate to only 4 
missed events. Such a significant improvement in the basic 
concepts requires the use of quantum models in advanced 
catalogues such as asteroid classification. The use of quantum 
mapping techniques in these models allows them to 
understand the nature of interactions that cannot be well 
represented by traditional models, thus providing more energy 
to the analysis of asteroid data. The advantages of quantum 
models and experimental studies based on efficiency clearly 
demonstrate that they can overcome the limitations of 
classical models. Their ability to minimize errors and maintain 
accuracy in noisy and high-dimensional datasets further 
strengthens the methods adapted from classical options, 
making them useful in real-world applications.  

This research introduces a novel application of Quantum 
Machine Learning (QML) for asteroid hazard detection, 
addressing the limitations of classical machine learning (ML) 
in handling high-dimensional, complex datasets. By 
implementing Quantum Convolutional Neural Networks 
(QCNNs) and optimizing them with AMSGRAD and SPSA, 
the study demonstrates a significant improvement in 
classification accuracy. Traditional ML models, such as 
Decision Trees and SVM, do not easily handle the complex 
dependencies between asteroid feature types, for example, 
orbital eccentricity, and physical parameters. On the other 
hand, our quantum approach exploits quantum superposition 
and entanglement for better pattern recognition. The outcome 
is that AMSGRAD QCNN achieves 0.997 accuracy, beating 
the best accuracy of the classical model, Decision Tree at 
0.883 accuracy, by 13%. Moreover, the false negative rate is 
drastically reduced, with only 1.8 false negatives in 
AMSGRAD QCNN compared to 9,341 in SVM, a crucial 
factor for ensuring no hazardous asteroid is misclassified. 

The study also demonstrates the effectiveness of Quantum 
Fourier Transform (QFT) encoding, which enhances the 
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model's ability to interpret asteroid data by encoding it into a 
quantum state with higher-dimensional feature representation. 
This results in better generalization and higher recall (0.974 
in SPSA QCNN vs. 0.771 in SVM), ensuring more hazardous 
asteroids are correctly identified. Additionally, cross-
validation and hyperparameter tuning were employed to 
ensure model robustness. While quantum noise remains a 
challenge, the research explores error mitigation techniques 
such as zero-noise extrapolation and probabilistic error 
cancellation to improve quantum circuit stability. Future work 
will involve improving hybrid quantum-classical models, 
increasing the size of datasets, and optimizing quantum 
circuits for even more accurate asteroid classification. These 
developments hold important implications for planetary 
defense by providing a highly efficient, scalable, and precise 
method for assessing asteroid impact risk compared to the 
existing approaches. 

This research focuses on asteroid hazard detection by 
combining Quantum Convolutional Neural Networks 
(QCNNs) optimized with AMSGRAD and SPSA, getting 
13% higher accuracy than classical models like Decision 
Trees. Unlike earlier works, such as in [50] on Quantum 
Support Vector Machines’ and on quantum algorithms for 
space situational awareness, this research uses Quantum 
Fourier Transform(QFT) encoding to improve feature 
representation and classification accuracy. Furthermore, 
while Biswal in [51] used machine learning in space science, 
our research demonstrates the superiority of quantum methods 
in reducing false negatives(FN), making it a crucial 
advancement for planetary defense. 

5.3.2 Limitations & Potential Solutions 

Noise is a significant problem in quantum systems because it 
is caused by external interferences and poor control and leads 
to the degradation of the quantum state and the loss of 
communication integrity. This problem limits the depth of 
quantum circuits and the scalability of algorithms. To solve 
this problem, quantum error correction (QEC) methods such 
as Shor or Surface codes encode logical qubits into multiple 
physical qubits to detect and correct errors. Although 
powerful, these solutions require significant physical 
resources. However, considering the state of the art, error 
reduction techniques such as zero-noise extrapolation and 
probabilistic error cancellation are among the many ways to 
reduce the noise factor, they do not change everything. In fact, 
hardware advances such as superconducting qubits with 
longer connection times and better immunity are also 
important in reducing noise. This reduces the time required 
for computing power and increases the capacity of complex 
processes. Advances in qubit technology have shown that 
topological qubits and silicon spin qubits have longer 
integration times because the latter are not affected by the 
fundamental two-qubit mismatch. Another technique to 

eliminate the inequality involves clustering using Carr-
Purcell-Meiboom-Gill arrays. Another important feature is 
the cryogenic cooling system, which reduces thermal noise 
and stabilizes the behaviour of qubits, especially in 
superconducting systems. As size increases, controlling the 
coordination of qubits becomes more difficult. Using machine 
learning algorithms such as Bayesian optimization to 
automate the calibration process allows for parameter tuning 
and precision. Pulse-level control platforms such as Qiskit 
Pulse provide control of gate performance for improved 
accuracy. Additionally, using quantum device simulators 
prior to deployment can help predict and fix errors, thus 
reducing hardware debugging overhead. 

  Quantum systems are now large enough to perform 
meaningful computations, but they still suffer from noise, 
limited qubit counts, and short runtimes. These devices are not 
necessarily illegal because they cannot take advantage of 
quantum error correction; however, the NISQ device holds 
promise for near-term applications in quantum chemistry 
simulations, optimization problems, and machine learning. 
Scientists are now focusing on a combined quantum-classical 
approach, where a quantum system tries to solve a problem 
that will take advantage of quantum acceleration, while other 
problems are solved with classical methods that control noise 
and errors in the quantum output. This combination allows the 
input to be calculated even with noise and is useful even 
without full error correction.  To fill this gap, interdisciplinary 
academic programs combining quantum mechanics, computer 
science, and engineering, as well as hands-on training in 
simulators and hardware, are needed. Such free access to 
quantum resources will be provided through open sources 
such as IBM Qiskit or Google Cirq, supporting studies and 
experiments in this field. Knowledge sharing between 
academia and industry will also be facilitated by collaborative 
ecosystems supported by organizations such as the Quantum 
Economy Development Consortium (QED-C). Therefore, the 
economic and humanitarian impact will be solved through 
these collaborations. 

6. Conclusion

This research shows the strength of Quantum Machine 
Learning (QML) in enhancing asteroid hazard prediction by 
efficiently analysing large and complex datasets. Through 
extensive pre-processing and feature selection techniques, we 
were able to reduce data storage requirements while 
maintaining model accuracy. The use of quantum circuits 
allowed for capturing intricate patterns in asteroid data, 
offering a more effective classification of hazardous versus 
non-hazardous asteroids. Overall, this approach represents a 
significant step forward in improving space hazard 
assessments, providing more reliable predictions compared to 
traditional methods. 
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Looking ahead, there is significant potential for further 
improving the QML model by refining quantum circuits and 
incorporating hybrid quantum-classical techniques. Future 
work could focus on expanding the dataset, exploring 
additional features, and experimenting with new quantum 
algorithms to enhance prediction accuracy. Moreover, this 
approach can be extended to other domains in space science 
and astronomy, offering broader applications in predicting 
celestial events and understanding the dynamics of our solar 
system. The continued evolution of quantum computing will 
likely open even more possibilities for tackling complex 
problems in planetary defence and beyond.    
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