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Abstract 

INTRODUCTION: The advancement of a word suggestion system model is driven by the need to enhance user 
interaction and efficiency in digital communication. Hence, the word suggestion system helps minimize 
typographical errors and spelling mistakes. Therefore, various traditional methods are used to suggest words 
to sentences; however, these traditional models are extremely time consuming, prone to errors and tedious. 
METHODS: Owing to these factors, the present paper focuses on developing a Kannada word suggestion 
system using cGAN (Conditional Generative Adversarial Networks), as this system is designed to significantly 
enhance user interaction by offering predictive text suggestions in the Kannada language. RESULTS: The 
training dataset, which resides on AWS S3, comprises a comprehensive collection of Kannada texts utilized 
for both training and validation purposes. Furthermore, the implementation of the model leverages the 
TensorFlow and keras framework, specifically employing long short-term memory (LSTM) networks for 
effective sequence prediction and generation. LSTMs are particularly advantageous in NLP processing because 
they can capture long-term dependencies within sequential data. To facilitate user interaction, a web-based 
interface has been developed using Flask, enabling users to input initial characters and receive dynamically 
generated Kannada word suggestions. CONCLUSION: This paper not only delves into the application of 
cGANs within the realm of NLP but also illustrates practical deployment strategies utilizing cloud services and 
modern web technologies. Overall, the proposed approaches demonstrate the potential of the cGAN in 
enhancing the user experience through intelligent text prediction systems tailored for the Kannada language. 
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1. Introduction

Natural language is the way in which people 
communicate with each other about their knowledge 
[1], feelings, and emotions [2, 3]. Different native 

*Corresponding author. Email: anupama.n@vvce.ac.in

languages with unique alphabets, signs, and 
grammar can be found all over the world. India is the 
country that has the most ancient and 
morphologically diverse regional language variants 
[4]. Compared with other natural languages, 
computers can process data represented in English 

EAI Endorsed Transactions 
on Internet of Things 
| Volume 11 | 2025 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:anupama.n@vvce.ac.in


 Prathibha R J, Anupama N & Sudarshan A S 

2 

via conventional ASCII codes rather easily [5]. 
However, developing a machine’s ability to 
comprehend other natural languages is difficult and 
requires a variety of approaches [6]. NLP provides a 
wealth of techniques for understanding and 
manipulating languages such as Kannada [7]. 
Hence, different AI methods are used for supervised 
DL approaches for correcting spelling errors in 
multilingual texts, specifically those in the Persian 
and Arabic languages. This method employs a CRF-
based RNN model [8] for identifying and rectifying 
spelling mistakes. The research generated a dataset 
containing 220,000 sentences with intentionally 
introduced errors, emphasizing the design of 
effective contextual features. Similarly, the author 
concentrated on creating a model for detecting 
misspelled Assamese words [9]. This highlights how 
misspellings can negatively affect readability and 
understanding of the language. By incorporating 
contextual information from phrases, the model uses 
BiLSTM and LSTM to enhance the detection of 
spelling errors. Experiments were conducted on a 
dataset of 2,000 sentences and revealed that the 
BiLSTM model outperformed the LSTM model. 

While NLP excels at sentiment analysis and speech 
recognition [10], predicting full Kannada words via 
a single alphabet is a difficult issue. Kannada 
characters can have different pronunciations 
depending on context [11, 12]. A single consonant 
might have many vowel sounds connected with it 
[13]. There are alternatives to full-word prediction. 
The system may generate a list of possible Kannada 
letters that follow the supplied alphabet, making it 
easier for users to type in Kannada. Furthermore, if 
a Kannada dictionary is provided, it may suggest 
whole words on the basis of the single alphabet 
entered, even though this would not be considered 
an NLP prediction. In essence, predicting complete 
Kannada words with high accuracy on the basis of a 
single alphabet is currently not possible via NLP 
algorithms. The proposed method uses the cGAN to 
train the model and envisages the Kannada words. In 
a GAN, the generator and discriminator engage in a 
viable learning process. The discriminator role is to 
differentiate between real data and the synthetic data 
produced by the generator. Moreover, the generator 
aims to create artificial data such as Kannada words 
or phrases that loosely resemble authentic samples 
from a training dataset. Through this adversarial 
training, the generator gradually improves its ability 
to produce more realistic outputs. Additionally, 
cGANs enhance the basic framework by 
incorporating extra information, such as class labels 
and context vectors, to better guide the generation 
process. In NLP tasks, such as spelling suggestion 
and correction, cGANs can utilize contextual 
information derived from surrounding text. This 
allows them to produce realistic corrections for 
misspelled words to sentences. By adopting this 

conditional strategy, the relevance and accuracy of 
the generated outputs are significantly improved, 
making cGANs particularly effective for 
applications that demand context-sensitive language 
generation and error correction.  

1.1 Research Objectives 

The major objectives of the research paper are as 
follows: 

• To employ the cGAN, the generator
model learns to produce plausible
Kannada words on the basis of initial
character inputs, whereas the
discriminator model is prepared to
recognize genuine and created words.

• To leverage long short-term memory
networks for sequence prediction and
generation.

• To use Flask to allow users to input
initial characters and receive
dynamically generated Kannada word
suggestions.

1.2 Paper Organisation 

The paper is structured as follows. Section 2 
addresses existing works performed by various 
researchers. Section 3 focuses on employing and 
implementing the proposed work for word 
suggestion systems. Section 4 focuses on the results 
obtained via the proposed model, and finally, 
Section 5 summarizes the entire research work along 
with future directions. 

2. Literature Review

Various methodologies adopted by existing works 
for spelling error detection are reviewed in the 
following section. 

Spelling errors often arise from typing mistakes in 
text documents. Currently available spell checkers 
are quite basic and are primarily developed via 
conventional approaches such as role-based 
methods and statistical approaches. Therefore, 
HINDIA [14] was used to address spelling errors in 
the Hindi language. To do so, the study has two 
distinct phases: the 1st stage involves detecting 
incorrect works in the input text, while the 2nd stage 
replaces these erroneous words with the most likely 
correct alternatives. The HINDIA model is built by 
employing an attention-based encoder-decoder 
BiRNN (bidirection Recurrent Neural Network), 
which incorporates LSTM cells. Therefore, various 
enhancements have been made to BiRNN, and the 
network has been fine-tuned to address spelling 
errors efficiently in the Hindi language. Moreover, 
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the BiRNN model was compared with the 
Malayalam language spell checker system; however, 
the findings revealed that the better HINDIA model 
delivered better performance than existing spell 
checkers did. Similarly, an approach for correcting 
various context-sensitive spelling errors via the DL 
approach is emphasized in the suggested work, 
where a correction model termed the autoregressive 
(AR) language technique is used for prediction in the 
next work via a unidirectional context, and an 
autoencoder (AE) language model is used for 
restoring words via bidirectional context 
information. 

LSTM- and BiLSTM-based algorithms [9] have 
been used in existing works for precisely detecting 
misspelled words by assessing the perspective of 
each word in a sentence. Here, more than 2677 
Assamese sentences are used, which consists of both 
correctly spelled and incorrectly spelled words. 
Similarly, LSTM [15] has been used for a potential 
suggestion system, in which the model has used 
error detection techniques to improve the 
performance and enhance the accuracy of the spell 
checker technique for the Punjabi language. 
Similarly, the BiLSTM model has been used for 
correcting spelling mistakes by means of a 
transformed input and stochastic error injection 
technique for Arabic text. Here, the model uses 2 
BiLSTM [16] layers and dropout regularization and 
then trains with an error injection rate. In addition, 
future work will focus on handling Arabic spelling 
correction along with letter diacritization in one 
problem space. Similarly, two different techniques 
[17] were used to correct spelling errors in Persian
text, where the first method relied on using the rule
technique and the other method relied on employing
the DNN-based LSTM approach. A total of 112
rules were established to address spelling mistakes
resulting from phonetic similarities and
typographical errors, offering recommended works
for those not recognized in the dataset. For
evaluation purposes, a set of 2500 word sentences
containing spelling errors was used, and the word
with the smallest Levenshtein distance was selected
as the correct option in this approach. In the DL
framework, an LSTM unit was implemented,
incorporating word embeddings in the input layer
along with the capsule layer, convolution and,
eventually, max pooling. An artificial dataset
comprising 1.2 million entries was created to terrain
the DNN; out of this, 800,000 sentences were used
for training and 200,000 for testing, while the
remaining sentences were reserved for evaluation
purposes. The findings of this study demonstrated
that the DL-based LSTM model has better outcomes
than the traditional rule-based approach.

Language is considered the most fundamental means 
of communication, in which grammar plays an 
important role in the excellence of a language. 

Therefore, [18] used a DL-based LSTM model for 
the grammar validation mechanism, as this model 
addresses these problems and proposes the 
development of a grammar-checking mechanism 
specifically for the Kannada language. In this 
context, the model aims to accomplish the required 
categorization by leveraging context-based data 
retention via Word2VEc, along with the use of 
TensorFlow and Keras libraries. Spelling mistakes 
can occur in text for various reasons, such as typing 
errors or a lack of knowledge about correct 
phonemes. In languages that feature intricate works, 
such as Sandhi, where multiple morphemes are 
combined according to specific rules, spell checking 
can become quite challenging. In these cases, a spell 
checker equipped with a Sandhi splitter [19] is 
particularly beneficial, as it can notify users of errors 
and offer helpful suggestions for correction. 
Therefore, this study uses a spell checker with a 
Sandhi splitter for improved results for better 
suggestions. This mechanism generates a 
comprehensive list of suggestions for considering 
both the meaning and context of the word in 
question. Likewise, error generation algorithm [20] 
has used in the study for fine tuning the task of spell 
checking for Persian language. Moreover, Burmese 
language has explored in the study for spelling 
training using Symmetric Delete Spelling 
Correction Algorithm. The result investigated that 
the performance of each error type and studied the 
importance of the dictionary depending on the 
average term length and maximum edit distance for 
Burmese spell checker based on SymSpell. 
Therefore, Table-1 showcases the summary of the 
existing models. 

Table 1 Directory tree structure of the Mask 
RCNN system 

Ref Method Language Findings 
[21] LSTM

and
BiLSTM

Assamese The 
findings of 
the work 
has stated 
that LSTM 
model 
attained 
accuracy of 
92% and 
BiLSTM of 
93%. 

[22] An
LSTM
model
that
encodes
input
word at
characte
r level,
that also

Indonesia
n 

The 
accuracy 
obtained by 
the Char-
LSTM for 
Indonesian 
language is 
90%. 
However, it 
was 
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uses 
word and 
POS tag 
contexts 
as 
features. 

identified 
that, for 
training 
dataset 
accuracy 
obtained is 
83.76%. 

[23] The
Study
has used
SpellBE
RT

Chinese SpellBERT 
can be 
directly 
used 
without 
confusion 
set in the 
fine-tuning 
and 
inference 
phase, 
which is 
more 
convenient 
to use and 
easier to 
deal with 
the errors 
uncovered 
by the 
existing 
confusion 
sets 

[24] Hybrid
Model
which
consiste
d of N-
gram,
LCS,
Shapex
and
Soundex
ranking
algorith
m

Urdu Outcome of 
the model 
has proved 
that, F1 
score 
gained is 
88.29%. 

[25] LSTM
with
word
embeddi
ng layer

Persian The 
accuracy 
obtained by 
the LSTM 
network is 
87%. 

[26] LSTM
along
with rule
based
approac
h and
minimum
edit
distance

Punjabi The 
outcome of 
the work 
revealed 
that LSTM 
predicted 
best 
possible 
suggestion
s by 
computing 

strong 
relationship 
of word 
with 
previous 
sequence 
and makes 
possible 
words 
available 
for 
correction 

[27] Sequenc
e to
sequenc
e
(Seq2Se
q) model
with
attention
mechani
sm is
used to
develop
spelling
correctio
n for
Azerbaij
ani

Azerbaijan
i 

It is 
exposed 
that, when 
the 
distance is 
0 and 1, the 
accuracy 
value 
obtained is 
75% and 
90%. 

2.1 Gaps Identified 

A review of existing works revealed that very few 
studies have covered the use of the Kannada 
language for word suggestions and spell-check 
approaches because Kannada is a unique semantic 
and syntactic properties, which can make it 
challenging to develop NLP tools compared to more 
widely studied languages. Additionally, its complex 
grammar and morphology require tailored 
approaches that are often not available or are less 
developed. Therefore, the proposed work focuses on 
the word suggestion system using the cGAN model 
for the Kannada language, as Kannada is considered 
one of the important languages in India and has 
complex scripts and grammar. Moreover, with the 
increasing use of Kannada in various digital 
platforms, generating a word suggestion and 
spelling correction model for enhancing the user 
experience and communication quality is important. 
Hence, the subsequent section addresses the 
implementation of the proposed model in detail. 

3. Research Methodology

The proposed work for the Kannada word 
suggestion system is discussed in the subsequent 
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section. Thus, Figure 1 shows the overall 
mechanism of the model. 

Figure 1. Overall Flow 

Figure 1 depicts the process involved in the 
proposed work. When the model is carried out by 
loading the dataset, the data presented in the dataset 
are preprocessed via various techniques. After the 
preprocessing technique, the cGAN model is 
trained, and the LSTM algorithm is further applied. 
The model is subsequently tested and validated via 
different techniques. 

3.1 Data Collection 

The raw textual data for the proposed work 
encompass a comprehensive dataset featuring 
Kannada words and phrases. This dataset consists of 
approximately 10,000 sentences in Kannada, 
serving as a foundational resource for training the 
model for effectively predicting and generating text 
in the Kannada language. 

The data are organized as a collection of text files, 
each containing sentences or paragraphs written in 
Kannada. These text files undergo a tokenization 
process, wherein the content is segmented into 
individual words or sequences of words. Hence, the 
subsequent section focuses on employing various 
preprocessing techniques to enhance the 
performance of the model by using different 
approaches. 

3.2 Preprocessing Approaches 

3.2.1 Tokenization 

Tokenization is a crucial preprocessing technique 
that aids in transforming a sequence of text into 
smaller, manageable units known as tokens. These 
tokens can represent various linguistic elements, 
including words, phrases or even individual 
characters. The tokenization process typically 
involves segmenting the text into discrete 

components, such as individual words or subword 
units. This method not only facilitates the model’s 
comprehension of the structure and segmentation of 
the Kannada language but also enhances its ability 
to process and generate text effectively. By 
converting words into unique integer 
representations, the model can effectively manage 
and analyse linguistic data, paving the way for 
improved performance in NLP tasks. Hence, Figure 
2 depicts the Kannada words tokenized into unique 
integers. 

Figure 2. Tokenzied Text 

As illustrated in Figure 2, the Kannada words have 
been tokenized and mapped to unique integers, and 
the process involved is discussed. 

• Creation of vocabulary: The tokenizer
systematically analyses the entire text
corpus to construct a comprehensive
vocabulary, which comprises all
unique tokens present within the
dataset. Each distinct token in this
vocabulary is consequently allocated a
unique integer identifier. This process
is instrumental in standardizing textual
data into a numerical format that can
be efficiently interpreted by the model.

• Word-to-integer mapping: Once the
vocabulary is established, each term
within the textual data is assigned an
associated identifier through a
systematic mapping process. This
entails creating a dictionary structure
where each unique word is linked to a
specific integer value.

• Tokenization: The text is then
converted into sequences of integer
identifiers.

Through the conversion of textual words into 
numerical representations, tokenization enables the 
model to effectively process and learn from the 
underlying text data. In the context of the proposed 
methodology utilizing cGANs, tokenization plays a 
crucial role by providing both the generator and 
discriminator with a uniform numerical format of 
the Kannada text. This standardization enhances the 
training process and improves predictive accuracy, 
as it allows the models to operate on a consistent and 
structural input format, thereby facilitating more 
effective learning and generation of text. 
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3.2.2 Input padding sequence 

Once tokenization is completed, the text data are 
transformed into numerical sequences. However, 
these sequences can vary in length, and NNs 
typically need input data to be of uniform length. 
The pad sequence function from Keras is typically 
used for padding. This function takes a list of 
sequences and pads them to the desired length. The 
input sequences are split into predictors (all but the 
last word in each sequence) and labels (the last 
word), and the labels are then converted into a one-
hot encoded format for training a neural network to 
predict the next word in the Kannada text sequences. 
After padding and splitting the input sequence into 
predictors (sequences excluding the last word) and 
labels (the last word), the uniform-length input 
sequences are prepared and fed into the neural 
network for training. Thus, Figure 3 shows the input-
padding sequences. 

Figure 3. Input and padding sequences 

3.3 Conditional generative adversarial 
network 

A GAN encompasses 2 major parts, which include a 
generator and a discriminator. The generator 
produces the data that are likely, which seem to be 
from the training data; however, the discriminator 
attempts to differentiate the data generated by the 
generator as real or fake data. The discriminator 
castigates the generator to create improbable 
outcomes. The generative model aids in capturing 
the distribution of data and is trained in such a way 
that it generates a new sample, which attempts to 
exploit the probability of the discriminator to make 
a mistake. However, the discriminator performs well 
in classifying the sample it receives from the training 
data and further minimizes the accuracy of the GAN. 
Therefore, the GAN network is expressed as min–
max, in which the discriminator focuses on 
minimizing the rewards and the generator helps in 
maximizing the discriminator loss. 

Although the GAN has different advantages, there 
are major disadvantages of employing a GAN, such 
as unstable performance and sensitivity to 
hyperparameters, making it quite daunting to detect 
the right settings for optimal performance. This 

instability can lead to challenges in word sentence 
suggestion systems. Therefore, the proposed 
research opts for the cGAN to suggest the right 
words, as the cGAN can generate higher-quality 
samples than can the traditional GAN by leveraging 
the additional conditioning information. In addition, 
cGANs can adapt various types of input data and 
conditions, making them extremely versatile for 
different spelling corrections and word suggestion 
scenarios, irrespective of language. Furthermore, 
cGAN models offer better stability during training 
by leveraging paired distributions, reducing the 
volatility seen in standard GAN models. Owing to 
these factors, the proposed research work opts for 
the cGAN model. 

A cGAN is an extension of the traditional GAN and 
is designed for enhancing the control over the 
generated outputs by incorporating additional 
conditioning information. This allows for more 
targeted data generation depending on the specific 
attributes or labels. The architecture of cGANs 
mirrors that of conventional GANs but introduces a 
crucial modification: both the generator and 
discriminator networks, which receive additional 
input in the form of conditioning information. 

3.3.1 Generator Network 

The generator takes 2 inputs, which include arbitrary 
noise sampled from a predefined distribution and 
conditioning information. It processes these inputs 
to produce synthetic data samples that not only look 
like real data but also conform to the characteristics 
specified by conditioning information 𝑦𝑦. This allows 
for the generation of data that meet the particular 
criteria on the basis of the provided label. 

3.3.2 Discriminator network 

The discriminator receives both real data samples 
and produced samples 𝑎𝑎 from the generator, along 
with the same conditioning information 𝑦𝑦. The 
functionality of the discriminator is to evaluate 
whether the input data generated are real data or 
generated data while considering the conditioning 
information. This dual input allows it to assess both 
the authenticity of the data and its consistency with 
the specified conditions. 

3.3.3 Conditioning 

The incorporation of additional input into both the 
generator and discriminator ensures that the 
generated outputs are not only coherent but also 
aligned with specific characteristics and 
requirements described by the conditioning 
parameters. This mechanism enhances the model’s 
ability to yield targeted and contextually relevant 
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outcomes, thereby enhancing the overall quality and 
applicability of the generated data. Hence, the 
overall working mechanism of the cGAN is shown 
in Figure 4. 

Figure 4. cGAN mechanism 

Figure 4 shows the process involved in the cGAN. 
Here, the cGAN applied to the Kannada character 
suggestion uses conditional inputs to generate 
sequences of Kannada characters that meet specific 
criteria. During the training phase, the generator 
component of the cGAN receives two types of 
inputs: a random noise vector sampled from a latent 
space and conditional information that specifies the 
desired attributes or characteristics of the Kannada 
character sequences. The main objective of the 
generator is to generate character sequences that are 
not only realistic but also consistent with the given 
conditions, such as starting with a particular letter or 
adhering to a specific pattern. This approach 
enhances the relevance and accuracy of the 
generated character suggestions, making them more 
useful for application in text processing and input 
correction. On the other hand, the discriminator in 
the cGAN is responsible for distinguishing between 
real Kannada character sequences and those 
generated by generators. It also receives the same 
conditional input as the generator does, enabling it 
to assess the authenticity and adherence of generated 
sequences to the specified conditions. Through 
adversarial training, where the generator plans to 
trick the discriminator and discriminator actions to 
accurately order genuine from produced 
successions, the cGAN improved iteratively. 
Similarly, the figure shows the internal modules of 
the generator and discriminator. 

3.4 Long short-term memory 

To overcome the weaknesses of ordinary recurrent 
neural networks in learning and recalling long-haul 
conditions in consecutive information, LSTM 
networks were constructed. Unlike a conventional 
RNN, which tussles with vanishing gradient 
delinquency, an LSTM utilizes a distinctive style 
that includes a memory cell and a gating mechanism. 
Each LSTM typically consists of a cell state, which 
acts as a memory that carries information across 
time steps and 3 gates, such as the forget gate, input 
gate and output gate. 

• Forget Gate: An LSTM unit’s forget
gate is in charge of deciding how much 
of the prior cell state to keep or discard
when fresh data enter the network.
Concatenation of the current input
with the preceding hidden state is what
it accepts as input. The information has 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 enactment capability, which
yields a numeral anywhere in the range 
of 0 to 1 for each number in the cell
state. A total of 0 methods fail to
remember these data, whereas a total
of 1 method results in these data.

• Input Gate: An LSTM unit’s input
gate regulates how much different
detail is incorporated into the cell state.
It consists of two essential
components: an 𝑡𝑡𝑡𝑡𝑡𝑡ℎ layer and an
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 layer, known as the input
gate layer. The 𝑡𝑡𝑡𝑡𝑡𝑡ℎ layer generates a
vector of potential new values that can
be incorporated into the state, whereas
the sigmoid layer regulates which of
these values needs to be altered.

• Output Gate: An LSTM unit’s result
entryway determines the secret
expression that is shipped off the result
of the model and the resultant time
step. In view of the earlier covered
state and the ongoing information, it
determines what segments of the cell
state ought to be yielded. The outcome
entryway includes an 𝑡𝑡𝑡𝑡𝑡𝑡ℎ layer that
makes a vector of new outcome values
and an 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 layer that picks which
parts of the cell state are yielded.

The operations within an LSTM network are defined 
by several key gates and state variables. The forget 
gate, input gate, and output gate regulate the flow of 
information in the cell. Below is the description of 
each operation with its corresponding equation. 

Forget Gate Activation: The forget gate controls the 
portion of the previous cell state that should be 
retained or discarded. Here, the decision-making 
process is achieved via a sigmoid function, which 
processes both the current input and the hidden state 
from the previous timestamp, allowing the proposed 
model to dynamically adjust its memory on the basis 
of the current context. By effectively controlling 
what information is retained or discarded, the forget 
gate enables LSTMs to maintain long-term 
dependencies and adaptively respond to new inputs, 
thereby facilitating performance. This is 
mathematically represented by: 

𝑓𝑓𝑓𝑓𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝜎𝜎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑊𝑊𝑊𝑊𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓  ·  𝑚𝑚𝑡𝑡  +  𝑈𝑈𝑓𝑓𝑓𝑓𝑓𝑓  ·  ℎ𝑡𝑡 − 1 +
 𝑏𝑏𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓 )      (1) 
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where ht −1 represents the hidden state from the 
preceding time step, 𝑓𝑓𝑓𝑓𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔  represents the forget 
gate, 𝜎𝜎𝑔𝑔 represents the sigmoid activation function, 
𝑊𝑊𝑊𝑊𝑖𝑖𝑓𝑓 and   𝑈𝑈𝑓𝑓 represent the weight matrices, 𝑏𝑏𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓  
represents the bias of the forget gate, mt represents 
the input at time t, and bf represents the bias term. 

Input Gate Activation: The input gate regulates the 
amount of new detail that is incorporated into the 
cell state. The corresponding equation 2 is as 
follows: 

𝐼𝐼𝐼𝐼𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  =  𝜎𝜎𝑔𝑔(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  ·  𝑚𝑚𝑡𝑡  +  𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 ·  ℎ𝑡𝑡 − 1 +
 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖) 

(2) 

In the equation, 𝐼𝐼𝐼𝐼𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  is denoted as the input gate, 
𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 signifies the weight matrix of the input gate, 
and 𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 signifies the bias term of the input gate. 

Cell input activation: The cell input activation phase 
estimates candidate values for updating the cell 
state, given by 

 𝑐𝑐𝑡𝑡� =  𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑊𝑊𝑊𝑊𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  ·  𝑚𝑚𝑡𝑡  + 𝑈𝑈𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  ·  ℎ𝑡𝑡 − 1 +
 𝑏𝑏𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) (3) 

where 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is the activation function used for 
generating candidate values, 𝑊𝑊𝑊𝑊𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑈𝑈𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  are 
the weight matrices for the cell input, and 𝑏𝑏𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is 
represented as a bias term. 

Update the cell state: the updated cell state is an 
amalgamation of the preceding cell state and the 
candidate values. It is calculated via equation (4). 

𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑡𝑡 = 𝑓𝑓𝑓𝑓𝑟𝑟𝑡𝑡. 𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡−1 + 𝑖𝑖𝑖𝑖𝑝𝑝𝑡𝑡. 𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡 

(4) 

where  𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡 signifies the updated cell state and 
where 𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡−1 is the preceding cell state. 

Updated Hidden State: Eventually, the hidden state 
output is estimated depending on the updated cell 
state, as depicted in equation 5: 

ℎ𝑡𝑡 = 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡. 𝜎𝜎𝑐𝑐(𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡) 

(5) 

Here, the hidden state ℎ𝑡𝑡 is derived by applying the 
output gate activation, 𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡 is transformed by the 
activation function 𝜎𝜎𝑐𝑐, and 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡 is represented as the 
cell state. 

Finally, training and testing take place. During the 
training phase, a dataset curated by users, which 
includes correctly spelled words, is utilized to teach 
the model. This process enables the LSTM model to 
learn significant patterns and characteristics, 
allowing it to make predictions. Furthermore, by 
analysing the relationships within the data, the 

proposed model becomes apt at recognizing 
linguistic structures, thereby enhancing the 
performance in tasks such as text generation or error 
correction. Thus, the internal mechanism carried out 
is shown in Figure 5. 

Figure 5. Internal mechanism 

Figure 5 shows that the input parameters such as 
Kannada letters are passed to the model, where the 
input layer is responsible for accepting sequences of 
letters and characters. Later, it enters the LSTM 
layer, where the LSTM layer effectively handles the 
sequential data and maintains the context across 
longer sentences, enabling more precise predictions 
of the next words depending on the previous words 
in a sequence. Eventually, the output layer shows the 
word suggested on the basis of the input given to the 
model. 

3.5 Hyperparameter tuning 

Hyperparameter tuning refers to systematically 
adjusting parameters in an AI model that are not 
learned during training but have an important 
influence on its performance and behavior. It 
includes aspects such as the learning rate, batch size, 
number of epochs, and architectural elements of the 
model itself, such as layer sizes and activation 
functions. Unlike model parameters (weights and 
biases), which are updated during training on the 
basis of the data, hyperparameters are set before the 
training process begins and typically require manual 
intervention and experimentation for optimization. 
The objective of hyperparameter tuning is to 
treasure the mix of values that grow the model’s 
display estimations, for instance, accuracy or 
disaster, on an endorsement set or during cross-
endorsement. Therefore, Table 2 shows the 
hyperparameters used in the proposed work for the 
word suggestion system. 

Table 2 Hyperparameter tuning 

Parameters Description 

Learning 
Rate 

⮚ The learning rate of
0.002 for the LSTM in 
the generator of cGAN 
indicates a careful 
balance between 
stability and efficiency in 
training. 
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⮚ In the context of LSTMs,
which are used for 
sequence prediction 
tasks like generating 
Kannada words, 
selecting the right 
learning rate is vital to 
ensure the model can 
learn intricate patterns 
over time. 

Epochs ⮚ Increasing the number of
epochs to 30 means that 
the model will go through 
the complete training 
dataset 30 times. 

⮚ This decision suggests a
more thorough training 
process, allowing the 
model to learn deeper 
patterns from the data. 

Batch Size ⮚ Increasing the number of
epochs to 30 means that 
the model will pass 
through the complete 
training dataset 30 
times. This decision 
suggests a more 
thorough training 
process, allowing the 
model to study deeper 
patterns from the data. 

Loss 
Function 
(Binary 
Cross 
Entropy) 

⮚ The loss function
evaluates the accuracy 
of the model predictions 
in relation to the actual 
target values. 

⮚ For the cGAN setup,
binary cross entropy 
(BCE) is used as the 
loss function, suitable for 
distinguishing between 
real and generated data. 

Optimizer 
(Adam) 

⮚ The optimizer refreshes
the model loads to 
restrict the mishap 
capacity. 

⮚ Adam (Flexible Second
Evaluation) is picked for 
its adaptable learning 

rate limits and powerful 
treatment of pitiful 
tendencies. 

4. Results and discussion

The results obtained via cGAN for word suggestion 
with the aim of correcting spelling mistakes are 
depicted below. In addition, a web-based application 
output is also demonstrated. 

4.1 Environmental Configuration 

Table-3 Implementation Detail 

Hardware-
Configuration 

Software-
Configuration 

CPU-Intel Core i7-

7700@2.80 GHz  

Windows 11 

GPU - GTX 1050 Python-3.7 

RAM: 16 GB Anaconda-Spyder  

Table 3 shows the environmental setup used by the 
proposed model for obtaining better outcome, where 
hardware configuration of CPU with Intel core i7, 
GPU of GTX 1050 and RAM of 16 GB model. For 
software configuration, Windows 11 OS, python 3.7 
and Anaconda Spyder is used. 

4.2 Experimental Outcomes 

The experimental outcome obtained via the cGAN 
is demonstrated in the subsequent section. Figure 6 
shows D loss and G loss for the cGAN model. 

Figure 6. cGAN generator and discriminator 
loss 

In a cGAN, the goal is for the generator to deliver 
information that is unclear from genuine information 
to the discriminator. This adversarial process leads 
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both networks to improve iteratively. The stability 
of the metrics across the epochs suggests that the 
networks are in equilibrium, where neither the 
generator nor the discriminator is gaining a 
significant advantage over the other. 

4.2.1 Discriminator Metrics 

• D loss: This measures how effective
the discriminator is at recognizing
genuine and created information. A
lower D misfortune shows that the
discriminator is better at its
undertaking.

• D accuracy: This measurement reflects
the accuracy of the discriminator in
accurately characterizing genuine and
produced information tests. Higher
precision corresponds to better
execution.

4.2.2 Generator metrics 

• G loss: This evaluates how well the
generator is fooling the discriminator.
A decreasing G loss suggests that the
generator is improving at generating
more realistic data.

Figure 7. Discriminator Loss 

Figure 7 shows the discriminator loss for an epoch 
of 30. The discriminator loss (D loss) is a crucial 
metric in cGANs, reflecting how well the 
discriminator model distinguishes between real data 
and generated data. Figure 6 shows the discriminator 
loss for an epoch of 30. The cGAN was trained via 
TensorFlow, and the D loss was monitored 
throughout the training process. The cGAN consists 
of a generator model that learns to generate synthetic 
data and a discriminator model that learns to 
distinguish between real and generated data. The 
models have trained adversarially, where the 

generator seeks to reduce its loss by fooling the 
discriminator, while the discriminator aims to 
maximize its accuracy in distinguishing between 
real and fake data. Initially, the D loss values were 
relatively high, averaging approximately 0.693. This 
high starting point indicates that the discriminator 
faced challenges in accurately classifying real and 
generated data, possibly because the generator 
produced outputs that were easily distinguishable as 
fake. As training progressed, the D loss exhibited a 
trend on the graph. The gradual decline in D loss 
values over epochs indicates that the discriminator 
improved its ability to differentiate between real and 
generated data. This trend is indicative of the 
discriminator becoming more apt at differentiating 
realistic data from synthetic outputs. 

During mid-training, fluctuations in D loss were 
observed. These fluctuations are characteristic of the 
combative training process, where both the 
generator and discriminator continuously adapt and 
refine their strategies. The graph displays these 
fluctuations as oscillations or minor peaks and 
valleys. Towards the later epochs, the D loss 
stabilized or showed consistent behavior. This 
stabilization phase on the graph signifies that the 
discriminator reached a level of proficiency where it 
consistently classified real and generated data with 
higher accuracy. 

Figure 8. Generator loss 

Figure 8 shows the generator loss. The generator 
loss (G loss) is a critical metric in cGANs, reflecting 
how well the generator model learns to produce 
outputs that mimic real data. cGAN was trained via 
TensorFlow and monitored the G loss throughout 
the training process. The cGAN comprises a 
generator model that yields artificial data and trains 
a discriminator model to discern between artificial 
and genuine data. The models were trained 
adversarially, with the discriminator trying to 
increase its accuracy in identifying real data from 
fake data and the generator trying to minimize its 
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loss by tricking the discriminator. In the initial 
epochs, the G loss values were relatively high, 
averaging approximately 0.693. This high starting 
point indicates that the generator initially produced 
outputs that were easily discernible as fake by the 
discriminator. As training progresses, the G loss 
gradually decreases on the graph. This decline 
signifies that the generator improved its ability to 
produce outputs that more closely resembled real 
data, thereby challenging the discriminator’s 
capacity to recognize genuine and produced 
information. 

During mid-training, changes in G misfortune were 
observed. These oscillations are normal for the ill-
disposed preparation process, where both the 
generator and discriminator continuously adapt and 
improve their strategies. The graph displays these 
fluctuations as oscillations or small peaks and 
valleys. Towards the later epochs, the G loss 
stabilized or consistently decreased. This 
stabilization phase on the graph indicates that the 
generator achieved a level of performance where it 
consistently generated outputs that were 
increasingly difficult for the discriminator to classify 
as fake. Additionally, a lower loss component 
(0.408) was identified, which reflected the effects of 
regularization techniques applied during training. 

4.3 Front-end application outcomes 

Figure 9 illustrates the web interface results 
suggesting words using Flask. Flasks are versatile 
web frameworks that facilitate the development of 
web applications and offer various advantages for 
building applications because of their simplicity and 
flexibility. Thus, Figure 9 shows the working 
interface of the model, where similar words are 
generated on the basis of the query word. 

Figure 9. Web interface showing results 

The front-end web interface application is designed 
for retrieving words starting with a particular letter 
in Kannada and involves several key components to 
ensure a seamless user experience. The interface 
begins with a simple yet effective user input 

mechanism, typically featuring a text input field 
where users can enter a single letter or a sequence of 
letters in the Kannada script. This input is 
complemented by a submit button that triggers the 
request to the backend server for data retrieval. 
Upon submission, the front end sends an HTTP 
request to the backend, transmitting the specified 
letter(s) as parameters or within the request body. 
This interaction is crucial for initiating the 
backend’s processing logic, which is responsible for 
handling the user query. 

4.4 Discussion 

Assamese [21], Urudu [24], Punjabi [26], 
Azerbaijani [27], Indonesian [22] and many more 
using different approaches like LSTM, BiLSTM, 
Seq2Seq models and other, and the accuracy 
obtained by these models are 92% [21], 87% [25]. 
However, uniqueness of the proposed model lies by 
employing cGAN model along with LSTM as most 
existing works have not employed by using GAN 
network architecture, in cGAN, the generator model 
learnt to produce plausible Kannada words on the 
basis of initial character inputs, whereas the 
discriminator model is prepared to recognize 
genuine and created words. By doing, effective word 
suggestion process takes place. Moreover, the 
accuracy gained by the proposed model is 94.4% 
which is higher than the existing works. Therefore, 
by covering Kannada language with better 
numerical outcome of the present model makes it 
effective and efficient than state-of-the-art 
approaches.  

The proposed cGAN-LSTM model achieves higher 
accuracy (94.5%) compared to previous studies, 
demonstrating superior spell correction performance 
in Kannada. The incorporation of adversarial 
learning and contextual embeddings enhances the 
model’s ability to generate precise spell corrections. 

5. Conclusion

The present research focuses on creating a Kannada 
word suggestion system utilizing a cGAN integrated 
with a web interface. By leveraging AWS S3 for 
data storage and employing TensorFlow for model 
development, the objective was to train cGAN 
models to propose Kannada words on the basis of 
the letters input by users, ensuring seamless 
integration with flasks for deploying the web 
application. Through careful preparation of the 
dataset, tokenization and training of the LSTM 
model, the system achieved precise word 
predictions. The cGAN model demonstrated 
efficient learning dynamics, as evidenced by the 
convergence of the loss for both the discriminator 
and generator throughout the training epochs. The 
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stabilization of the D loss indicated a heightened 
accuracy in differentiating between authentic and 
generated data, whereas the decrease in G loss 
demonstrated an improved ability to produce 
realistic Kannada words. The frontend web interface 
provides an intuitive platform for users, enabling 
easy input of letters and quick display of word 
suggestions. This seamless integration of frontend 
and backend elements not only highlights the 
application of sophisticated ML techniques in NLP 
but also emphasizes the importance of user-centered 
design in effectively implementing such solutions. 

In the future, a more sophisticated DL architecture, 
such as the transformer model, can be used, as it has 
the potential to greatly improve the prediction 
accuracy and contextual comprehension of Kannada 
text. Furthermore, expanding the system to 
accommodate additional languages beyond the 
Kannada language by using transfer learning and 
multilingual models would enable it to address a 
wider range of linguistic requirements as the present 
work limits to Kannada language, thus enhancing its 
applicability and effectiveness across different 
linguistic environments.  
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