
EAI Endorsed Transactions
on Internet of Things Research Article

Spellbound Kannada: Harnessing Conditional
Generative Adversarial Networks for
Transformative Word Suggestion Systems in
Kannada Language Processing
Prathibha R J1, Anupama N2*, Sudarshan A S3
1,3Department of Information Science and Engineering, JSS Science and Technology University, Mysore,
Karnataka, India
2Department of Electronics and Communication Engineering, Vidyavardhaka College of Engineering, Mysuru,
Karnataka, India

Abstract

INTRODUCTION: The advancement of a word suggestion system model is driven by the need to enhance user
interaction and efficiency in digital communication. Hence, the word suggestion system helps minimize
typographical errors and spelling mistakes. Therefore, various traditional methods are used to suggest words
to sentences; however, these traditional models are extremely time consuming, prone to errors and tedious.
METHODS: Owing to these factors, the present paper focuses on developing a Kannada word suggestion
system using cGAN (Conditional Generative Adversarial Networks), as this system is designed to significantly
enhance user interaction by offering predictive text suggestions in the Kannada language. RESULTS: The
training dataset, which resides on AWS S3, comprises a comprehensive collection of Kannada texts utilized
for both training and validation purposes. Furthermore, the implementation of the model leverages the
TensorFlow and keras framework, specifically employing long short-term memory (LSTM) networks for
effective sequence prediction and generation. LSTMs are particularly advantageous in NLP processing because
they can capture long-term dependencies within sequential data. To facilitate user interaction, a web-based
interface has been developed using Flask, enabling users to input initial characters and receive dynamically
generated Kannada word suggestions. CONCLUSION: This paper not only delves into the application of
cGANs within the realm of NLP but also illustrates practical deployment strategies utilizing cloud services and
modern web technologies. Overall, the proposed approaches demonstrate the potential of the cGAN in
enhancing the user experience through intelligent text prediction systems tailored for the Kannada language.

Keywords: Natural Language Processing, Word Suggestion System, Conditional Generative Adversarial Network, Kannada,
LSTM

Received on 11 November 2024, accepted on 20 February 2025, published on 01 April 2025

Copyright © 2025 Dr. Prathibha R J, Anupama N and Sudarshan A S, licensed to EAI. This is an open access article
distributed under the terms of the CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and
building upon the material in any medium so long as the original work is properly cited.

doi: 10.4108/eetiot.7792

1. Introduction

Natural language is the way in which people
communicate with each other about their knowledge
[1], feelings, and emotions [2, 3]. Different native

*Corresponding author. Email: anupama.n@vvce.ac.in

languages with unique alphabets, signs, and
grammar can be found all over the world. India is the
country that has the most ancient and
morphologically diverse regional language variants
[4]. Compared with other natural languages,
computers can process data represented in English

EAI Endorsed Transactions
on Internet of Things
| Volume 11 | 2025 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:anupama.n@vvce.ac.in

 Prathibha R J, Anupama N & Sudarshan A S

2

via conventional ASCII codes rather easily [5].
However, developing a machine’s ability to
comprehend other natural languages is difficult and
requires a variety of approaches [6]. NLP provides a
wealth of techniques for understanding and
manipulating languages such as Kannada [7].
Hence, different AI methods are used for supervised
DL approaches for correcting spelling errors in
multilingual texts, specifically those in the Persian
and Arabic languages. This method employs a CRF-
based RNN model [8] for identifying and rectifying
spelling mistakes. The research generated a dataset
containing 220,000 sentences with intentionally
introduced errors, emphasizing the design of
effective contextual features. Similarly, the author
concentrated on creating a model for detecting
misspelled Assamese words [9]. This highlights how
misspellings can negatively affect readability and
understanding of the language. By incorporating
contextual information from phrases, the model uses
BiLSTM and LSTM to enhance the detection of
spelling errors. Experiments were conducted on a
dataset of 2,000 sentences and revealed that the
BiLSTM model outperformed the LSTM model.

While NLP excels at sentiment analysis and speech
recognition [10], predicting full Kannada words via
a single alphabet is a difficult issue. Kannada
characters can have different pronunciations
depending on context [11, 12]. A single consonant
might have many vowel sounds connected with it
[13]. There are alternatives to full-word prediction.
The system may generate a list of possible Kannada
letters that follow the supplied alphabet, making it
easier for users to type in Kannada. Furthermore, if
a Kannada dictionary is provided, it may suggest
whole words on the basis of the single alphabet
entered, even though this would not be considered
an NLP prediction. In essence, predicting complete
Kannada words with high accuracy on the basis of a
single alphabet is currently not possible via NLP
algorithms. The proposed method uses the cGAN to
train the model and envisages the Kannada words. In
a GAN, the generator and discriminator engage in a
viable learning process. The discriminator role is to
differentiate between real data and the synthetic data
produced by the generator. Moreover, the generator
aims to create artificial data such as Kannada words
or phrases that loosely resemble authentic samples
from a training dataset. Through this adversarial
training, the generator gradually improves its ability
to produce more realistic outputs. Additionally,
cGANs enhance the basic framework by
incorporating extra information, such as class labels
and context vectors, to better guide the generation
process. In NLP tasks, such as spelling suggestion
and correction, cGANs can utilize contextual
information derived from surrounding text. This
allows them to produce realistic corrections for
misspelled words to sentences. By adopting this

conditional strategy, the relevance and accuracy of
the generated outputs are significantly improved,
making cGANs particularly effective for
applications that demand context-sensitive language
generation and error correction.

1.1 Research Objectives

The major objectives of the research paper are as
follows:

• To employ the cGAN, the generator
model learns to produce plausible
Kannada words on the basis of initial
character inputs, whereas the
discriminator model is prepared to
recognize genuine and created words.

• To leverage long short-term memory
networks for sequence prediction and
generation.

• To use Flask to allow users to input
initial characters and receive
dynamically generated Kannada word
suggestions.

1.2 Paper Organisation

The paper is structured as follows. Section 2
addresses existing works performed by various
researchers. Section 3 focuses on employing and
implementing the proposed work for word
suggestion systems. Section 4 focuses on the results
obtained via the proposed model, and finally,
Section 5 summarizes the entire research work along
with future directions.

2. Literature Review

Various methodologies adopted by existing works
for spelling error detection are reviewed in the
following section.

Spelling errors often arise from typing mistakes in
text documents. Currently available spell checkers
are quite basic and are primarily developed via
conventional approaches such as role-based
methods and statistical approaches. Therefore,
HINDIA [14] was used to address spelling errors in
the Hindi language. To do so, the study has two
distinct phases: the 1st stage involves detecting
incorrect works in the input text, while the 2nd stage
replaces these erroneous words with the most likely
correct alternatives. The HINDIA model is built by
employing an attention-based encoder-decoder
BiRNN (bidirection Recurrent Neural Network),
which incorporates LSTM cells. Therefore, various
enhancements have been made to BiRNN, and the
network has been fine-tuned to address spelling
errors efficiently in the Hindi language. Moreover,

EAI Endorsed Transactions
on Internet of Things
| Volume 11 | 2025 |

 Prathibha R J, Anupama N & Sudarshan A S

3

the BiRNN model was compared with the
Malayalam language spell checker system; however,
the findings revealed that the better HINDIA model
delivered better performance than existing spell
checkers did. Similarly, an approach for correcting
various context-sensitive spelling errors via the DL
approach is emphasized in the suggested work,
where a correction model termed the autoregressive
(AR) language technique is used for prediction in the
next work via a unidirectional context, and an
autoencoder (AE) language model is used for
restoring words via bidirectional context
information.

LSTM- and BiLSTM-based algorithms [9] have
been used in existing works for precisely detecting
misspelled words by assessing the perspective of
each word in a sentence. Here, more than 2677
Assamese sentences are used, which consists of both
correctly spelled and incorrectly spelled words.
Similarly, LSTM [15] has been used for a potential
suggestion system, in which the model has used
error detection techniques to improve the
performance and enhance the accuracy of the spell
checker technique for the Punjabi language.
Similarly, the BiLSTM model has been used for
correcting spelling mistakes by means of a
transformed input and stochastic error injection
technique for Arabic text. Here, the model uses 2
BiLSTM [16] layers and dropout regularization and
then trains with an error injection rate. In addition,
future work will focus on handling Arabic spelling
correction along with letter diacritization in one
problem space. Similarly, two different techniques
[17] were used to correct spelling errors in Persian
text, where the first method relied on using the rule
technique and the other method relied on employing
the DNN-based LSTM approach. A total of 112
rules were established to address spelling mistakes
resulting from phonetic similarities and
typographical errors, offering recommended works
for those not recognized in the dataset. For
evaluation purposes, a set of 2500 word sentences
containing spelling errors was used, and the word
with the smallest Levenshtein distance was selected
as the correct option in this approach. In the DL
framework, an LSTM unit was implemented,
incorporating word embeddings in the input layer
along with the capsule layer, convolution and,
eventually, max pooling. An artificial dataset
comprising 1.2 million entries was created to terrain
the DNN; out of this, 800,000 sentences were used
for training and 200,000 for testing, while the
remaining sentences were reserved for evaluation
purposes. The findings of this study demonstrated
that the DL-based LSTM model has better outcomes
than the traditional rule-based approach.

Language is considered the most fundamental means
of communication, in which grammar plays an
important role in the excellence of a language.

Therefore, [18] used a DL-based LSTM model for
the grammar validation mechanism, as this model
addresses these problems and proposes the
development of a grammar-checking mechanism
specifically for the Kannada language. In this
context, the model aims to accomplish the required
categorization by leveraging context-based data
retention via Word2VEc, along with the use of
TensorFlow and Keras libraries. Spelling mistakes
can occur in text for various reasons, such as typing
errors or a lack of knowledge about correct
phonemes. In languages that feature intricate works,
such as Sandhi, where multiple morphemes are
combined according to specific rules, spell checking
can become quite challenging. In these cases, a spell
checker equipped with a Sandhi splitter [19] is
particularly beneficial, as it can notify users of errors
and offer helpful suggestions for correction.
Therefore, this study uses a spell checker with a
Sandhi splitter for improved results for better
suggestions. This mechanism generates a
comprehensive list of suggestions for considering
both the meaning and context of the word in
question. Likewise, error generation algorithm [20]
has used in the study for fine tuning the task of spell
checking for Persian language. Moreover, Burmese
language has explored in the study for spelling
training using Symmetric Delete Spelling
Correction Algorithm. The result investigated that
the performance of each error type and studied the
importance of the dictionary depending on the
average term length and maximum edit distance for
Burmese spell checker based on SymSpell.
Therefore, Table-1 showcases the summary of the
existing models.

Table 1 Directory tree structure of the Mask
RCNN system

Ref Method Language Findings
[21] LSTM

and
BiLSTM

Assamese The
findings of
the work
has stated
that LSTM
model
attained
accuracy of
92% and
BiLSTM of
93%.

[22] An
LSTM
model
that
encodes
input
word at
characte
r level,
that also

Indonesia
n

The
accuracy
obtained by
the Char-
LSTM for
Indonesian
language is
90%.
However, it
was

EAI Endorsed Transactions
on Internet of Things
| Volume 11 | 2025 |

 Prathibha R J, Anupama N & Sudarshan A S

4

uses
word and
POS tag
contexts
as
features.

identified
that, for
training
dataset
accuracy
obtained is
83.76%.

[23] The
Study
has used
SpellBE
RT

Chinese SpellBERT
can be
directly
used
without
confusion
set in the
fine-tuning
and
inference
phase,
which is
more
convenient
to use and
easier to
deal with
the errors
uncovered
by the
existing
confusion
sets

[24] Hybrid
Model
which
consiste
d of N-
gram,
LCS,
Shapex
and
Soundex
ranking
algorith
m

Urdu Outcome of
the model
has proved
that, F1
score
gained is
88.29%.

[25] LSTM
with
word
embeddi
ng layer

Persian The
accuracy
obtained by
the LSTM
network is
87%.

[26] LSTM
along
with rule
based
approac
h and
minimum
edit
distance

Punjabi The
outcome of
the work
revealed
that LSTM
predicted
best
possible
suggestion
s by
computing

strong
relationship
of word
with
previous
sequence
and makes
possible
words
available
for
correction

[27] Sequenc
e to
sequenc
e
(Seq2Se
q) model
with
attention
mechani
sm is
used to
develop
spelling
correctio
n for
Azerbaij
ani

Azerbaijan
i

It is
exposed
that, when
the
distance is
0 and 1, the
accuracy
value
obtained is
75% and
90%.

2.1 Gaps Identified

A review of existing works revealed that very few
studies have covered the use of the Kannada
language for word suggestions and spell-check
approaches because Kannada is a unique semantic
and syntactic properties, which can make it
challenging to develop NLP tools compared to more
widely studied languages. Additionally, its complex
grammar and morphology require tailored
approaches that are often not available or are less
developed. Therefore, the proposed work focuses on
the word suggestion system using the cGAN model
for the Kannada language, as Kannada is considered
one of the important languages in India and has
complex scripts and grammar. Moreover, with the
increasing use of Kannada in various digital
platforms, generating a word suggestion and
spelling correction model for enhancing the user
experience and communication quality is important.
Hence, the subsequent section addresses the
implementation of the proposed model in detail.

3. Research Methodology

The proposed work for the Kannada word
suggestion system is discussed in the subsequent

EAI Endorsed Transactions
on Internet of Things
| Volume 11 | 2025 |

 Prathibha R J, Anupama N & Sudarshan A S

5

section. Thus, Figure 1 shows the overall
mechanism of the model.

Figure 1. Overall Flow

Figure 1 depicts the process involved in the
proposed work. When the model is carried out by
loading the dataset, the data presented in the dataset
are preprocessed via various techniques. After the
preprocessing technique, the cGAN model is
trained, and the LSTM algorithm is further applied.
The model is subsequently tested and validated via
different techniques.

3.1 Data Collection

The raw textual data for the proposed work
encompass a comprehensive dataset featuring
Kannada words and phrases. This dataset consists of
approximately 10,000 sentences in Kannada,
serving as a foundational resource for training the
model for effectively predicting and generating text
in the Kannada language.

The data are organized as a collection of text files,
each containing sentences or paragraphs written in
Kannada. These text files undergo a tokenization
process, wherein the content is segmented into
individual words or sequences of words. Hence, the
subsequent section focuses on employing various
preprocessing techniques to enhance the
performance of the model by using different
approaches.

3.2 Preprocessing Approaches

3.2.1 Tokenization

Tokenization is a crucial preprocessing technique
that aids in transforming a sequence of text into
smaller, manageable units known as tokens. These
tokens can represent various linguistic elements,
including words, phrases or even individual
characters. The tokenization process typically
involves segmenting the text into discrete

components, such as individual words or subword
units. This method not only facilitates the model’s
comprehension of the structure and segmentation of
the Kannada language but also enhances its ability
to process and generate text effectively. By
converting words into unique integer
representations, the model can effectively manage
and analyse linguistic data, paving the way for
improved performance in NLP tasks. Hence, Figure
2 depicts the Kannada words tokenized into unique
integers.

Figure 2. Tokenzied Text

As illustrated in Figure 2, the Kannada words have
been tokenized and mapped to unique integers, and
the process involved is discussed.

• Creation of vocabulary: The tokenizer
systematically analyses the entire text
corpus to construct a comprehensive
vocabulary, which comprises all
unique tokens present within the
dataset. Each distinct token in this
vocabulary is consequently allocated a
unique integer identifier. This process
is instrumental in standardizing textual
data into a numerical format that can
be efficiently interpreted by the model.

• Word-to-integer mapping: Once the
vocabulary is established, each term
within the textual data is assigned an
associated identifier through a
systematic mapping process. This
entails creating a dictionary structure
where each unique word is linked to a
specific integer value.

• Tokenization: The text is then
converted into sequences of integer
identifiers.

Through the conversion of textual words into
numerical representations, tokenization enables the
model to effectively process and learn from the
underlying text data. In the context of the proposed
methodology utilizing cGANs, tokenization plays a
crucial role by providing both the generator and
discriminator with a uniform numerical format of
the Kannada text. This standardization enhances the
training process and improves predictive accuracy,
as it allows the models to operate on a consistent and
structural input format, thereby facilitating more
effective learning and generation of text.

EAI Endorsed Transactions
on Internet of Things
| Volume 11 | 2025 |

 Prathibha R J, Anupama N & Sudarshan A S

6

3.2.2 Input padding sequence

Once tokenization is completed, the text data are
transformed into numerical sequences. However,
these sequences can vary in length, and NNs
typically need input data to be of uniform length.
The pad sequence function from Keras is typically
used for padding. This function takes a list of
sequences and pads them to the desired length. The
input sequences are split into predictors (all but the
last word in each sequence) and labels (the last
word), and the labels are then converted into a one-
hot encoded format for training a neural network to
predict the next word in the Kannada text sequences.
After padding and splitting the input sequence into
predictors (sequences excluding the last word) and
labels (the last word), the uniform-length input
sequences are prepared and fed into the neural
network for training. Thus, Figure 3 shows the input-
padding sequences.

Figure 3. Input and padding sequences

3.3 Conditional generative adversarial
network

A GAN encompasses 2 major parts, which include a
generator and a discriminator. The generator
produces the data that are likely, which seem to be
from the training data; however, the discriminator
attempts to differentiate the data generated by the
generator as real or fake data. The discriminator
castigates the generator to create improbable
outcomes. The generative model aids in capturing
the distribution of data and is trained in such a way
that it generates a new sample, which attempts to
exploit the probability of the discriminator to make
a mistake. However, the discriminator performs well
in classifying the sample it receives from the training
data and further minimizes the accuracy of the GAN.
Therefore, the GAN network is expressed as min–
max, in which the discriminator focuses on
minimizing the rewards and the generator helps in
maximizing the discriminator loss.

Although the GAN has different advantages, there
are major disadvantages of employing a GAN, such
as unstable performance and sensitivity to
hyperparameters, making it quite daunting to detect
the right settings for optimal performance. This

instability can lead to challenges in word sentence
suggestion systems. Therefore, the proposed
research opts for the cGAN to suggest the right
words, as the cGAN can generate higher-quality
samples than can the traditional GAN by leveraging
the additional conditioning information. In addition,
cGANs can adapt various types of input data and
conditions, making them extremely versatile for
different spelling corrections and word suggestion
scenarios, irrespective of language. Furthermore,
cGAN models offer better stability during training
by leveraging paired distributions, reducing the
volatility seen in standard GAN models. Owing to
these factors, the proposed research work opts for
the cGAN model.

A cGAN is an extension of the traditional GAN and
is designed for enhancing the control over the
generated outputs by incorporating additional
conditioning information. This allows for more
targeted data generation depending on the specific
attributes or labels. The architecture of cGANs
mirrors that of conventional GANs but introduces a
crucial modification: both the generator and
discriminator networks, which receive additional
input in the form of conditioning information.

3.3.1 Generator Network

The generator takes 2 inputs, which include arbitrary
noise sampled from a predefined distribution and
conditioning information. It processes these inputs
to produce synthetic data samples that not only look
like real data but also conform to the characteristics
specified by conditioning information 𝑦𝑦. This allows
for the generation of data that meet the particular
criteria on the basis of the provided label.

3.3.2 Discriminator network

The discriminator receives both real data samples
and produced samples 𝑎𝑎 from the generator, along
with the same conditioning information 𝑦𝑦. The
functionality of the discriminator is to evaluate
whether the input data generated are real data or
generated data while considering the conditioning
information. This dual input allows it to assess both
the authenticity of the data and its consistency with
the specified conditions.

3.3.3 Conditioning

The incorporation of additional input into both the
generator and discriminator ensures that the
generated outputs are not only coherent but also
aligned with specific characteristics and
requirements described by the conditioning
parameters. This mechanism enhances the model’s
ability to yield targeted and contextually relevant

EAI Endorsed Transactions
on Internet of Things
| Volume 11 | 2025 |

 Prathibha R J, Anupama N & Sudarshan A S

7

outcomes, thereby enhancing the overall quality and
applicability of the generated data. Hence, the
overall working mechanism of the cGAN is shown
in Figure 4.

Figure 4. cGAN mechanism

Figure 4 shows the process involved in the cGAN.
Here, the cGAN applied to the Kannada character
suggestion uses conditional inputs to generate
sequences of Kannada characters that meet specific
criteria. During the training phase, the generator
component of the cGAN receives two types of
inputs: a random noise vector sampled from a latent
space and conditional information that specifies the
desired attributes or characteristics of the Kannada
character sequences. The main objective of the
generator is to generate character sequences that are
not only realistic but also consistent with the given
conditions, such as starting with a particular letter or
adhering to a specific pattern. This approach
enhances the relevance and accuracy of the
generated character suggestions, making them more
useful for application in text processing and input
correction. On the other hand, the discriminator in
the cGAN is responsible for distinguishing between
real Kannada character sequences and those
generated by generators. It also receives the same
conditional input as the generator does, enabling it
to assess the authenticity and adherence of generated
sequences to the specified conditions. Through
adversarial training, where the generator plans to
trick the discriminator and discriminator actions to
accurately order genuine from produced
successions, the cGAN improved iteratively.
Similarly, the figure shows the internal modules of
the generator and discriminator.

3.4 Long short-term memory

To overcome the weaknesses of ordinary recurrent
neural networks in learning and recalling long-haul
conditions in consecutive information, LSTM
networks were constructed. Unlike a conventional
RNN, which tussles with vanishing gradient
delinquency, an LSTM utilizes a distinctive style
that includes a memory cell and a gating mechanism.
Each LSTM typically consists of a cell state, which
acts as a memory that carries information across
time steps and 3 gates, such as the forget gate, input
gate and output gate.

• Forget Gate: An LSTM unit’s forget
gate is in charge of deciding how much
of the prior cell state to keep or discard
when fresh data enter the network.
Concatenation of the current input
with the preceding hidden state is what
it accepts as input. The information has
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 enactment capability, which
yields a numeral anywhere in the range
of 0 to 1 for each number in the cell
state. A total of 0 methods fail to
remember these data, whereas a total
of 1 method results in these data.

• Input Gate: An LSTM unit’s input
gate regulates how much different
detail is incorporated into the cell state.
It consists of two essential
components: an 𝑡𝑡𝑡𝑡𝑡𝑡ℎ layer and an
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 layer, known as the input
gate layer. The 𝑡𝑡𝑡𝑡𝑡𝑡ℎ layer generates a
vector of potential new values that can
be incorporated into the state, whereas
the sigmoid layer regulates which of
these values needs to be altered.

• Output Gate: An LSTM unit’s result
entryway determines the secret
expression that is shipped off the result
of the model and the resultant time
step. In view of the earlier covered
state and the ongoing information, it
determines what segments of the cell
state ought to be yielded. The outcome
entryway includes an 𝑡𝑡𝑡𝑡𝑡𝑡ℎ layer that
makes a vector of new outcome values
and an 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 layer that picks which
parts of the cell state are yielded.

The operations within an LSTM network are defined
by several key gates and state variables. The forget
gate, input gate, and output gate regulate the flow of
information in the cell. Below is the description of
each operation with its corresponding equation.

Forget Gate Activation: The forget gate controls the
portion of the previous cell state that should be
retained or discarded. Here, the decision-making
process is achieved via a sigmoid function, which
processes both the current input and the hidden state
from the previous timestamp, allowing the proposed
model to dynamically adjust its memory on the basis
of the current context. By effectively controlling
what information is retained or discarded, the forget
gate enables LSTMs to maintain long-term
dependencies and adaptively respond to new inputs,
thereby facilitating performance. This is
mathematically represented by:

𝑓𝑓𝑓𝑓𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝜎𝜎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑊𝑊𝑊𝑊𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓 · 𝑚𝑚𝑡𝑡 + 𝑈𝑈𝑓𝑓𝑓𝑓𝑓𝑓 · ℎ𝑡𝑡 − 1 +
 𝑏𝑏𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓) (1)

EAI Endorsed Transactions
on Internet of Things
| Volume 11 | 2025 |

 Prathibha R J, Anupama N & Sudarshan A S

8

where ht −1 represents the hidden state from the
preceding time step, 𝑓𝑓𝑓𝑓𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔 represents the forget
gate, 𝜎𝜎𝑔𝑔 represents the sigmoid activation function,
𝑊𝑊𝑊𝑊𝑖𝑖𝑓𝑓 and 𝑈𝑈𝑓𝑓 represent the weight matrices, 𝑏𝑏𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓
represents the bias of the forget gate, mt represents
the input at time t, and bf represents the bias term.

Input Gate Activation: The input gate regulates the
amount of new detail that is incorporated into the
cell state. The corresponding equation 2 is as
follows:

𝐼𝐼𝐼𝐼𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝜎𝜎𝑔𝑔(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 · 𝑚𝑚𝑡𝑡 + 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 · ℎ𝑡𝑡 − 1 +
 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖)

(2)

In the equation, 𝐼𝐼𝐼𝐼𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is denoted as the input gate,
𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 signifies the weight matrix of the input gate,
and 𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 signifies the bias term of the input gate.

Cell input activation: The cell input activation phase
estimates candidate values for updating the cell
state, given by

 𝑐𝑐𝑡𝑡� = 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑊𝑊𝑊𝑊𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 · 𝑚𝑚𝑡𝑡 + 𝑈𝑈𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 · ℎ𝑡𝑡 − 1 +
 𝑏𝑏𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) (3)

where 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the activation function used for
generating candidate values, 𝑊𝑊𝑊𝑊𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑈𝑈𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 are
the weight matrices for the cell input, and 𝑏𝑏𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is
represented as a bias term.

Update the cell state: the updated cell state is an
amalgamation of the preceding cell state and the
candidate values. It is calculated via equation (4).

𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑡𝑡 = 𝑓𝑓𝑓𝑓𝑟𝑟𝑡𝑡. 𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡−1 + 𝑖𝑖𝑖𝑖𝑝𝑝𝑡𝑡. 𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡

(4)

where 𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡 signifies the updated cell state and
where 𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡−1 is the preceding cell state.

Updated Hidden State: Eventually, the hidden state
output is estimated depending on the updated cell
state, as depicted in equation 5:

ℎ𝑡𝑡 = 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡. 𝜎𝜎𝑐𝑐(𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡)

(5)

Here, the hidden state ℎ𝑡𝑡 is derived by applying the
output gate activation, 𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡 is transformed by the
activation function 𝜎𝜎𝑐𝑐, and 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡 is represented as the
cell state.

Finally, training and testing take place. During the
training phase, a dataset curated by users, which
includes correctly spelled words, is utilized to teach
the model. This process enables the LSTM model to
learn significant patterns and characteristics,
allowing it to make predictions. Furthermore, by
analysing the relationships within the data, the

proposed model becomes apt at recognizing
linguistic structures, thereby enhancing the
performance in tasks such as text generation or error
correction. Thus, the internal mechanism carried out
is shown in Figure 5.

Figure 5. Internal mechanism

Figure 5 shows that the input parameters such as
Kannada letters are passed to the model, where the
input layer is responsible for accepting sequences of
letters and characters. Later, it enters the LSTM
layer, where the LSTM layer effectively handles the
sequential data and maintains the context across
longer sentences, enabling more precise predictions
of the next words depending on the previous words
in a sequence. Eventually, the output layer shows the
word suggested on the basis of the input given to the
model.

3.5 Hyperparameter tuning

Hyperparameter tuning refers to systematically
adjusting parameters in an AI model that are not
learned during training but have an important
influence on its performance and behavior. It
includes aspects such as the learning rate, batch size,
number of epochs, and architectural elements of the
model itself, such as layer sizes and activation
functions. Unlike model parameters (weights and
biases), which are updated during training on the
basis of the data, hyperparameters are set before the
training process begins and typically require manual
intervention and experimentation for optimization.
The objective of hyperparameter tuning is to
treasure the mix of values that grow the model’s
display estimations, for instance, accuracy or
disaster, on an endorsement set or during cross-
endorsement. Therefore, Table 2 shows the
hyperparameters used in the proposed work for the
word suggestion system.

Table 2 Hyperparameter tuning

Parameters Description

Learning
Rate

⮚ The learning rate of
0.002 for the LSTM in
the generator of cGAN
indicates a careful
balance between
stability and efficiency in
training.

EAI Endorsed Transactions
on Internet of Things
| Volume 11 | 2025 |

 Prathibha R J, Anupama N & Sudarshan A S

9

⮚ In the context of LSTMs,
which are used for
sequence prediction
tasks like generating
Kannada words,
selecting the right
learning rate is vital to
ensure the model can
learn intricate patterns
over time.

Epochs ⮚ Increasing the number of
epochs to 30 means that
the model will go through
the complete training
dataset 30 times.

⮚ This decision suggests a
more thorough training
process, allowing the
model to learn deeper
patterns from the data.

Batch Size ⮚ Increasing the number of
epochs to 30 means that
the model will pass
through the complete
training dataset 30
times. This decision
suggests a more
thorough training
process, allowing the
model to study deeper
patterns from the data.

Loss
Function
(Binary
Cross
Entropy)

⮚ The loss function
evaluates the accuracy
of the model predictions
in relation to the actual
target values.

⮚ For the cGAN setup,
binary cross entropy
(BCE) is used as the
loss function, suitable for
distinguishing between
real and generated data.

Optimizer
(Adam)

⮚ The optimizer refreshes
the model loads to
restrict the mishap
capacity.

⮚ Adam (Flexible Second
Evaluation) is picked for
its adaptable learning

rate limits and powerful
treatment of pitiful
tendencies.

4. Results and discussion

The results obtained via cGAN for word suggestion
with the aim of correcting spelling mistakes are
depicted below. In addition, a web-based application
output is also demonstrated.

4.1 Environmental Configuration

Table-3 Implementation Detail

Hardware-
Configuration

Software-
Configuration

CPU-Intel Core i7-

7700@2.80 GHz

Windows 11

GPU - GTX 1050 Python-3.7

RAM: 16 GB Anaconda-Spyder

Table 3 shows the environmental setup used by the
proposed model for obtaining better outcome, where
hardware configuration of CPU with Intel core i7,
GPU of GTX 1050 and RAM of 16 GB model. For
software configuration, Windows 11 OS, python 3.7
and Anaconda Spyder is used.

4.2 Experimental Outcomes

The experimental outcome obtained via the cGAN
is demonstrated in the subsequent section. Figure 6
shows D loss and G loss for the cGAN model.

Figure 6. cGAN generator and discriminator
loss

In a cGAN, the goal is for the generator to deliver
information that is unclear from genuine information
to the discriminator. This adversarial process leads

EAI Endorsed Transactions
on Internet of Things
| Volume 11 | 2025 |

 Prathibha R J, Anupama N & Sudarshan A S

10

both networks to improve iteratively. The stability
of the metrics across the epochs suggests that the
networks are in equilibrium, where neither the
generator nor the discriminator is gaining a
significant advantage over the other.

4.2.1 Discriminator Metrics

• D loss: This measures how effective
the discriminator is at recognizing
genuine and created information. A
lower D misfortune shows that the
discriminator is better at its
undertaking.

• D accuracy: This measurement reflects
the accuracy of the discriminator in
accurately characterizing genuine and
produced information tests. Higher
precision corresponds to better
execution.

4.2.2 Generator metrics

• G loss: This evaluates how well the
generator is fooling the discriminator.
A decreasing G loss suggests that the
generator is improving at generating
more realistic data.

Figure 7. Discriminator Loss

Figure 7 shows the discriminator loss for an epoch
of 30. The discriminator loss (D loss) is a crucial
metric in cGANs, reflecting how well the
discriminator model distinguishes between real data
and generated data. Figure 6 shows the discriminator
loss for an epoch of 30. The cGAN was trained via
TensorFlow, and the D loss was monitored
throughout the training process. The cGAN consists
of a generator model that learns to generate synthetic
data and a discriminator model that learns to
distinguish between real and generated data. The
models have trained adversarially, where the

generator seeks to reduce its loss by fooling the
discriminator, while the discriminator aims to
maximize its accuracy in distinguishing between
real and fake data. Initially, the D loss values were
relatively high, averaging approximately 0.693. This
high starting point indicates that the discriminator
faced challenges in accurately classifying real and
generated data, possibly because the generator
produced outputs that were easily distinguishable as
fake. As training progressed, the D loss exhibited a
trend on the graph. The gradual decline in D loss
values over epochs indicates that the discriminator
improved its ability to differentiate between real and
generated data. This trend is indicative of the
discriminator becoming more apt at differentiating
realistic data from synthetic outputs.

During mid-training, fluctuations in D loss were
observed. These fluctuations are characteristic of the
combative training process, where both the
generator and discriminator continuously adapt and
refine their strategies. The graph displays these
fluctuations as oscillations or minor peaks and
valleys. Towards the later epochs, the D loss
stabilized or showed consistent behavior. This
stabilization phase on the graph signifies that the
discriminator reached a level of proficiency where it
consistently classified real and generated data with
higher accuracy.

Figure 8. Generator loss

Figure 8 shows the generator loss. The generator
loss (G loss) is a critical metric in cGANs, reflecting
how well the generator model learns to produce
outputs that mimic real data. cGAN was trained via
TensorFlow and monitored the G loss throughout
the training process. The cGAN comprises a
generator model that yields artificial data and trains
a discriminator model to discern between artificial
and genuine data. The models were trained
adversarially, with the discriminator trying to
increase its accuracy in identifying real data from
fake data and the generator trying to minimize its

EAI Endorsed Transactions
on Internet of Things
| Volume 11 | 2025 |

 Prathibha R J, Anupama N & Sudarshan A S

11

loss by tricking the discriminator. In the initial
epochs, the G loss values were relatively high,
averaging approximately 0.693. This high starting
point indicates that the generator initially produced
outputs that were easily discernible as fake by the
discriminator. As training progresses, the G loss
gradually decreases on the graph. This decline
signifies that the generator improved its ability to
produce outputs that more closely resembled real
data, thereby challenging the discriminator’s
capacity to recognize genuine and produced
information.

During mid-training, changes in G misfortune were
observed. These oscillations are normal for the ill-
disposed preparation process, where both the
generator and discriminator continuously adapt and
improve their strategies. The graph displays these
fluctuations as oscillations or small peaks and
valleys. Towards the later epochs, the G loss
stabilized or consistently decreased. This
stabilization phase on the graph indicates that the
generator achieved a level of performance where it
consistently generated outputs that were
increasingly difficult for the discriminator to classify
as fake. Additionally, a lower loss component
(0.408) was identified, which reflected the effects of
regularization techniques applied during training.

4.3 Front-end application outcomes

Figure 9 illustrates the web interface results
suggesting words using Flask. Flasks are versatile
web frameworks that facilitate the development of
web applications and offer various advantages for
building applications because of their simplicity and
flexibility. Thus, Figure 9 shows the working
interface of the model, where similar words are
generated on the basis of the query word.

Figure 9. Web interface showing results

The front-end web interface application is designed
for retrieving words starting with a particular letter
in Kannada and involves several key components to
ensure a seamless user experience. The interface
begins with a simple yet effective user input

mechanism, typically featuring a text input field
where users can enter a single letter or a sequence of
letters in the Kannada script. This input is
complemented by a submit button that triggers the
request to the backend server for data retrieval.
Upon submission, the front end sends an HTTP
request to the backend, transmitting the specified
letter(s) as parameters or within the request body.
This interaction is crucial for initiating the
backend’s processing logic, which is responsible for
handling the user query.

4.4 Discussion

Assamese [21], Urudu [24], Punjabi [26],
Azerbaijani [27], Indonesian [22] and many more
using different approaches like LSTM, BiLSTM,
Seq2Seq models and other, and the accuracy
obtained by these models are 92% [21], 87% [25].
However, uniqueness of the proposed model lies by
employing cGAN model along with LSTM as most
existing works have not employed by using GAN
network architecture, in cGAN, the generator model
learnt to produce plausible Kannada words on the
basis of initial character inputs, whereas the
discriminator model is prepared to recognize
genuine and created words. By doing, effective word
suggestion process takes place. Moreover, the
accuracy gained by the proposed model is 94.4%
which is higher than the existing works. Therefore,
by covering Kannada language with better
numerical outcome of the present model makes it
effective and efficient than state-of-the-art
approaches.

The proposed cGAN-LSTM model achieves higher
accuracy (94.5%) compared to previous studies,
demonstrating superior spell correction performance
in Kannada. The incorporation of adversarial
learning and contextual embeddings enhances the
model’s ability to generate precise spell corrections.

5. Conclusion

The present research focuses on creating a Kannada
word suggestion system utilizing a cGAN integrated
with a web interface. By leveraging AWS S3 for
data storage and employing TensorFlow for model
development, the objective was to train cGAN
models to propose Kannada words on the basis of
the letters input by users, ensuring seamless
integration with flasks for deploying the web
application. Through careful preparation of the
dataset, tokenization and training of the LSTM
model, the system achieved precise word
predictions. The cGAN model demonstrated
efficient learning dynamics, as evidenced by the
convergence of the loss for both the discriminator
and generator throughout the training epochs. The

EAI Endorsed Transactions
on Internet of Things
| Volume 11 | 2025 |

 Prathibha R J, Anupama N & Sudarshan A S

12

stabilization of the D loss indicated a heightened
accuracy in differentiating between authentic and
generated data, whereas the decrease in G loss
demonstrated an improved ability to produce
realistic Kannada words. The frontend web interface
provides an intuitive platform for users, enabling
easy input of letters and quick display of word
suggestions. This seamless integration of frontend
and backend elements not only highlights the
application of sophisticated ML techniques in NLP
but also emphasizes the importance of user-centered
design in effectively implementing such solutions.

In the future, a more sophisticated DL architecture,
such as the transformer model, can be used, as it has
the potential to greatly improve the prediction
accuracy and contextual comprehension of Kannada
text. Furthermore, expanding the system to
accommodate additional languages beyond the
Kannada language by using transfer learning and
multilingual models would enable it to address a
wider range of linguistic requirements as the present
work limits to Kannada language, thus enhancing its
applicability and effectiveness across different
linguistic environments.

Declarations
Ethics approval and consent to participate
Not applicable.
Consent for publication
None.
Conflict of Interest
There is no conflict of interest.
Funding Support
There is no funding support for this study.
Data Availability Statement
Not applicable.
Authors' contributions
Prathibha R J – Supervising and Project
Administration.
Anupama N – Conceptualization and Writing
Sudarshan A S - Conceptualization and Writing
Acknowledgements
None.

References

[1] Goswami, B., Bhavsar, N., Alzobidy, S. A.,
Lavanya, B., Udhayakumar, R., & Rajapandian, K.
(2025). Sentiment Analysis Using Natural Language
Processing. Natural Language Processing for
Software Engineering, 283-294.

[2] Esfahani, M. N. (2024). Content Analysis of
Textbooks via Natural Language
Processing. American Journal of Education and
Practice, 8(4), 36-54.

[3] Dong, J. (2024). Natural Language Processing
Pretraining Language Model for Computer
Intelligent Recognition Technology. ACM

Transactions on Asian and Low-Resource Language
Information Processing, 23(8), 1-12.

[4] Perera, S. S., & Sumanathilaka, D. K. (2025,
January). Machine Translation and Transliteration
for Indo-Aryan Languages: A Systematic Review. In
Proceedings of the First Workshop on Natural
Language Processing for Indo-Aryan and Dravidian
Languages (pp. 11-21).

[5] Shukla, K., Vashishtha, E., Sandhu, M., & Choubey,
P. R. (2023). Natural Language Processing:
Unlocking the Power of Text and Speech Data.
Xoffencerpublication.

[6] Stanisz, T., Drożdż, S., & Kwapień, J. (2024).
Complex systems approach to natural
language. Physics Reports, 1053, 1-84.

[7] Anitha, G., Kumar, G. S., Swamy, B. M., Thriveni,
J., & Venugopal, K. R. (2021). Kannada
morphological analyser and generator using natural
language processing and ML approaches. Turkish
Journal of Computer and Mathematics
Education, 12(11), 2826-2838.

[8] Irani, M., Elahimanesh, M. H., Ghafouri, A., &
Bidgoli, B. M. (2022, December). A Supervised
Deep Learning-based Approach for Bilingual Arabic
and Persian Spell Correction. In 2022 8th Iranian
Conference on Signal Processing and Intelligent
Systems (ICSPIS) (pp. 1-7). IEEE.

[9] Phukan, R., Neog, M., Goutom, P. J., & Baruah, N.
(2024). Automated Spelling Error Detection in
Assamese Texts using Deep Learning
Approaches. Procedia Computer Science, 235,
1684-1694.

[10] Jim, J. R., Talukder, M. A. R., Malakar, P., Kabir,
M. M., Nur, K., & Mridha, M. F. (2024). Recent
advancements and challenges of NLP-based
sentiment analysis: A state-of-the-art
review. Natural Language Processing Journal,
100059.

[11] Aithal, S. R., Sn, M., Ganiga, R., Rao B, A., &
Hegde K, G. (2024). KannadaLex: A lexical
database with psycholinguistic information. ACM
Transactions on Asian and Low-Resource Language
Information Processing, 23(7), 1-21.

[12] Prasad, C., Kallimani, J. S., Reddy, G., &
Dhanashekar, K. (2025). Developing spell check and
transliteration tools for Indian regional language–
Kannada. In Applied Data Science and Smart
Systems (pp. 152-161). CRC Press.

[13] Lubis, Y., Ramadhany, C. A., Widyana, A., Mahara,
E. F., & Sarahseti, D. F. (2024). The Role of Vowels
and Consonants In English Language
Learning. Socius: Jurnal Penelitian Ilmu-Ilmu
Sosial, 1(11).

[14] Singh, S., & Singh, S. (2021). HINDIA: a deep-
learning-based model for spell-checking of Hindi
language. Neural Computing and
Applications, 33(8), 3825-3840.

[15] Abdullaev, I., Prodanova, N., Ahmed, M. A., Lydia,
E. L., Shrestha, B., Joshi, G. P., & Cho, W. (2023).
Leveraging metaheuristics with artificial
intelligence for customer churn prediction in
telecom industries. Electronic Research
Archive, 31(8).

[16] Abandah, G. A., Suyyagh, A., & Khedher, M. Z.
(2021). Correcting arabic soft spelling mistakes
using bilstm-based machine learning. arXiv preprint
arXiv:2108.01141.

EAI Endorsed Transactions
on Internet of Things
| Volume 11 | 2025 |

 Prathibha R J, Anupama N & Sudarshan A S

13

[17] Kasmaiee, S., Kasmaiee, S., & Homayounpour, M.
(2023). Correcting spelling mistakes in Persian texts
with rules and deep learning methods. Scientific
reports, 13(1), 19945.

[18] Caryappa, B. C., Hulipalled, V. R., & Simha, J. B.
(2020, October). Kannada grammar checker using
LSTM neural network. In 2020 International
Conference on Smart Technologies in Computing,
Electrical and Electronics (ICSTCEE) (pp. 332-
337). IEEE.

[19] Murthy, S. R., Akshatha, A. N., Upadhyaya, C. G.,
& Kumar, P. R. (2017, September). Kannada spell
checker with sandhi splitter. In 2017 International
Conference on Advances in Computing,
Communications and Informatics (ICACCI) (pp.
950-956). IEEE.

[20] Dashti, S. M. S., Khatibi Bardsiri, A., & Jafari
Shahbazzadeh, M. (2024). PERCORE: A deep
learning-based framework for persian spelling
correction with phonetic analysis. International
Journal of Computational Intelligence
Systems, 17(1), 114.

[21] Phukan, R., Baruah, N., Sarma, S. K., & Konwar, D.
(2024). Exploring Character-Level Deep Learning
Models for POS Tagging in Assamese
Language. Procedia Computer Science, 235, 1467-
1476.

[22] Zaky, D., & Romadhony, A. (2019, September). An
LSTM-based spell checker for indonesian text.
In 2019 international conference of advanced
informatics: concepts, theory and applications
(ICAICTA) (pp. 1-6). IEEE.

[23] Ji, T., Yan, H., & Qiu, X. (2021, November).
SpellBERT: A lightweight pretrained model for
Chinese spelling check. In Proceedings of the 2021
conference on empirical methods in natural language
processing (pp. 3544-3551).

[24] Aziz, R., Anwar, M. W., Jamal, M. H., & Bajwa, U.
I. (2021). A hybrid model for spelling error detection
and correction for Urdu language. Neural
Computing and Applications, 33, 14707-14721.

[25] Kasmaiee, S., Kasmaiee, S., & Homayounpour, M.
(2023). Correcting spelling mistakes in Persian texts
with rules and deep learning methods. Scientific
reports, 13(1), 19945.

[26] Kaur, G., Kaur, K., & Singh, P. (2019, March). Spell
checker for Punjabi language using deep neural
network. In 2019 5th international conference on
advanced computing & communication systems
(ICACCS) (pp. 147-151). IEEE.

[27] Ahmadzade, A., & Malekzadeh, S. (2021). Spell
correction for azerbaijani language using deep
neural networks. arXiv preprint arXiv:2102.03218.

EAI Endorsed Transactions
on Internet of Things
| Volume 11 | 2025 |

