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Abstract 

The massive scale and extensive implementation of the Internet of Things (IoT) makes it difficult to provide secure and 
private communications over it. Privacy and decentralisation have been made easier using blockchain technology. 
Unfortunately, these solutions aren't practical for the majority of IoT uses because of how much time and computing power 
they require. Secure and private IoT that makes efficient use of available resources is proposed in this study. With the use 
of Physics Informed Neural Networks, the technique takes advantage of the computing power available in IoT settings like 
smart cities. This solution examines the reliability of the blockchain-based Smart Cities Architecture with respect to 
accessibility, privacy, and integrity. When weighed against the security and privacy advantages our system offers, our 
simulation findings reveal that the overheads (distribution, processing time, and energy usage) are negligible. 
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Introduction 

The term Smart city can refer to a variety of urban planning 
strategies. All of them, nevertheless, have one thing in 
common: they have to change to fit the people who use 
them. Customers of smart cities need services that are 
Invisible and have practical uses. A wide range of H2H, 
M2M, and H2M interactions and applications are made 
possible by the technology of smart cities. By linking 
sensors, gadgets, and computers, the IoT makes Big Data 

*Corresponding author. Email: masifigandhi@gmail.com 

collection and processing possible, paving the way for 
Smart Cities. When things can be recognised, digitally 
modelled, and connected by sensors and wired or wireless 
networks, we say that they are part of the IoT. A logical 
progression from decentralisation, transmission networks, 
communication protocols, cloud computing, and edge 
computing is the IoT.  

EAI Endorsed Transactions 
on Internet of Things 
| Volume 11 | 2025 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:masifigandhi@gmail.com


 
Mohd. Asif Gandhi et al. 

2 

 
 

Figure 1. Key elements of an intelligent urban 
environment 

 
The fundamental components of a smart city are illustrated 
in Figure 1. Several benefits, including asset optimisation, 
energy efficiency, and maintenance, are made possible by 
the IoT in smart cities, which allow for intelligent decision-
making and improved services [1]. Cyber-attacks against 
smart cities include Ransomware, DoS, Man-In-The-
Middle, and DDoS [2][3]. Data security, reliability, and 
accessibility are at risk from ever growing dangers. 
Therefore, SCs and linked networks must prioritise user 
privacy. It is believed that the architecture that combines 
privacy, security, and trust is adequate to handle the present 
challenges. Establishing trust and providing correct 
outcomes requires identifying and fixing unsecure and 
faulty IoT nodes [4]. Addressing security issues may result 
in high computation costs for ML-based IDS models [5], 
privacy violations in Cloud-IoT applications [6], and false 
alarm rates for IDS models [7]. To ensure trustworthiness 
among IoT nodes, smart cities must be developed 
holistically. In response to these issues, this research 
proposes a Physics Informed Neural Network that is 
blockchain enabled in order to safeguard SCs' privacy, 
security, and secrecy [8]. Privacy-preserving methods, 
including differential privacy and homomorphic 
encryption, were implemented to safeguard data sharing 
among stakeholders. The immutable ledger of blockchain 
enhances accountability and trust. For smart cities that are 
enabled by the IoT, blockchain technology can create a 
distributed cloud, which can support cloud computing. 
With this method, users of the stage who are connected to 
the IoT may verify the functionality in real time, and the 
cloud infrastructure can be identified and managed. It can 
also be held responsible for its actions. Here is how the rest 
of the paper is structured: Research on smart city 
applications of deep learning and Blockchain was covered 
in Section 2. This investigation's methodology is detailed 
in Section 3. Results and analysis of the investigation's 
performance are presented in Section 4. Finally, Section 5 
suggests future studies on the topic to round out the study. 

Literature Survey 

Given blockchain's practical benefits, the literature stresses 
the need to incorporate technology with business logic. 
Without a trusted third party or administrator, a 
decentralised network known as a blockchain can function. 
To make smart city apps more secure, researchers have 
built frameworks that use blockchain technology. Due to 

its immutability, distributed ledger technology is favoured 
for the implementation of trustworthy algorithms in smart 
city data exchange. Applications in smart environments 
prioritise privacy. One important step towards making 
smart cities more private is PrivySharing[9]. In order to 
study and derive insights from IoT data in a way that 
safeguards privacy, the authors suggest a blockchain-
enabled architecture that makes use of machine learning. 
To keep sensitive information private while it's being 
processed and analysed, it employs techniques like 
differential privacy, secure multi-party computation, and 
homomorphic encryption. Nevertheless, in order to protect 
individuals' privacy, differential privacy introduces noise 
into data [10]. Derivative insights may be less accurate and 
meaningful patterns may be more difficult to uncover if 
there is noise. Following previous work, the proposed 
method employs non-interactive zero-knowledge (NIZK) 
proofs to permit anonymous authentication of IoT devices 
while preserving privacy. This function prevents tracking 
and profiling by enabling devices to authenticate with the 
operation centre without disclosing their identities. The key 
agreements between the operation centre and verified IoT 
devices are further secured using bilinear pairing-based 
cryptography. Making a revocation system that can delete 
malicious entities while protecting the anonymity of 
legitimate users shouldn't be the primary goal [11]. A 
secure SVM-based solution using blockchain was 
developed by the authors [12] to address the issue of 
gathering training data from various providers. Secure 
building blocks are created by encrypting sensitive data 
from IoT devices using a homomorphic cryptosystem. 
Another study found that many different types of 
applications were more secure when blockchain and AI 
were combined. Federated learning, machine learning, and 
blockchain all work together to improve data sharing 
among IoT devices. FL systems are great at protecting 
sensitive information and avoiding data loss. The data is 
exchanged with the learning model by the system. The data 
utility of the model has to be enhanced [13]. The authors 
unveiled a system for managing access to and exchanging 
data that is based on blockchain technology. For the 
purposes of user identification, network administration, 
and behaviour detection, this article suggests a plethora of 
smart contracts. In order to identify user misconduct, the 
punishment was implemented. The experiment greatly 
reduced execution costs and increased data exchange 
security, according to the researchers [14]. The study [15] 
provides a smart healthcare architecture that uses 
blockchain technology and an ODLSB model, which is 
based on optimal deep learning, to facilitate the IoT. A 
secure blockchain approach based on deep learning is 
presented in this study. [16] propose a crowdsourcing FL 
system that uses blockchain technology to better 
understand customers. In order to secure the IIOT within a 
TEE, Aditya Pribadi and colleagues have created a system 
that employs FL technology based on the blockchain. By 
taking the effect of model correctness into account, their 
method improved federated learning's privacy and security. 
[17] 5G network trials were suggested. The author used 
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smart contracts as an alternative to a central server to 
authenticate UAVs that fly across domains and aggregate 
models. [18] established a method for the safe 
classification of images and communication amongst UAV 
networks. Clustering, private communication with 
blockchain, FL picture categorisation, and performance 
validation using pre-trained CNN models are the three 
parts that make up the framework. While many research 
have looked at blockchain technology as a potential 
solution for UAV-based FL, very few have taken into 
account the following: aggregator selection based on 
reputation, global model aggregation, validation using pre-
trained CNN models, and benchmark datasets [19]. A 
horizontal FL powered by blockchain technology for 
unmanned aerial vehicles. The proposed architecture 
integrates strong encryption for data transmission and a 
blockchain-based ledger for transaction integrity, reducing 
the dangers of data poisoning and inference attacks. 
Anomaly detection algorithms were incorporated to 
proactively identify and address suspicious activity in IoT 
environments. 
In order to get high-quality TSEs for smart city networks 
using minimum observational speed data, this research 
provides a PINN framework. To overcome their 
shortcomings and capitalise on their strengths, PINNs 
combine model-driven and data-driven approaches. 
Results from experiments show that the suggested 
approach resolves smart city network problems with high 
accuracy. 

Proposed Method 

The proliferation of the IoT has contributed to the rise of 
the smart city concept. IoT networks allow Internet-
connected smart city equipment to gather and process data. 
Centralisation, security, privacy (e.g., inference attacks and 
data poisoning), transparency, scalability, and verifiability 
are some of the challenges that slow down the development 
of smart cities [20]. In light of the above, we offer a 
Privacy-Preserving and Secure Framework (PPSF) for 
smart cities powered by the IoT. The use of PINNs 
improves precision by integrating physical rules into the 
learning framework, thus diminishing dependence on 
extensive labelled datasets and enhancing generalisation. 
The PINN framework attains computing efficiency by 
directly solving PDEs, hence minimising computational 
overhead relative to conventional iterative methods. 

 
Figure 2. A four-tiered smart home application 

architecture that utilises the PINN Learning Model 
and is built on the blockchain 

 
For blockchain-based smart homes, Figure 2 depicts the 
proposed architecture of Physics-Informed Neural 
Networks (PINN). The resilience of the blockchain 
architecture was confirmed through stress-testing scenarios 
including dynamic traffic patterns. Methods like dynamic 
node allocation and redundant data paths guaranteed 
system dependability. 

Feature Normalization 
 IoT sensors generate data of varying sizes. By 
implementing a min-max normalisation strategy, the PINN 
framework may reduce bias in IoT network traffic while 
maintaining statistical data. The technique involves setting 
the lowest value to 0 and the greatest value to 1, and then 
converting all other values to decimal points between those 
two extremes. The transformation function can be applied 
using Equation (1). 

  (1) 
Identifying the highest (𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚) and lowest (𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚) values of 
a characteristic in IoT network traffic is necessary for 
scaling it down. 

Feature Selection 
To minimise performance deterioration in a smart city 
environment, feature selection is used to identify relevant 
features and remove unnecessary ones to generate a subset 
that accurately depicts the situation. One elementary 
statistical tool used by the proposed TP2SF architecture is 
the Pearson correlation coefficient (PCC). This method 
finds the degree to which two variables are comparable 
[21]. The TP2SF architecture changes the most important 
features, those with the lowest N rankings. Calculate PCC 
using Eq. (2) for two features s1 and s2. 

 (2) 
The data points for the given features are denoted by 𝑛𝑛𝑝𝑝 
and 𝑘𝑘𝑝𝑝 in Eq. (2). The absolute means of 𝑠𝑠1 and 𝑠𝑠2 are 𝑠𝑠1� =

𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑠𝑠 − 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚
 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑠𝑠1, 𝑠𝑠2) =
∑ �𝑛𝑛𝑝𝑝 − 𝑠𝑠1� ��𝑘𝑘𝑝𝑝 − 𝑠𝑠2� �𝑥𝑥
𝑝𝑝=1

�∑ �𝑛𝑛𝑝𝑝 − 𝑠𝑠1� �
2𝑥𝑥

𝑝𝑝=1 �∑ �𝑘𝑘𝑝𝑝 − 𝑠𝑠2� �
2𝑥𝑥

𝑝𝑝=1
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�1
𝑥𝑥
∑ 𝑛𝑛𝑝𝑝𝑥𝑥
𝑝𝑝=1 � and 𝑠𝑠2� = �1

𝑥𝑥
∑ 𝑘𝑘𝑝𝑝𝑥𝑥
𝑝𝑝=1 �, respectively. Results 

from solving Eq. (1) range from -1 to +1. PCC determines 
if two attributes are linearly dependent on one another. The 
PCC value will be ±1 if the two traits are dependent, and 
zero if they are independent. The feature set is optimised 
using the aforementioned equation. Misclassification rates, 
especially in overlapping features, were diminished by 
refining the feature extraction technique and enhancing the 
training dataset with synthetic instances. This enhanced the 
model's capacity to distinguish between categories such as 
DDoS and Issuance. 

Feature Transformation 
The dataset is then used for feature extraction after 
preprocessing. The most used technique for dimensionality 
reduction in data is KPCA. The framework employs feature 
normalisation and transformation methods such as KPCA 
to standardise and process diverse data types. This 
guarantees compatibility across diverse IoT devices, 
enabling effortless integration into smart city frameworks. 
 Non-linear data features are not taken into account by 
KPCA for complicated structures [22]. This issue can be 
resolved with the help of KPCA. As seen in equation (3), 
the mapping function I represents the feature space H. 

  (3) 
Where 

  (4) 
Using the formula in equation (5), one can generate the 
covariance matrix. 

 (5) 
Eigenvalue and Eigenvector are two terms that can be used 
interchangeably. Use an equation to assess equation (6). 

   (6) 
Combining equations (5) and (6), we obtain 

 (7) 
The eigenvector can be rewritten using the formula in 
equation (8). 

  (8) 
A txt-sized kernel matrix B is defined to determine the 
quotient p. Equations (9) are used to calculate these 
elements. 

(9) 
When the projected dataset does not have a mean 𝐼𝐼�𝜑𝜑𝑝𝑝�. 
The application of the Pearson Correlation Coefficient 
(PCC) efficiently diminished dimensionality by identifying 
highly relevant features, thus enhancing model efficiency 

and its capacity to manage high-dimensional data without 
overfitting. 

PINN MODEL TRAINING 
Machine learning has become popular in many fields of 
science, but can the algorithms really understand the 
complex physical problems that they are supposed to 
solve? Incorporating previous scientific knowledge, neural 
network models utilise governing differential equations to 
comprehend the physical system. The PINN approach 
limits the number of possible solutions by combining the 
neural network's output with the penalty terms remaining 
from the governing equations. The PINN framework aims 
to enhance real-time scalability by utilising its physics-
informed architecture, which inherently diminishes the 
complexity of IoT traffic flow predictions. Advanced 
optimisation algorithms facilitate rapid convergence, while 
distributed training methods enable low-latency operations 
in extensive networks. A PINN approach for the LWR 
Model, consisting of a neural network and a physics-
informed component, is shown in Figure 3. The 
contribution of the neural network and the residual of the 
governing equation are both used to evaluate the loss 
function. Errors from the governing partial differential 
equation (PDE), initial conditions, and intersection 
conditions are all part of the PINN loss function. At 
intersections, the conditions pertain to the preservation and 
continuity of traffic flow. Keeping the loss function below 
a threshold or a maximum number of iterations is achieved 
by determining weights (w) and biases (b). 

 
Figure 3. Proposed Algorithm Architecture of PINN 

 
The LWR model of smart cities has the following partial 
differential equation: 

 
The flow, which is dependent on both speed and density, is 
represented by 𝐺𝐺(𝛽𝛽), in this equation, where 𝛽𝛽 = 𝐻𝐻+ →
[0,1] stands for traffic density (the number of vehicles per 
unit length), 𝑔𝑔 for traffic speed, and so on. Think about a 
network that contains𝑋𝑋 links that do not overlap in terms 
of smart cities. Think of 𝛺𝛺𝑒𝑒 as a subset of the computational 
domain Ω and 𝑇𝑇[. ] as a universal differential operator [23]. 
For every point [0,𝐷𝐷] in a continuous domain, the traffic 

𝐼𝐼 = 𝜑𝜑𝜑𝜑𝐻𝐻𝑗𝑗 → 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 

�𝐼𝐼�𝜑𝜑𝑝𝑝�
𝑑𝑑

𝑝𝑝=1

= 0 

𝐿𝐿𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗 =
1
𝑑𝑑
��𝐼𝐼�𝜑𝜑𝑝𝑝� − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚��𝐼𝐼�𝜑𝜑𝑝𝑝� − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�

𝐷𝐷
𝑑𝑑

𝑝𝑝=1

 

𝐿𝐿𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗 = 𝜗𝜗𝑝𝑝𝑃𝑃 

𝐿𝐿𝑛𝑛𝑗𝑗𝑗𝑗𝑗𝑗 =
1
𝑑𝑑
��𝐼𝐼�𝜑𝜑𝑝𝑝��𝑃𝑃𝑃𝑃 �𝐼𝐼�𝜑𝜑𝑝𝑝��

𝐷𝐷
= 𝜗𝜗𝑝𝑝𝑃𝑃

𝑑𝑑

𝑝𝑝=1

 

𝑃𝑃 =
1
𝑑𝑑
��𝜀𝜀𝑝𝑝𝐼𝐼�𝜑𝜑𝑝𝑝��
𝑑𝑑

𝑝𝑝=1

 

𝐵𝐵𝑝𝑝𝑝𝑝 = �𝐼𝐼�𝜑𝜑𝑝𝑝�� �𝐼𝐼�𝜑𝜑𝑝𝑝��
𝐷𝐷

= �𝐼𝐼�𝜑𝜑𝑝𝑝�� . �𝐼𝐼(𝜑𝜑𝑚𝑚)� = 𝐵𝐵�𝜑𝜑𝑝𝑝 ,𝜑𝜑𝑚𝑚� 

𝜕𝜕𝑑𝑑𝛽𝛽 + 𝜕𝜕𝑛𝑛(𝛽𝛽𝛽𝛽) = 0;𝑔𝑔 = 𝐺𝐺(𝛽𝛽) 
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state 𝛽𝛽(𝑛𝑛,𝑑𝑑) is found to fulfil the PDE of the traffic flow 
model. 

 
The output of the PINNs for the qth link is provided by 

 
On the qth link, the randomly chosen locations for training, 
residual, and intersection are denoted as �𝑛𝑛𝑜𝑜𝑒𝑒

𝑝𝑝 �
𝑝𝑝=1

𝑋𝑋𝑜𝑜𝑒𝑒 , 

�𝑛𝑛𝑜𝑜𝑒𝑒
𝑝𝑝 �

𝑝𝑝=1

𝑋𝑋𝑧𝑧𝑒𝑒 , and �𝑛𝑛𝑜𝑜𝑒𝑒
𝑝𝑝 �

𝑝𝑝=1

𝑋𝑋𝑃𝑃𝑒𝑒 , respectively. The training, 
residual, and intersection sites in a qth link are denoted by 
𝑋𝑋𝑜𝑜𝑒𝑒 ,𝑋𝑋𝑧𝑧𝑒𝑒, and 𝑋𝑋𝑃𝑃𝑒𝑒 , respectively. The loss from PUNN for 
TSE is represented by 𝛽𝛽𝜃𝜃�𝑒𝑒 in the PINN algorithm, while the 
loss from PINN for TSE is denoted as 𝑧̂𝑧𝜃𝜃�𝑒𝑒. Next, find the 
optimal solution to the following optimisation issue using 
a generalised version: 

 
Where, 

 
The flow conservation equation combines separate links to 
determine the overall smart cities condition of the network. 

 
At every given intersection (𝑃𝑃), the inward and outward 

traffic flow links (𝑝𝑝,𝑚𝑚 𝜖𝜖 𝛺𝛺) are denoted by q+ and q−, 
respectively, while the link flow (𝐸𝐸) is a speed density 
function. Equation (15) is utilised by the proposed neural 
network architecture for smart city condition forecasting on 
a network-wide scale. To extend link-wise loss functions 
across the network, a connectivity matrix is used to connect 
individual links using flow continuity and conservation 
equations. You may see the loss function for the qth link 
below: 

 
Assigning weights to errors in the training data (𝐵𝐵𝑜𝑜𝑒𝑒), 
residuals (𝐵𝐵𝑧𝑧𝑒𝑒), and intersection points (𝐵𝐵𝑃𝑃𝑒𝑒) in that order. 
At this point, the weights are assigned by hand. Dynamic 
selection can speed up convergence, but it will increase 
computing work. We need to know how to calculate mean-
squared errors (MSEs). Formula (17).  

 
The terms MSEu and MSEf refer to the MSE for data 
discrepancy (PUNN) and physics discrepancy (PINN) for 
link i, respectively. Furthermore, the loss function could 
include the following flow continuity condition: 

 
At a common point between two interconnected neural 
networks, the MSEc stands for the residual continuity 
condition. When there is just one inward and one outward 
flow link, flow conservation is what the continuity criterion 
is referring to. When changing the road's physical 
attributes, like the number of lanes, and wanting to separate 

the connection to separately represent traffic flow, the 
continuity condition becomes critical. When neural 
networks for links e+ and e − cross, the residual flux 
conservation condition is known as the MSEI. Outward 
flow links at crossings are represented by the symbol − 
over e, whereas inward flow linkages are shown by the 
superscript + over e. Information flowing from incoming 
links to outgoing links at junctions is guaranteed by flow 
conservation. Equation (19) provides the residual of the 
governing partial differential equation (PDE) for the e th 
link, which is denoted by the term ˆ.  

 
We find 𝜃𝜃�𝑒𝑒∗ for each link to reduce the loss function '. If you 
want a solid answer for the entire network, you need to 
make sure there are plenty of training data points and 
carefully arrange the architecture [24]. Different 
optimisation methods can be used to minimise the loss 
function. Stochastic gradient descent is a well-liked 
approach. Using an iterative process, SGD randomly 
selects a small collection of points to determine the 
gradient direction. The SGD approach avoids local minima 
while training PUNNs with single-point convexity. The 
Adam optimiser is a kind of SGD that we employ. The 
basic format for updating parameters in the 𝑒𝑒th link using 
the starting value of parameter 𝜃𝜃�𝑒𝑒𝑥𝑥 is given by Equation 
(20). 

 
in which the learning rate is denoted by h. A city's sensible 
transition A density function with specific parameters ϑ 
that optimally fit the data characterises E. It is difficult to 
get fine-tuned parameters that represent the system's 
hidden state with insufficient data. 

Algorithm 1. PINN Algorithm for Block Chain in 
Smart Cities 

Algorithm 1: Attack Detection Algorithm in Wireless 
Sensor Networks 
 
Step 1: Declare input and output parameters 
             Input [] {“Simulation time, Bcc status, Routing 
type, Interface type, Port number, Packet size”} 
             Output [] {“Bcc transfer status: 0 and 1”} 
Step 2: Split the dataset as training and testing 
Y Train, Y Test, X Train, X Test    Train Test Split (y, 
x, size test 0.4, random state 0) 
Step 3: Import PINN library 
             Def PINN () 
             Classifier PINN () 
Step 4: Classification Report Analysis 
             Classification Report (X Test, X Pred) 
Step 5: Calculate the accuracy, Precision, Sensitivity  
              End PINN () 
End 

 
An output value, which can be used directly or forwarded 
to the next hidden layer, is generated by the activation 

𝜕𝜕𝑑𝑑𝛽𝛽 + 𝑇𝑇[𝛽𝛽(𝑛𝑛, 𝑑𝑑)] = 0,𝑛𝑛 𝜖𝜖 𝛺𝛺𝑒𝑒 ,𝑑𝑑 ∈ [0,𝐷𝐷] 

𝛽𝛽𝜃𝜃�𝑒𝑒 = 𝑋𝑋𝑐𝑐�𝑓𝑓;𝜃𝜃�𝑒𝑒�, 𝑓𝑓 ∈ 𝛺𝛺𝑒𝑒 , 𝑒𝑒 = 1,2, …𝑋𝑋 

min
𝜃𝜃�𝑒𝑒

𝑐𝑐(𝜃𝜃�𝑒𝑒) 

𝑐𝑐�𝜃𝜃�𝑒𝑒� = 𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢𝑞𝑞 ��𝑛𝑛𝑜𝑜𝑒𝑒
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function from the node's weighted summed input. In order 
to activate a neurone, the activation function must be 
satisfied. To determine if a neuron's output is useful for 
future prediction, the activation function evaluates it. In the 
absence of an activation function, neurones employ biases 
and weights to perform linear adjustments on inputs. 
Furthermore, neurones are able to handle complex 
problems since their activation functions provide nonlinear 
output. Improving a neural network's performance is as 
simple as experimenting with various activation functions 
across various model components. When training a neural 
network, the backpropagation method takes the derivative 
of the prediction error into account when adjusting the 
model's weights. Activation functions that are 
differentiable are necessary for this. r inside the network, 
facilitating its exploration and learning processes. The tanh 
activation function was employed in this study. 
Furthermore, adaptive activation was a part of the 
suggested method. The decentralised structure of 
blockchain facilitates real-time anomaly detection via 
tamper-proof logs and rapid validation processes, hence 
improving the framework's responsiveness to network 
anomalies. 

Result and Discussion 

The development of Smart Cities is a direct result of the 
pressing need to enhance people's quality of life in the face 
of increasing urbanisation and technological 
advancements.  
When it comes to energy and resource consumption, waste 
reduction, sustainability, innovation, economic 
development, and general quality of life, smart cities use 
ICT to their advantage. Important parts of smart cities need 
constant monitoring and data storage. Blockchain 
technology is the best option for storing vital data needed 
for smart city operations because of its inherent 
characteristics. It safeguards the data's confidentiality, 
authenticity, and privacy. In this chapter, we will go over 
the fundamentals of smart cities, examine current 
approaches, identify their limitations, and then talk about 
how blockchain technology might facilitate efficient 
deployment. 

 
Figure 4. Confusion Matrix for PINN Model 

 
Figure 4 of the PINN confusion matrix displays the results; 
The confusion matrix shows how well the model classifies 
DDoS, DoS, Normal, Issuance, and Theft occurrences. The 
model identified 272,739 DoS assaults accurately. 
However, 6,270 DDoS episodes were misclassified as 
Issuance and 15 Normal instances as Theft. The model's 
feature selection, preprocessing, and use of advanced 
techniques like PINN to reduce false positives and 
negatives undoubtedly improved it. DDoS and Issuance 
may be misclassified because to overlapping features or 
traffic patterns that confound the model. The DoS and 
DDoS detection performance here is much better than in 
other study. Due to slight differences, differentiating 
normal traffic from DDoS may be difficult in another 
research. The remaining interactions in the matrix show 
18,159 cases accurately classified for Issuance 
categorization and little confusion with other classes. This 
implies the model distinguishes some classes well but 
struggles with classes with similar behavioral 
characteristics, indicating areas for model optimization. 

Table 1. Training and Test Time Analysis of Various 
Models 

MODEL Training Time 
(s) 

Testing Time (s) 

PINN 35 24 
GraphSAGE 49 29 
GCNN 55 34 
ELM 63 38 
ELM-CNN 68 42 

 
A thorough assessment of the computing time required by 
the PINN approach with respect to the present models is 
provided in Table 1. Models such as GraphSAGE, GCNN, 
ELM, and ELM-CNN appeared to have the lowest 
performance when subjected to highest levels of TRT. 

EAI Endorsed Transactions 
on Internet of Things 
| Volume 11 | 2025 |



A Secure and Efficient Blockchain-Based Framework for Smart Cities Using Physics-Informed Neural Networks 
 
 
 

7 

 
Figure 5. ROC Curve for PINN Model 

 
Figure 5 displays the ROC curve and AUC value for the 
original data. The legend depicts the ROC curve and area 
under the curve (AUC) for each class. A higher AUC value 
implies that the model performed better when 
distinguishing that class from others. Most classes have an 
AUC close to 1.0, suggesting excellent performance. The 
macro-average ROC curve, denoted by a dotted line, 
indicates the average performance across all classes. The 
AUC for the macro-average curve is 0.999, indicating 
superior overall classification performance. The dashed 
diagonal line indicates a random classifier with no 
discriminative ability (AUC = 0.5). Points closer to the 
upper left of the graph reflect superior performance, with 
high TPR and low FPR. Importantly, PINN reported 
greatest macro average AUC of 0.99 with original dataset. 
 

 
Figure 6. TA and VA Analysis for PINN Model 

 
Figure 6 shows that the PINN approach successfully 
trained and validated at high levels of accuracy. The 
Training Accuracy curve (in teal) demonstrates how well 
the model performs on the training dataset over time. The 
Validation Accuracy curve (in orange) depicts the model's 
performance on the validation dataset, a subset of data that 
was not used during training. This curve indicates how well 
the model generalizes to previously unseen data. A small 
gap shows that the model generalizes successfully, whereas 
a large gap suggests overfitting. The testing findings 

indicated that the PINN technique could achieve the 
maximum levels of TA and VA. To be sure, the VA 
appeared to be higher than the TA. Methods including 
adaptive learning rate scheduling, early halting, and the 
Adam optimiser were utilised to improve convergence. 
This resulted in little validation loss and elevated accuracy, 
as illustrated in the training and validation curves. 
 

 
Figure 7. TL and VL Analysis for PINN Model 

 
The results of the training loss (TL) and validation loss 
(VL) using the PINN technique are displayed in Figure 7. 
The model has a high error rate at first because it is still 
learning the data patterns. As it trains, the model 
parameters are modified, resulting in a rapid reduction in 
loss in the early stages. After around 10 epochs, the loss 
begins to level off, showing that the model has learnt the 
key patterns in the data and is just making modest 
adjustments. By about 20 epochs, the loss numbers are near 
to zero, suggesting that the model has successfully learnt 
from the input with low remaining error. 

Table 2. Performance Comparison of Proposed 
Method and Other Methods 

MODEL PRECISIO
N 

ACCURAC
Y 

SENSITIVIT
Y 

PINN 89.33 91.70 91.45 
GraphSAG
E 

88.45 90.28 90.12 

BiGRU 81.32 82.45 80.03 
GCNN 87.60 89.76 89.46 
XGBoost 84.24 85.68 85.13 
DT-CNN 86.85 84.65 84.34 
ResNet-
LSTM 

83.98 84.56 84.04 

ELM 85.42 87.43 87.03 
ELM-CNN 84.12 86.53 85.89 

 
Using the three criteria of accuracy, sensitivity, and 
precision, Table 2 compares the suggested method to other 
approaches to smart cities. 
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Figure 8. Recall Comparison of Proposed Model 

 
Figure 7 displays five different models' or approaches' 
recall performance as a percentage. The x-axis shows the 
models or techniques, and the y-axis shows the recall 
values, which range from 80% to 89%. Models such as 
PINN, GCNN, ELM-CNN, and ResNet-LSTM have recall 
values of 86-88, placing them among the top performers. 
These high recall values indicate that these models are 
highly good at recognising relevant events without missing 
many. GraphSAGE, ELM, and XGBoost have recall values 
between 84 and 86, indicating average performance. These 
models perform reasonably well, but may overlook certain 
crucial occurrences when compared to the best-performing 
models. BiGRU and DT-CNN have recall ratings that 
range from 78 to 82, showing a reduced capacity to reliably 
capture all relevant instances. These models may produce 
more false negatives, increasing the likelihood of missing 
meaningful situations. When looking at recall, PINN 
performs better than any other models (Figure 8). The 
PINN-based methodology integrates domain-specific 
physical principles, enabling it to accurately simulate 
intricate interactions inside smart city systems. In contrast 
to conventional machine learning models that depend 
exclusively on data-driven patterns, Physics-Informed 
Neural Networks (PINNs) address governing differential 
equations to guarantee physically compatible results. 
Experimental findings indicate a 10-15% enhancement in 
accuracy and a 20% decrease in computing overhead 
relative to baseline machine learning models, as illustrated 
in Table 2 and Figures 6–8. 
 

 
Figure 9. Time Prediction Performance Metrics 

Different Neural Networks 
 

Figure 9 shows the correlation between sample size and 
prediction time for the suggested classifier. Models like 
PINN, ELM, and BiGRU often have low and consistent 

prediction times across all sample sizes. These models are 
efficient, with PINN having one of the shortest prediction 
durations (~0.020 seconds). ELM also operates well with 
significantly longer times while remaining stable. 
GraphSAGE, GCNN, and XGBoost all exhibit a rise in 
prediction time as sample size increases, although they 
remain within a reasonable range (0.030 to 0.045 seconds). 
XGBoost, for example, begins with a short prediction time 
and rapidly grows with sample size. The prediction time of 
ResNet-LSTM, DT-CNN, and ELM-CNN grows with 
sample size. ResNet-LSTM, for example, begins with a 
reasonable prediction time and rapidly increases to roughly 
0.050 seconds for 500 samples. This shows that these 
models are computationally costly and may slow down as 
the sample size increases. Increasing the sample size makes 
PINN classifiers best. In comparison to advanced 
techniques such as GCNN and ELM-CNN, the suggested 
framework exhibits markedly reduced energy consumption 
and computational burden, as seen by the performance 
metrics in Table 1 and Figure 9. Scalability is guaranteed 
by the implementation of modular design and distributed 
processing. In order to manage substantial datasets, the 
framework implements dynamic node allocation and 
parallelised training. According to Figure 9, benchmark 
experiments demonstrate that the framework consistently 
maintains a latency of less than 100 ms for datasets with 
more than 1 million entries. 
 

 
Figure 10. Comparison of PINN Model Performance 

across all Metrics for Accuracy, Sensitivity, and 
Precision 

 
Figure 10 shows the "Precision, Sensitivity, and Accuracy 
Comparison," a tool that compares five different models or 
approaches based on three parameters: Accuracy, 
Precision, and Sensitivity. This statistic measures the 
model's ability to reliably identify positive cases among 
anticipated positives. Higher precision implies fewer false 
positives. The red bar reflects each model's precision score. 
Models with relatively high precision scores include 
ResNet-LSTM, GCNN, and PINN.Higher sensitivity 
indicates that the model misses fewer true cases. In this 
chart, DT-CNN, ResNet-LSTM, and ELM-CNN have high 
sensitivity values.Accuracy assesses the model's overall 
correctness by determining the percentage of right 
predictions (including true positives and true negatives) 
among all forecasts. Models such as ResNet-LSTM and 
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GraphSAGE have higher accuracy values than other 
models. 
Challenges encompassed handling substantial 
computational requirements and guaranteeing real-time 
transaction verification. These were alleviated by 
employing lightweight consensus procedures and 
optimising smart contract executions, hence diminishing 
energy usage and processing delays.  
The framework operates effectively in medium-scale 
situations; nevertheless, scalability in densely populated 
urban areas with a high density of IoT nodes need more 
optimisation, including improved consensus algorithms 
and the inclusion of edge computing. 

Conclusion 

Applications that track numerous variables, such as smart 
city monitoring systems, rely on the security of the IoT. 
Using blockchain technology to keep tabs on IoT networks 
is the focus of this research. Objective functions that are 
parameterised are used in the analysis. In order to monitor 
and assess the progress of each activity in real-time, it is 
essential to establish distinct job execution intervals in the 
IoT. To strengthen data security in smart city apps, the 
proposed method combines neuro-fuzzy algorithms with 
blockchain technology. Data security in processing and 
storage units is compromised due to the deployment of IoT 
throughout the process. Therefore, at every step, 
monitoring units depend on utmost confidence. By utilising 
the integrated system concept, energy is conserved, 91.7% 
of operations are completed, and 89% of security measures 
are improved. 

References 
[1] A. Meijer and M. P. R. Bolívar, “Governing the smart city: 

a review of the literature on smart urban governance,” Int. 
Rev. Adm. Sci., vol. 82, no. 2, pp. 392–408, 2016, doi: 
10.1177/0020852314564308. 

[2] M. U. Hassan, M. H. Rehmani, and J. Chen, “Privacy 
preservation in blockchain based IoT systems: Integration 
issues, prospects, challenges, and future research 
directions,” Futur. Gener. Comput. Syst., vol. 97, pp. 512–
529, 2019, doi: 10.1016/j.future.2019.02.060. 

[3] S. Singh, P. K. Sharma, S. Y. Moon, D. Moon, and J. H. 
Park, “A comprehensive study on APT attacks and 
countermeasures for future networks and communications: 
challenges and solutions,” J. Supercomput., vol. 75, no. 8, 
pp. 4543–4574, 2019, doi: 10.1007/s11227-016-1850-4. 

[4] S. Joshi, M. Sharma, R. P. Das, J. Rosak-Szyrocka, J. 
Żywiołek, K. Muduli, and M. Prasad. Sustainability, 14[18] 
(2022) 11698. 

[5] S. Behera, A. Pradhan, and R. Dash, “Deep Neural Network 
Architecture for Anomaly Based Intrusion Detection 
System,” 2018 5th Int. Conf. Signal Process. Integr. 
Networks, SPIN 2018, pp. 270–274, 2018, doi: 
10.1109/SPIN.2018.8474162. 

[6] P. Bellavista and R. Montanari, “ Context Awareness for 
Adaptive Access Control Management in IoT Environments 

,” Secur. Priv. Cyber‐Physical Syst., pp. 157–178, 2017, 
doi: 10.1002/9781119226079.ch8. 

[7] O. Bello, S. Zeadally, and M. Badra, “Network layer inter-
operation of Device-to-Device communication technologies 
in Internet of Things (IoT),” Ad Hoc Networks, vol. 57, pp. 
52–62, 2017, doi: 10.1016/j.adhoc.2016.06.010. 

[8] S. Joshi, M. Sharma, R. P. Das, K. Muduli, R. Raut, B. E. 
Narkhede, and A. Misra. Sustainability, 14[3] (2022) 1904. 

[9] M. Shen, X. Tang, L. Zhu, X. Du, and M. Guizani, “Privacy-
Preserving Support Vector Machine Training over 
Blockchain-Based Encrypted IoT Data in Smart Cities,” 
IEEE Internet Things J., vol. 6, no. 5, pp. 7702–7712, 2019, 
doi: 10.1109/JIOT.2019.2901840. 

[10] U. Khalil, Mueen-Uddin, O. A. Malik, and S. Hussain, “A 
Blockchain Footprint for Authentication of IoT-Enabled 
Smart Devices in Smart Cities: State-of-the-Art 
Advancements, Challenges and Future Research 
Directions,” IEEE Access, vol. 10, no. June, pp. 76805–
76823, 2022, doi: 10.1109/ACCESS.2022.3189998. 

[11] I. Makhdoom, I. Zhou, M. Abolhasan, J. Lipman, and W. 
Ni, “PrivySharing: A blockchain-based framework for 
privacy-preserving and secure data sharing in smart cities,” 
Comput. Secur., vol. 88, pp. 0–33, 2020, doi: 
10.1016/j.cose.2019.101653. 

[12] K. Muduli, R. Raut, B. E. Narkhede, and H. Shee. 
Sustainability, 14[6] (2022) 3290. 

[13] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, 
“Blockchain and Federated Learning for Privacy-Preserved 
Data Sharing in Industrial IoT,” IEEE Trans. Ind. 
Informatics, vol. 16, no. 6, pp. 4177–4186, 2020, doi: 
10.1109/TII.2019.2942190. 

[14] T. Sultana, A. Almogren, M. Akbar, M. Zuair, I. Ullah, and 
N. Javaid, “Data sharing system integrating access control 
mechanism using blockchain-based smart contracts for IoT 
devices,” Appl. Sci., vol. 10, no. 2, 2020, doi: 
10.3390/app10020488. 

[15] H. Mora, J. C. Mendoza-Tello, E. G. Varela-Guzmán, and 
J. Szymanski, “Blockchain technologies to address smart 
city and society challenges,” Comput. Human Behav., vol. 
122, p. 106854, 2021, doi: 10.1016/j.chb.2021.106854. 

[16] Y. Zhao et al., “Privacy-Preserving Blockchain-Based 
Federated Learning for IoT Devices,” IEEE Internet Things 
J., Jun. 2019, [Online]. Available: 
http://arxiv.org/abs/1906.10893. 

[17] K. Wei et al., “Federated Learning With Differential 
Privacy: Algorithms and Performance Analysis,” IEEE 
Trans. Inf. Forensics Secur., vol. 15, no. c, pp. 3454–3469, 
2020, doi: 10.1109/TIFS.2020.2988575. 

[18] I. Abunadi et al., “Federated Learning with Blockchain 
Assisted Image Classification for Clustered UAV 
Networks,” Comput. Mater. Contin., vol. 72, no. 1, pp. 
1195–1212, 2022, doi: 10.32604/cmc.2022.025473. 

[19] A. P. Kalapaaking, I. Khalil, M. S. Rahman, M. 
Atiquzzaman, X. Yi, and M. Almashor, “Blockchain-Based 
Federated Learning With Secure Aggregation in Trusted 
Execution Environment for Internet-of-Things,” IEEE 
Trans. Ind. Informatics, vol. 19, no. 2, pp. 1703–1714, Feb. 
2023, doi: 10.1109/TII.2022.3170348. 

[20] T. Ashfaq et al., “A Machine Learning and Blockchain 
Based Efficient Fraud Detection Mechanism,” Sensors, pp. 
1–20, 2022. 

[21] P. Kumar, G. P. Gupta, and R. Tripathi, “TP2SF: A 
Trustworthy Privacy-Preserving Secured Framework for 
sustainable smart cities by leveraging blockchain and 
machine learning,” J. Syst. Archit., vol. 115, p. 101954, 
2021, doi: 10.1016/j.sysarc.2020.101954. 

EAI Endorsed Transactions 
on Internet of Things 
| Volume 11 | 2025 |



 
Mohd. Asif Gandhi et al. 

10 

[22] J. B. Awotunde, T. Gaber, L. V. N. Prasad, S. O. Folorunso, 
and V. L. Lalitha, “Privacy and Security Enhancement of 
Smart Cities Using Hybrid Deep Learning-Enabled 
Blockchain,” Scalable Comput., vol. 24, no. 3, pp. 561–584, 
2023, doi: 10.12694/scpe.v24i3.2272. 

[23] M. Usama, R. Ma, J. Hart, and M. Wojcik, “Physics-
Informed Neural Networks (PINNs)-Based Traffic State 
Estimation: An Application to Traffic Network,” 
Algorithms, vol. 15, no. 12, 2022, doi: 10.3390/a15120447. 

[24] L. N. CheSuh, R. Á. Fernández-Diaz, J. M. Alija-Perez, C. 
Benavides-Cuellar, and H. Alaiz-Moreton, “Improve 
quality of service for the Internet of Things using 
Blockchain & machine learning algorithms,” Internet of 
Things (Netherlands), vol. 26, no. February, 2024, doi: 
10.1016/j.iot.2024.101123. 

EAI Endorsed Transactions 
on Internet of Things 
| Volume 11 | 2025 |




