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Abstract 

The project aims to design an intelligent road eye by using AI and a machine learning approach to detect speedbumps and 
potholes on the road. The system design utilizes a YOLOv5 custom-trained model and COCO dataset in detecting the objects 
on the road. The system is integrated with lane detection algorithms to achieve active steering feedback and pothole 
avoidance. Based on the detection results, feedback will be given in the form of visual, audio, and steering angles, allowing 
the driver to have sufficient response time to perform braking or steering adjustments where applicable. The trained model 
can achieve a mean average precision value (mAP) of up to 0.995 for all classes, and a maximum detection range of 5.77m 
and 34.8m for potholes and speedbump respectively. The future works of the project include integrating the algorithm into 
the vehicle to achieve autonomous braking and active pothole avoidance with the help of sensors and cameras on the vehicle, 
as well as adopting augmented reality (AR) to project the visual feedback on the vehicle windscreen. 
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1. Introduction

According to data provided by the Malaysian Ministry of 
Transport, 3700 fatal cases on average occur each day, and 
there are over 1.35 million road accident fatalities annually. 
There are about 18 fatal road accidents each day in Malaysia, 
and among other road users, passenger cars are responsible 
for 21% of the fatalities [1-2].  

Serious accidents can be caused by several things, 
including irresponsible driving, distracted drivers, weather-
related low visibility, and poor road infrastructure. Some 
often unforeseen events are unavoidable, such as pedestrians 
crossing the street without noticing approaching cars or 
unexpected barriers to which the driver is unable to react 
[3,4,5]. 

*Corresponding author. Email: chandrasekharan@apu.edu.my 

Due to the issues that arise, car manufacturers have been 
developing different technologies throughout the years such 
as lane departure monitoring to alert the driver that the car is 
not staying on its respective lane, blind spot monitoring to 
detect vehicles at the driver’s blind spots, forward collision 
system and more to assist the driver on the road and to prevent 
the unwanted accidents from happening [6-7].  

Car manufacturers have developed a system called 
autonomous emergency braking (AEB) to further enhance the 
existing safety technology [8]. AEB was first introduced by 
the Swedish car maker Volvo in the year 2009 [9]. It uses a 
camera-based system and various kinds of radar to determine 
whether the vehicle is on a collision course and activate the 
braking system of the vehicle automatically when the front 
collision warning is given out to the driver, but no braking 
response is applied to the vehicle. Typically, the AEB system 
can prevent vehicles from getting rear-ended on the road as 
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around 80% of accidents are caused by the rear-enders [10-
11]. The AEB system will usually work with the anti-braking 
lock system (ABS) to achieve the best braking performance 
[12].  

Furthermore, the poor maintenance of road infrastructure 
in Malaysia has been causing the existence of potholes and 
speedbumps [13]. Most of the time it is difficult for the driver 
to avoid potholes that are hardly visible or unmarked 
speedbumps on time, and it has become a major issue for road 
users due to the damage it may cause to the vehicle chassis, 
wheels, and suspension system under long run, which 
consequently increases the risk of road accidents and the cost 
of vehicle maintenance[14-16]. Therefore, the project aims to 
design an intelligent road eye by using AI and a machine 
learning approach to detect various uncertain incidences on 
the road. 

2. Literature Survey

The proposed system in the International Journal of Electrical 
and Computer Engineering (IJECE), titled “Real-time traffic 
sign detection and recognition using Raspberry Pi” [3] can 
detect and recognize different traffic signs to promote safety 
of the road users. The system uses TensorFlow to perform 
object recognition with the aid of Raspberry Pi 3 as the 
processing unit and Raspberry Pi camera for obtaining input. 
Twenty types of traffic signs are considered during the test 
and the system has achieved an accuracy of up to 90% with a 
slight delay which is acceptable. 

The research method started with dataset labelling using 
the tool called Labelling. The labelling process involves 
segmentation of images, followed by image annotation and 
interpretation. Image annotation is to apply bounding boxes 
onto the road signs available within the images to allow them 
to be recognized. The labelled images will be exported in 
XML file format for the use of model training. The dataset 
training is done by using TensorFlow, which has covered five 
types of traffic signs, including Speedbump, No U-Turn, Give 
Way, Stop, as well as Chevron Alignment. A total of 100 
samples with different angles and sizes are taken for each 
category. TensorFlow Lite V2.5.0 is installed on the 
Raspberry Pi 3 for running the pre-trained model [3]. 

According to the research by Asad et al, titled “Pothole 
Detection Using Deep Learning: A Real-Time and AI-on-the-
Edge Perspective” [4], the comparison of different deep 
learning models for pothole detection, including various 
versions of YOLO and SSD algorithms has been made. The 
test is conducted on a moving vehicle under different lighting 
and road conditions.  

The hardware used is mainly an OAK-D camera and a 
Raspberry Pi module. In the data acquisition phase, 665 
images which consist of up to 8000 potholes under various 
environments are collected. YOLO and SSD algorithm 
families are used as the deep learning models for training. 
Darknet framework is used for the training of YOLOv1 to 
YOLOv4, PyTorch framework is used for training YOLOv5, 
whereas Tensorflow framework is used for the training of 

SSD-Mobilenetv2. Dataset annotation is then done according 
to the respective model type before the training process [4]. 

The results show that the Tiny-YOLOv4, YOLO v4 and 
YOLO v5 have achieved a mean average precision of 
80.04%, 85.48% and 95% respectively with Tiny YOLO v4 
selected as the ideal model for pothole detection due to its 
90% detection accuracy and a smooth 31.76fps frame rate. 
The future improvements being considered include road 
depression detection, road quality classification and pothole 
depth estimation [4]. 

The system proposed by Dewangan & Sahu in the paper 
“Deep Learning Based Speed Bump Detection Model for 
Intelligent Vehicle System using Raspberry Pi” [5] utilized 
deep learning and computer vision approach to improve 
speed bump detection such as enhanced accuracy and provide 
warning signal earlier. The system is proposed using a 
Raspberry Pi-based vehicle prototype, with both marked and 
unmarked speed bumps being considered. A total of 575 
images of the speed bump were taken using the Raspberry 
camera module and underwent image processing to obtain a 
clearer image. Data augmentation is applied to increase the 
dataset size to 3450 samples. CNN is used as the architecture 
for detection with filter sizes of 5*5, 3*3 and 2*2. A batch 
size and learning rate of 32 and 0.001 respectively are used 
during the training process to avoid error.  

Once the speedbump is detected within the bounding box, 
the distance between the camera and the bump is identified 
by utilizing the pixels between the left and right corners of 
the bounding box. By obtaining the difference between two 
points and substituting it into the linear equation, the gradient 
and intercepting point can be used for determining the actual 
distance between the bump and the vehicle. The proposed 
system can achieve an accuracy and precision level of 98.54% 
and 99.05% respectively. Future improvements being 
considered involved object detection other than speed bumps 
[5]. 

The system proposed by Anand in the paper “Intelligent 
Vehicle Speed Controlling and Pothole Detection System” 
[6] used a machine-learning approach to introduce dynamic
speed limiters on vehicles to reduce accidents on the road.
The system detects speed limit road signs along the way and
caps the maximum speed of the vehicle accordingly. The
system is also able to detect potholes by utilizing the
accelerometer vibration on the phone.

The detection process can be split into three phases, which 
are image pre-processing, sign board detection and speed 
limit recognition. After the input images have undergone pre-
processing for a clearer image, region detection of the speed 
limit sign is done using maximally stable extremal regions 
(MSER) detection on the pre-processed grayscale image.  

A Histogram of Oriented Gradient (HOG) features from 
the road sign is then extracted and fed to a Support Vector 
Machine (SVM) for speed limit classification. Once the speed 
limit has been obtained. The maximum vehicle speed will be 
set using Raspberry Pi [6]. Whereas for pothole detection, the 
input will be based on the vibrations sensed by the phone 
accelerometer. Once the vibrations are detected, the location 
coordinate will be plotted on the map for respective 
authorities to manage using the GPS and GSM service, 
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alternative path will be suggested to the user. The advantage 
of using the MSER detection method is that it’s relatively 
robust and stable under different environmental conditions 
[6]. 

3. Proposed Methodology

3.1. Block Diagram 

Figure 1. Block Diagram 

Figure 1 shows the block diagram of the dashboard system. 
The Raspberry Pi 4B module is powered by an external power 
supply to function. Raspberry Pi camera is used as the system 
input to capture the images on the road. The images captured 
will then be processed by the Raspberry Pi 4B module 
through the image processing techniques and object detection 
algorithms to mainly detect lane marking, speedbumps and 
potholes on the road. Based on the detection results, feedback 
in the form of visual, audio, and steering angle will be given 
through the LCD screen, and speakers in the vehicle cabin. 

3.2. System Implementation and Data 
Collection 

Figure 2. Dashboard System 

Figure 2 shows the dashboard system for vehicle safety. The 
Raspberry Pi and Pi camera modules are placed on top of the 
vehicle dashboard to capture images of potholes and 
speedbumps on the road surface. RPi-Cam-Web-Interface is 

utilized to record the driving footage along the drive, as 
Raspberry Pi was not equipped with a video recording feature 
originally. The video resolution set for the recording is 640 x 
640 to adapt to the properties of the YOLOv5 custom-trained 
model. 

The extracted frames are then annotated using Roboflow. 
There’s a total of 455 images that have been collected. The 
images are then imported into the Roboflow platform for the 
annotating process. During the process, bounding boxes are 
drawn and labelled on the potholes and speedbumps within 
each frame. The annotated images then underwent an 
augmentation process to further increase the size of the 
dataset. The augmentations process has produced an 
additional 499 images with altered saturation, brightness, and 
exposure by a scale of 25% from the original images, 
resulting in a total of 954 images for the training set. 

3.3. Training of datasets 

The training of datasets is done on the Google Colab 
platform. Due to the large number of images, the annotated 
datasets are imported into Google Drive before the training 
process. The Google Drive directory as well as the libraries 
required such as PyTorch and Torchvision are then imported 
into Google Colab. The number of training cycles (epochs), 
batch size, directory to the dataset YAML file and the training 
size of the model is then defined accordingly in the YOLOv5 
training command. 

For lane detection, input images will be resized to the 
resolution of 640 x 640. The resized frames will undergo 
canny edge detection for the detection of the edges available 
in the frame. Since the only interest is to detect the lane 
marking on the road, a region of interest (ROI) is set with the 
aid of coordinates, hence, canny edge detection will only be 
applied on the road surface region within the frame, which 
can improve the overall efficiency of the detection as the 
unwanted parts have been filtered out. Next, the Hough 
transform is applied to the cropped frames with Canny edge 
detection to obtain the ideal or best fit for the straight line 
within the frame. Object detection algorithms are then applied 
to detect potholes and speedbumps on the road using the 
custom trained YOLOv5 model. The respective visual and 
audio feedback for the detections is defined accordingly. 

3.4. Python Programming (Algorithm) and 
Flowchart 

For lane detection, input images will be resized to the 
resolution of 640 x 640. The resized frames will undergo 
canny edge detection for the detection of the edges available 
in the frame. Since that the only interest is to detect the lane 
marking on the road, a region of interest (ROI) is set with the 
aid of coordinates, hence, canny edge detection will only be 
applied on the road surface region within the frame, which 
can improve the overall efficiency of the detection as the 
unwanted parts have been filtered out. Next, Hough transform 
is applied onto the cropped frames with Canny edge detection 
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applied to obtain the ideal or best fit for the straight line 
within the frame. Object detection algorithms are then applied 
to detect potholes and speedbumps on the road using the 
custom trained YOLOv5 model. The respective visual and 
audio feedback for the detections is defined accordingly. 

Figure 3. Methodology Flowchart 

Figure 3 above shows the flowchart of the intelligent road 
eye. The working process started with the lane detection 
algorithm. The algorithm will constantly detect the lane 
marking on the road to ensure that the vehicle is staying in the 
middle of the lane. Once lane departure is detected, the 
steering adjustment required will be calculated through 
trigonometry with the aid of the returning values from the 
lane detection algorithm. When the vehicle is travelling on 
the lane, object detection will be executed to detect the 
presence of speedbumps, vehicles, and potholes. When a 
speedbump or vehicle is detected, the distance between the 
object detected and the vehicle will be calculated, whereas 
when a pothole is detected, the object distance and the offset 
of the pothole from the middle line will be calculated, and the 
parameters obtained will be considered in the steering 
adjustment calculation. The feedback will then be given in the 
form of visual and audio through the LCD screen and speaker 
respectively. 

4. Results and Discussion

Figure 4 shows the hardware setup of the intelligent road eye. 
The system will constantly capture the road situation ahead 
of the vehicle and provide feedback in the form of visual and 
audio to the driver. The integrated system is attached on the 
dashboard of the car, which is powered by the car battery. The 

system consists of high sensitivity camera, microcontroller 
and display system. The camera is very sensitive  to the 
images captured in both day and night. The images are 

Figure 4. Dashboard Hardware Setup 

processed by using microcontroller and provides the relevant 
steering angle signals to the IOT platform. Then, the IOT will 
activate the actuators connected with the car braking system. 
To evaluate the performance of the developed hardware, 
significant analysis is conducted through the following tests.  

4.1. Model Performance Test 

Figure 5. Custom model training results 

Figure 5 shows the results of custom model training. The 
epoch set used for the training is 100. The entire training 
process took approximately 1,048 hours to complete. It can 
be observed that the precision and recall value of the trained 
model have achieved a steady state after surpassing the 50th 
training cycle. The mean Average Precision value (mAP) at 
the Intersection over Union (IoU) with a threshold of 0.5 
(mAP_0.5) and a threshold range between 0.5 to 0.95 
(mAP_0.5:0.95) have been plotted. For the threshold of 0.5, 
the mAP_0.5 value reached its peak at 0.995 for all classes, 
including pothole and speedbump.  

As for the comparison with the existing works, the system 
proposed by Asad et al [4] has achieved a mean average 
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precision of 0.95 for YOLOv5 model, the proposed system in 
the existing work can achieve an accuracy of up to 90% with 
a slight delay, indicating that the training results is considered 
decent and reasonable. On the other hand, the mAP-0.5:0.95 
reached a peak of 0.692, 0.631 and 0.752 for the class of all, 
pothole, and speedbump respectively. The trained model 
seems to have the perfect skill as it is depicted as a point that 
is close to the coordinate (1,1) in the precision-recall curve as 
shown in Figure 6. 

Figure 6. Precision-recall curve 

4.2. Navigation test for pothole detection in 
daytime 

Figure 7. Navigation test for potholes (daytime) 

Figure 8. Pothole offset against distance 

Figure 9. Steering angle generated against distance 

Figures 7, 8 and 9 show that the pothole can be detected from 
a maximum distance of 3.4 meters. The short detection range 
could be due to the damp road surface which affects the 
detection accuracy. As the vehicle approaches the potholes, 
the pothole offset from the middle line set is increased 
accordingly due to the increase in object size within the frame 
and the pixels detected within the offset. The concept is 
utilized for generating the steering angle needed to avoid 
potholes. 

The steering angle graph possessed a similar characteristic 
as the graph of pothole offset against distance. Theoretically, 
the steering angle is supposed to be increased as the distance 
decreases, since the shorter the distance, the nearer the 
vehicle is to the pothole, hence larger angle is needed to avoid 
the pothole under moving condition. However, the graph 
shows a slightly fluctuating result due to the presence of 
yellow stripes on the road that interrupting the lane detection 
algorithm. 
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Figure 10. Navigation test for potholes (night) 

Figure 11. Pothole offset against distance 

Figure 12. Steering angle generated against distance 

Figures 10, 11 and 12 show that the pothole can be detected 
from a maximum distance of 5.77 meters at night, which is 
significantly further than the detection range during daytime. 
This could be due to less environmental disruptions as it is 
dark at night. Moreover, the vehicle headlight which points 

towards the road ahead allows the pothole to be detected more 
easily.  

4.4. Confidence test for speedbumps and 
potholes detection (daytime) 

Figure 13. Confidence test (daytime) 

Figure 14. Confidence score of speedbump 1 
(daytime) 

Figure 15. Confidence score of speedbump 2 
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Figure 16. Confidence score of pothole 1 (daytime) 

Figures 13, 14, and 15 show that the confidence score 
increased as the distance decreased. During the daytime, 
speedbump 1 can be detected from as far as 29.4 meters away, 
the confidence score increased drastically from 0.25 at 29.4 
m to 0.62 at 27.72m, and gradually achieved its peak of 0.93 
at 16.53m and maintained the confidence score at above 0.9 
afterwards. On the other hand, speedbump 2 can be detected 
from as far as 34.8 meters away, which is relatively further 
compared to speedbump 1.  

This could be due to the reason that Speedbump 1 is 
located within a corner, whereas Speedbump 2 is located on 
a straight road. The confidence score increased gradually 
from 0.33 at 34.8m to the peak of 0.91 at 19.23m and 
maintained the confidence score above 0.9 afterwards. 
Fluctuation can be seen throughout the graph, which could be 
due to the presence of vehicles on the road. However, the 
graph is still showing an overall increment characteristic of 
the confidence score throughout the dataset. 

Figure 17. Confidence score of pothole 2 (daytime) 

During daytime, pothole 1 can be detected from as far as 
3.57 m away. Figure 16 shows that the confidence score 
dropped from 0.61 at 3.57 m to 0.45 at 3.26 m, and then 
increased again drastically to 0.84 at 2.88 m and gradually 
towards it peak of 0.93 at 2.46 m. Figure 17 shows little 
increment in confidence score for pothole 2, since that it can 

only be detected from 2.59 m away during daytime The 
fluctuations in between the data could be due to the presence 
of yellow stripes or the damp road surface conditions that 
affect the detection. 

4.5. Confidence test for speedbumps and 
potholes detection (night-time) 

Figure 18. Confidence test (night) 

Figure 19. Confidence score of speedbump 1 (night) 
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Figure 20. Confidence score of speedbump 2 (night) 

Figures 18, 19, and 20 show the results of the confidence test 
conducted at night-time. During night-time, speed bump 1 
can be detected from as far as 25 meters away, slightly shorter 
than 29.4 meters during daytime. Figure 19 shows that the 
confidence score increased drastically from 0.45 at 24.39 m 
to 0.79 at 23.53m, and gradually achieved its peak of 0.95 at 
10.7m and maintained the confidence score at above 0.9 
afterwards.  

Figure 21. Confidence score of pothole 1 (night) 

On the other hand, speedbump 2 can be detected from as 
far as 33.9 meters away, which is slightly shorter than 34.8 
meters during daytime. This could be due to a lack of light 
source that caused relatively poor visibility at night. Figure 
20 shows that the confidence score increased gradually from 
0.26 at 33.9m to the peak of 0.93 at 20.62m. Fluctuation can 
be seen at the beginning of the graph, which could be due to 
the presence of vehicles on the road. However, the graph is 
still showing an increment characteristic in the confidence 
score across the dataset. 

Figure 22. Confidence score of pothole 2 (night) 

During night-time, pothole 1 can be detected from as far as 
5.77 m away, which is significantly higher than the detected 
distance during the daytime.  

At the beginning of the graph in Figure 21, the confidence 
score increased from 0.46 at 5.57 m to 0.67 at 5.33 m and 
dropped to 0.63 at 5.17 m. The score is then gradually 
increased towards the 0.94 peak at 1.79 m. The fluctuations 
in between the data could be due to the detection range, the 
presence of yellow stripes or the damp road surface 
conditions that affect the detection.  

Figure 22 shows that pothole 2 can only be detected from 
1.88 m away during night-time, which is relatively lower than 
the 2.59m range during daytime. The confidence score 
increased from 0.77 at 1.88m to the 0.94 peak at 1.60 m and 
dropped slightly to 0.88 at 1.18m. The dropping of the 
confidence score at the end of the data could be due to the 
close detection range and partially covered potholes, which 
are not included in the training dataset. 

5. Conclusion

The intelligent road eye is designed using AI and machine 
learning approaches to detect the existence of speedbumps 
and potholes on the road. Based on the detection results, 
feedback in the form of audio, visual and steering angle will 
be given to the driver for performing braking or steering 
adjustments where applicable. In this work, an AI algorithm 
was developed for detecting potholes and speedbumps using 
the YOLOv5 model on the Google Colab platform. In 
addition,  a Raspberry Pi-based system was constructed for 
executing relevant feedback responses such as audible, and 
visible alert signals, and steering angle calculation for pothole 
avoidance with the aid of Python programming. 

Further, the prediction accuracy of the developed road eye 
was analysed through a model performance test, navigation 
test and confidence test in both day and night conditions. The 
trained model could produce a mean average precision value 
(mAP) of up to 0.995 for all classes and a maximum detection 
range of 5.77m and 34.8m for potholes and speedbumps 
respectively. The developed dashboard with an object 
detection algorithm will enable us to reduce the risks of road 
accidents and create a new market opportunity. 
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