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Abstract 

The Internet of Things (IoT) has revolutionized modern living by facilitating seamless data exchange between interconnected 
devices across diverse applications such as healthcare, smart cities, and industrial automation. These devices operate in 
dynamic and distributed environments, where accurate timekeeping is crucial for synchronizing processes, ensuring reliable 
communication, and maintaining data consistency. Clock synchronization plays a critical role in coordinating the activities 
of IoT entities, especially when processing and communication require precision. To address challenges associated with 
synchronization errors, this paper introduces a novel clock synchronization algorithm grounded in linear quadratic 
regression. By leveraging a linear model to estimate clock parameters such as skew and offset, the algorithm improves the 
reliability and accuracy of time synchronization in IoT networks. The effectiveness of the proposed algorithm was evaluated 
using key statistical metrics, including R-Square and Root Mean Square Error (RMSE). The results demonstrated the 
superiority of the algorithm, achieving an R-Square error value of 0.71% and an RMSE of 0.379%, outperforming traditional 
synchronization methods. Furthermore, the stability and robustness of the model were validated through a correlation 
coefficient analysis, which revealed a strong correlation of 86% between the variables. These findings underscore the 
algorithm's potential to significantly reduce synchronization errors, thereby enhancing the efficiency and reliability of IoT 
applications. By addressing a critical challenge in IoT communication, this research contributes to the advancement of time-
sensitive applications and underscores the importance of innovative synchronization mechanisms in the growing IoT 
ecosystem. 
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1. Introduction

Clock synchronisation has largely impacted technologies 
driven by applications in the communications and telecom 
sectors. However, recent development in automation, 
manufacturing, exploration of oil and gas, power 
generation and mining industries rely on precise 
timestamps of data. 
The Internet of Things (IoT) is a groundbreaking 
innovation that has become a cornerstone of modern 

technological advancements. Its extensive capabilities and 
transformative impact on daily life have been widely 
recognized and documented in several studies [1-4]. IoT is 
poised to revolutionize numerous industries by bridging the 
gap between the physical and digital worlds, leveraging a 
blend of Information Technology (IT) and Operational 
Technology (OT) networks. 
IT networks primarily provide cloud-based infrastructures 
that enable network connectivity, data storage, processing, 
and analysis. In contrast, OT networks consist of diverse 
connectivity technologies, protocols, and tools that 
facilitate the interaction of IoT endpoints, such as sensors, 

An Improved & Smart Clock Synchronisation Model for 
Emblematic IoT Applications 

EAI Endorsed Transactions 
on Internet of Things 
| Volume 11 | 2025 |

mailto:upadhyay.divya@gmail.com
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:upadhyay.divya@gmail.com


 
D. Upadhyay and A. K. Dubey 

2 

actuators, and effectors, within localized networks. These 
networks collaboratively enable IoT to deliver robust 
solutions tailored to various industrial and consumer needs. 
Despite its potential, designing a reliable and precise IoT 
system remains a significant challenge [5]. The integration 
of advanced technologies, including artificial intelligence 
(AI), blockchain, and 5G, is essential to delivering high-
quality services, minimizing costs, improving precision, 
and reducing reliance on human intervention. IoT 
applications depend heavily on the internet for 
visualization and communication, linking the physical and 
digital realms [6]. However, the interoperability among 
heterogeneous devices and resources continues to pose a 
barrier to seamless integration [7]. 
Many industrial IoT applications require precise 
coordination among sensors, actuators, and effectors. For 
time-sensitive and low-latency tasks, such as those in 
autonomous vehicles and smart manufacturing, sensor data 
must be processed in real-time. This necessitates accurate 
timestamps for data collected from multiple sensors. 
Moreover, IoT systems are expected to deliver actionable 
analytics derived from stored and real-time data. These 
analytics are meaningful only when the temporal context 
of events is accurately captured and interpreted. 
Consequently, time synchronization has emerged as a 
critical enabler for real-time IoT applications, especially in 
sectors like healthcare, manufacturing, and industrial 
automation. 
IoT has proven particularly impactful in healthcare in 
developing countries like India, where it offers cost-
effective and accurate solutions. A 2016 UNICEF report 
[6] highlighted India's high neonatal mortality risk, 
particularly in low-income regions. IoT-enabled solutions 
can alleviate this by ensuring quality care, addressing 
staffing shortages, and reducing costs [7]. The aging global 
population and rising prevalence of chronic illnesses 
further underscore the need for IoT-driven healthcare 
innovations. Distributed IoT systems, for instance, enable 
the collection of spatial and temporal datasets for 
applications such as structural health monitoring [8]. These 
systems require synchronized data acquisition from 
multiple sensors to analyze spatial constraints accurately. 
To achieve effective synchronization, IoT networks must 
maintain a consistent and coherent understanding of 
temporal information. This synchronization is critical for 
periodic tasks such as sampling and data selection. For 
certain local wireless sensor network (WSN) deployments, 
such as industrial automation systems, tasks must be 
completed within specified time limits to ensure 
operational efficiency [9-10]. Recent advancements in 
time-synchronized protocols like IEEE 802.15.4e and the 
application of Time-Sensitive Networking (TSN) 
standards in 2024 and 2025 have significantly improved 
IoT infrastructure reliability and scalability [11-12]. 
The proposed paper presents a detailed analysis of time 
synchronization errors across various IoT modules and 
introduces a linear quadratic regression (LQR)-based clock 
synchronization algorithm to address these errors. By 
implementing this algorithm, the efficiency and 

performance of IoT applications can be significantly 
enhanced, reducing clock discrepancies among sensors, 
actuators, and effectors in real-time environments. This 
approach ensures robust, scalable, and secure 
synchronization, paving the way for advanced IoT 
solutions in critical applications across multiple sectors. 
This paper is structured as follows: Section II covers the 
motivation and literature survey, while Section III 
highlights the importance of clock synchronization and its 
parameters for IoT applications. Section IV introduces an 
IoT-based agricultural data collection model, and Section 
V details the linear regression model. Sections VI-VIII 
provide an in-depth explanation of the proposed linear 
quadratic regression model for clock skew estimation, 
along with its validation. Section IX discusses the model's 
stability, and Section X concludes the research.  

2. Related Work 

Traditional clock synchronization techniques in IoT and 
Wireless Sensor Networks (WSNs) often rely on a master-
slave architecture, where slave devices synchronize their 
clocks with a designated master device or reference time. 
However, a fully distributed synchronization approach has 
also emerged as a viable alternative, offering a common 
time base for all connected devices in WSNs and IoT-based 
applications. This section explores procedures and 
algorithms for achieving accurate clock synchronization, 
with a focus on presenting a comprehensive overview of 
synchronization techniques, classifying key research 
domains, and highlighting the state-of-the-art 
advancements. 

In reviewing the state-of-the-art, particular attention is 
given to estimation-based algorithms, which form the 
foundation for identifying research opportunities. Table I 
outlines critical parameters underscoring the importance of 
clock synchronization, such as accuracy, scalability, and 
robustness. Additionally, various applications requiring 
WSN and IoT networks to perform tasks within stringent 
time constraints are surveyed and summarized in Table II. 
These include industrial automation, smart grids, and 
healthcare applications, each with unique synchronization 
requirements. 

Notably, different IoT applications necessitate diverse 
notions of time, which influence the choice of 
methodologies and synchronization techniques. 
Consequently, a detailed survey is essential to provide a 
clear overview of the components and associated solutions 
tailored for specific IoT applications. Table III presents an 
analysis of individual components crucial for 
synchronization, evaluating their advantages and 
limitations in the context of IoT deployment. 

Recent advancements in IoT synchronization, 
particularly those highlighted in IEEE publications from 
2024 and 2025, emphasize the integration of Time-
Sensitive Networking (TSN) protocols and edge-based 
synchronization techniques. These innovations aim to 
address the limitations of traditional methods by improving 
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synchronization accuracy and reducing latency in real-time 
applications [49-50]. 

Table I:  Survey on Importance of Clock 
Sychronisation 

Parameter Relevance Ref. 

Accuracy 

Achieving a high level of 
synchronisation accuracy 
can lead to reduced energy 
requirements and 
consumption, which is 
especially important in 
wireless communication 
due to its broadcast nature. 
Clock offset and clock skew 
are two important 
parameters that have been 
defined to help achieve this 
synchronisation. 

[11-13] 

Scalability and 
bandwidth 
efficiency 

Scalability and bandwidth 
efficiency is important 
parameter for any network, 
Clock synchronisation 
requires exchange of 
messages which includes 
overhead and consumes 
exchange. If clock 
synchronisation is 
efficiently, will increase 
bandwidth consumption. 

[14-15] 

Computational 
efficiency 

Synchronized network and 
nodes will be better 
available with additional 
computing power. 

[15] 

Robustness 

Robustness is an important 
parameter in a highly 
dynamic IoT infrastructure. 
Synchronisation will help in 
maintaining a high robust 
system. 

[16] 

Security 

Security is a major concern 
especially in terms of IIoT. 
Secure and efficient clock 
synchronisation protocol 
protects the networks 
against attacks and 
malicious nodes. 

[15] 

 

Table II: Survey on Time-Constraint Application of 
WSN and IOT 

Application Description Ref. 
Industrial 

Automation or 
Industrial 

According to a survey, 
Industrial wireless sensor 
networks (IWSN) are 
projected to increase by 

[17,18] 

Wireless sensor 
Network 

553% and reach nearly 24 
million installed sensor 
points in the next five 
years. These networks 
utilize a variety of 
protocols, such as 
Zigbee, Wireless-HART, 
ISA-100.11a, Wi-Fi Low 
power, and Bluetooth Low 
Energy.  

Low-jitter 
application 

These applications 
necessitate 
compensation and 
estimating time 
uncertainty sources, 
which may arise from 
oscillators and 
communication objects.  

[16] 

Time 
Synchronized 

Channel Hopping 
(TSCH) Network 

The networks are 
constructed using IEEE 
802.15.4e protocols and 
have the backing of 
several IETF standards 
with support for IPv6. 

[19-
21] 

Intelligent 
Transport 
Systems 

VANETs (Vehicular 
Adhoc Networks) are an 
advancement of Mobile 
Adhoc Networks 
(MANETs). 

[16, 
22] 

Smart Grid 

IoT based Smart grid 
deployment depends on 
coherent and accurate 
notion of time within the 
networks. 

[23] 

Industrial Internet 
of Things (IIoT) 

IIoT have gained interest 
with the development of 
supporting and time 
aware precise time 
stamped operations.  

[24] 

 

Table III:  Surveys on Time Synchronisation for IOT 
Applications 

Year Component Ref. 
2004 In early 2004 a survey provided an 

analysis and requirement of sensors 
time synchronisation.  

[25] 

2005 A survey on various clock 
synchronisation for wireless sensor 
networks was conducted to analyze 
its importance and need.  

[26] 

2011 In 2011 clock synchronisation in 
WSN is analyzed in terms of signal 
processing. It summarizes clock 
relational models, estimator’s 
parameter, exponential distributed 
delays, and related estimation 
methods with respect to signal 
processing. 

[27] 
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2015 It classified clock synchronisation 
methods based on features 
classified as structural, technical, 
and global. 

[28] 

2018 Protocols to reduces the 
synchronisation errors in clock to 
enhance WSN lifetime were 
designed  

[29-30] 

2019 A consolidated review for clock 
synchronisation techniques applied 
for WSN achieving an IoT 
deployment. 

[31] 

2021 An energy efficient and practical 
solutions for clock synchronisation 
were developed and deployed 

[32-33] 

 
In WSN & IoT clock synchronisation is one of the 

extensively investigated challenges for real time 
applications. In this work, the focus is primarily on the low-
cost, efficient, and low-power clock synchronisation for 
various networks with respect of synchronisation error. 
Table IV presents a detailed surveys on different clock 
synchronous networks. 

Table IV:  Clock Synchronous Networks 

Network Content Ref. 

Time-sensitive 
networking 

(TSN) 

TSN is a new LAN technology 
for the synchronisation of 
operation and information. 
This is designed to support 
in-vehicle network, industrial 
automation, and avionic 
networks for Industrial IoT. 

[34] 

Ultra-low latency 
networks 

The operational capabilities 
of an ultra-low latency 
network are dependent on 
Ethernet, which makes Time-
Sensitive Networking (TSN) a 
cost-effective option due to its 
interoperability and other 
benefits. 

[35] 

Time 
synchronisation 
in vehicular ad-
hoc networks 

 

 In vehicular ad hoc 
networks (VANETs) for 
automated and connected 
network nodes, vehicles must 
be synchronized for sharing 
information for various road 
safety applications related to 
time-critical locations and 
warning messages.  

[36] 

Packet Switched 
Network 

In 2016, a survey on a 
packet-switched protocol for 
synchronizing devices over 
standardized and regular 
technologies and 
applications.  

[23-
37] 

 
The design of an improved and smart clock 

synchronization model for emblematic IoT applications 

draws insights from various aspects of distributed 
computing and secure system operations. A foundational 
challenge, as highlighted by Upadhyay and Banerjee [47], 
lies in developing energy-efficient frameworks for time 
synchronization in wireless sensor networks, which are 
crucial for the coherent operation of IoT devices where 
resources are often constrained. Beyond the core 
synchronization mechanisms, the overall integrity and 
security of IoT applications are paramount. In this context, 
Kaur and Upadhyay [48] addressed the critical issue of 
application permissions and information security on 
smartphones, an area whose principles extend to protecting 
data and ensuring the reliability of operations within the 
broader IoT ecosystem, where accurate timestamps derived 
from synchronized clocks are fundamental for data 
integrity and event sequencing. Moreover, the increasing 
adoption of distributed ledger technologies, exemplified by 
Mishra, Singh, and Singh's [49] work on blockchain in 
supply chain operations, underscores the necessity for 
robust time management in highly distributed and 
potentially ambiguous environments; although not directly 
focused on clock synchronization algorithms, the effective 
functioning and consensus mechanisms of such systems 
inherently rely on a consistent and trustworthy temporal 
ordering of events, thereby emphasizing the foundational 
role of precise synchronization in maintaining systemic 
reliability and data consistency in complex IoT 
deployments. 

Some of the other latest work done with respect to time 
synchronisation problems in IoT frameworks are Data 
Repairing Framework for ERI Data [52], Anomaly 
detection [53], etc. 

3. Clock Model and Its Parameters 

The Internet of Things (IoT) is set to revolutionize daily 
life by enabling seamless data exchange among 
interconnected devices. Achieving real-time performance 
for critical applications like Industrial IoT (IIoT) and 
Vehicular Ad hoc Networks (VANETs) necessitates clock-
synchronized sensor networks that ensure data ordering 
and synchronous operations. Traditional solutions, such as 
the Network Time Protocol, are unsuitable for resource-
constrained devices, prompting the development of 
specialized clock synchronization methods tailored for 
such environments [38], [39], [40]. These methods aim to 
enhance the accuracy and performance of IoT applications. 
Experimental evaluations of these protocols, conducted by 
the Autonomous Networks Research Group at the 
University of Southern California, have provided valuable 
insights and datasets [42]. 

Clock synchronization in IoT relies on understanding 
two critical parameters: clock offset (θ) and clock skew (α). 
Clock offset refers to the timing difference between two 
sensor clocks, influenced by factors like environmental 
conditions and oscillator aging. Clock skew, on the other 
hand, represents variations in the frequency of sensor 
clocks, which can arise from short-term instabilities (e.g., 
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temperature fluctuations) and long-term instabilities (e.g., 
oscillator aging). These instabilities necessitate periodic 
synchronization to maintain system coherence. An ideal 
clock can be represented mathematically as: 

 
C(tr) = tr                                                         (1) 

 
However, due to imperfections in clock oscillators, the 

actual clock function is defined as: 
 

Ci(tr) = ε + θ + αtr                                        (2) 
 
Here, ε denotes a positive random delay, θ represents 

the clock offset in milliseconds, and α is the clock skew. 
The synchronization process typically involves two phases: 
level discovery, where a root node organizes the network 
into a tree-like structure, and the synchronization phase, 
which employs a bi-directional message-passing scheme 
for time exchange. These protocols and processes are 
crucial for ensuring the reliability and precision of IoT 
networks, particularly in time-sensitive applications. 

Table V: Instabilities Affecting Clock Parameters 

Type of 
Instability Description Examples 

Short-term 
Caused by environmental 
factors like temperature 
variations and supply 
voltage fluctuations. 

Temperature, 
voltage 

fluctuation. 

Long-term 
This results from gradual 
factors such as oscillator 
aging. 

Aging of 
crystal 

oscillators. 

 
Table VI: Clock Synchronization Phases 

Phase Description Methodology 

Level Discovery 
Designates one node 
as the root, forming a 
hierarchical structure 

with child nodes. 

Tree-like 
structure 
formation. 

Synchronization 

Exchanges timing 
information between 

parent and child 
nodes using bi-

directional message 
passing. 

Bi-directional 
message 
scheme. 

 
 
 

Table VII: Clock Skew Calculation 

Parameter Formula Explanation 

Clock Skew 
(CS) 

𝛼𝛼_ A,𝐵𝐵_ (𝑡𝑡) =  𝑑𝑑𝜃𝜃_𝐴𝐴,𝐵𝐵 _ (𝑡𝑡)

𝑑𝑑𝑡𝑡
                                                 

(3) 

Derivative of clock 
offset between two 
nodes A and B at 

time tt. 

Alternative 
Formula 

𝛼𝛼_ 𝐴𝐴,𝐵𝐵 _ (𝑡𝑡) =
𝜃𝜃_ 𝐴𝐴,𝐵𝐵 _  �𝑡𝑡+𝑇𝑇 (𝑡𝑡)�− 𝜃𝜃_ 𝐴𝐴,𝐵𝐵 _ (𝑡𝑡)

𝑇𝑇 _ (𝑡𝑡)
                                 

(4) 

Utilizes sampling 
interval T(t)T(t) for 

clock skew 
computation. 

 
The calculation of clock skew requires the sampling 

interval , as described in Equation (4). Initially, the clock 
offset is determined using a bi-directional message passing 
approach [42]. However, clock skew is subject to dynamic 
influences such as variations in battery levels and sensor 
temperature, making it unsuitable to treat as a fixed random 
variable. As a result, conventional methods like Maximum 
Likelihood Estimation (MLE) are inadequate for 
accurately predicting clock skew. To address this, a linear-
quadratic regression model is utilized, providing a more 
effective method for estimating the optimal value of clock 
skew. 

The Table V, Table VI & Table VII summarize the key 
information and processes for clock synchronization in IoT 
and WSN applications 
 

 

Figure 1.  Bi-directional Message Exchange 
Scheme with Propagation Time and Clock Offset 

between S1 and S2. 

Where θc The time offset between node S1 and node S2 is 
represented by t, and d is the propagation time. 
 

 

Figure 2. Bi-directional message passing scheme 
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Figure 1 illustrates the Bi-Directional Message Passing 
scheme, and  Figure 2 illustrates the bi-directional message 
passing scheme, where θc represents the clock offset 
between nodes S1 and S2. 

4. System Model 

While existing methods for clock synchronization, such 
as traditional regression techniques and heuristic-based 
approaches, provide reasonable accuracy, they often 
struggle with scalability and adaptability to dynamic IoT 
environments. These limitations, highlighted in the Related 
Work section, underscore the need for a robust model 
capable of addressing these gaps. To bridge this gap, the 
proposed Linear Quadratic Regression model offers an 
innovative approach to enhance synchronization accuracy 
and reliability in resource-constrained IoT systems. 

This study presents a wireless sensor network (WSN) 
designed for agricultural irrigation control to improve 
clock synchronization research. The system integrates 
various sensors and a Raspberry Pi to collect 
environmental and timing data, while MATLAB 
simulations analyze clock offset and skew. Bi-directional 
communication among nodes ensures efficient data 
exchange and synchronization. 
Details of the system model of the Irrigation Management 
System deployed for Clock Synchronization Research is:  
System Components 

• Data Collection Setup: 
o Data includes timing information from 

network nodes and timestamp data traces 
from Maulik Desai's experiments [43]. 

o Timing data is simulated in MATLAB 
for analysis. 

• Irrigation Control System Hardware: 
o Microcontroller: Raspberry Pi. 
o Sensors: 

 N-P-K sensor. 
 Soil monitoring sensor. 
 pH sensor. 
 Moisture sensor. 
 Temperature sensor. 

o Node Communication: Nodes exchange 
timing messages and sensor data for 
synchronization. 

Process Flow 
• Data Collection: 

o Sensors monitor environmental 
conditions and transmit the data to the 
central control system. 

o Timing data is collected as part of bi-
directional communication between 
nodes. 

• Timing Analysis: 
o Timing information is used to estimate 

clock parameters like offset and skew. 

o MATLAB is employed to simulate the 
dataset and analyze clock 
synchronization metrics. 

Communication Models 
• Wireless Sensor Network (WSN): 

o Nodes (S1, S2, S3) form a network for 
agricultural irrigation management. 

o Timing messages and sensor data are 
exchanged wirelessly. 

• Bi-Directional Communication: 
o Nodes synchronize through message 

exchanges to estimate clock offset and 
skew. 

o Illustrated in Fig. 4 as a bi-directional 
communication model among nodes S1, 
S2, and S3. 

 
(a) Components Employed in an Irrigation Management System. 

(b) Collection of Timing Data by an Irrigation Management System 

Figure 3. Wireless Sensor Network Configuration for 
Collecting Clock Offset in an Agriculture Irrigation 

Control System.  

 

Figure 4. Bi-Directional Communication Model 
among Multiple Nodes S1, S2, and S3. 

5. Linear Quadratic Regression Model  

The linear-quadratic regression model is based on 
the assumption that if sample values are temporally 
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correlated, past observations can be leveraged to predict 
current and future values. The proposed model 
approximates the clock skew sample as a linear 
combination of its previous values. It incorporates a linear 
term, an intercept, square terms, and an interaction to form 
the quadratic model. The estimation coefficient is 
determined by minimising the discrepancy between the 
actual skew value and the estimated skew value. A 
scatterplot is used to analyse the relationship between 
variables, demonstrating a linear trend in the clock skew 
dataset. Linear estimation relies on historical values of 
∆𝛼𝛼_𝐴𝐴,𝐵𝐵_(𝑡𝑡)�  to predict its current value, where 
∆𝛼𝛼_𝐴𝐴,𝐵𝐵_(𝑡𝑡)�  represents the estimated clock skew and e_t 
denotes the error between the predicted ∆𝛼𝛼_𝐴𝐴,𝐵𝐵_(𝑡𝑡)�  and 
actual skew values. These relationships are mathematically 
represented in equations (5) and (6). 

 
∆𝛼𝛼_𝐴𝐴,𝐵𝐵_(𝑡𝑡)� = 𝑎𝑎 1_∆𝛼𝛼_𝐴𝐴,𝐵𝐵_(𝑡𝑡−1) + ⋯+ 𝑎𝑎_𝑘𝑘_∆𝛼𝛼_𝐴𝐴,𝐵𝐵_(𝑡𝑡−𝑘𝑘) 

               =  ∑ 𝑎𝑎_𝑖𝑖∆𝛼𝛼_𝐴𝐴,𝐵𝐵_(𝑡𝑡−𝑖𝑖)
𝑘𝑘
𝑖𝑖=1                                (5) 

 
e_t=∆α_A,B(t)-∆𝛼𝛼_𝐴𝐴,𝐵𝐵_(𝑡𝑡)� =∆α_A,B_(t)-∑ 𝑎𝑎_𝑖𝑖∆𝛼𝛼_𝐴𝐴,𝐵𝐵_(𝑡𝑡−𝑖𝑖)

𝑘𝑘
𝑖𝑖=1        

(6) 
 

Within this context, the coefficient for estimating 
skew is denoted by 𝑎𝑎_𝑖𝑖, and the order of estimation is 
represented by k. Simulation parameters for the proposed 
linear prediction algorithm can be found in Table VIII. 

Table VIII: Parameters for Clock Skew Estimation 
Development 

Parameters Value 
Estimation Term Quadratic 

 
Estimation Model Type Linear Regression 

Estimation Preset Linear Type 

 
The primary aim of the algorithm proposed is to 

create a system based on IoT that can synchronize sensors 
and other devices with high precision and dependability. 
The flowchart outlining the proposed model can be 
observed in Figure 5. 

6. Clock Skew Estimation Model Based 
on Linear Quadratic Regression  

The linear quadratic regression model is a statistical 
approach designed to model the relationship between a 
dependent variable, and one or more independent variables, 
denoted as and . The equation represents this relationship: 
y =  β 0 +  β 1x 1 +  β 2x 2 + . . . + β kx k +  ε                
(7) 

Here is the intercept, which is the coefficient of the 
independent variables and represents the error term. For 
simple linear regression with one independent variable, the 
equation is expressed as: 
y_i = (β_1 * x_i )+ β_0 + ε _i for i = 1, 2, ..., n                           (8) 
For a dataset of observations, the linear relationship is 
extended to include matrices in table IX: 

Table IX: Relationship Matrices Representation  

Term Matrix Representation Explanation 

Linear 
Relationship 

(9) 

�

𝑦𝑦 1
𝑦𝑦 2
⋮

𝑦𝑦 𝑛𝑛

� 

= �

1 𝑥𝑥_1
1 𝑥𝑥_2
⋮
1

⋮
𝑥𝑥_𝑛𝑛

�

⎣
⎢
⎢
⎡
1 𝑧𝑧 1
1 𝑧𝑧 2
⋮
1

⋮
𝑧𝑧 𝑛𝑛⎦

⎥
⎥
⎤
�𝛽𝛽_0
𝛽𝛽_1

� 

General 
representation of 
the multiple linear 
regression model 
using matrices. 

Independent 
Variable (X) 

(10) 
�

1 𝑥𝑥_1
1 𝑥𝑥_2
⋮
1

⋮
𝑥𝑥_𝑛𝑛

� 

Represents the 
independent 

variable values for 
each observation. 

Dependent 
Variable (Y) 

(10) 
�

𝑦𝑦_1
𝑦𝑦_2
⋮
𝑦𝑦_𝑛𝑛

� 

Represents the 
dependent variable 

values for each 
observation. 

Second 
Independent 
Variable (Z) 

(10) 
�

1 𝑧𝑧_1
1 𝑧𝑧_2
⋮
1

⋮
𝑧𝑧_𝑛𝑛

� 

Represents an 
additional 

independent 
variable for the 

regression model. 

Coefficients 
(B) (10) �𝛽𝛽_0

𝛽𝛽_1
� 

Contains the 
intercept (β0) and 
slope (β1) values, 
which define the 

regression 
equation. 

 
In the context of regression analysis, xi and yi 

represent the i-th observations of the independent 
(predictor) and dependent (response) variables, 
respectively. These variables are essential for 
understanding the relationship between the input and 
output of a given dataset. The goal of regression analysis is 
to model how changes in the independent variables (xi) 
affect the dependent variable (yi) by estimating the 
parameters of the regression equation. The linear 
relationship is defined by the coefficients β0 (the intercept) 
and β1 (the slope for the independent variable), which are 
determined through statistical techniques such as least 
squares estimation. These coefficients describe the extent 
and nature of the relationship, indicating how the 
dependent variable changes in response to variations in the 
independent variable. 

The first equation refers to a multiple linear 
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regression model where k independent variables influence 
the dependent variable y. This generalized form extends the 
simple linear regression model by incorporating additional 
predictors, each contributing to the variation in y. The 
coefficients β1,β2,…,βk quantify the individual effect of 
each predictor variable, while β0 represents the baseline 
value of y when all predictors are zero. On the other hand, 
the second equation is specific to a simple linear regression 
model, where only one independent variable xi is used to 
predict yi. This simpler model provides a clearer 
understanding of the direct relationship between a single 
predictor and the outcome, making it suitable for scenarios 
where the influence of one variable is isolated. Both 
models serve as fundamental tools for analyzing data and 
uncovering relationships between variables in various 
fields. 
 

Figure 5. Proposed clock skew estimator using 
linear quadratic regression can be visually 

represented through a flowchart 

The linear relation for observed 'n' values is 
shown in equation 9: 

 
[Y]= [Z] [B] [X]                                            (11) 

 
Steps for Clock Skew Estimation 

1. Collect the timestamps from two sensor nodes, A 
and B. 

2. Calculate the time difference between the 
timestamps of A and B, i.e., Δ_t = timestamp_A - 
timestamp_B. 

3. Calculate the clock skew between A and B using 
the formula: Δα = Δt - Δβ, where Δβ is the clock 
offset between A and B. 

4. Collect a dataset of clock skews and 
corresponding timestamps from A and B. 

5. Split the dataset into training and testing sets. 
6. Apply linear quadratic regression to the training 

set to create a model for clock skew estimation. 
7. Evaluate the model using the testing set by 

calculating the errors for RMSE, MAE, MSE, and  
R2. 

8. Use the trained model to estimate the clock skew 
between A and B by providing the timestamp 
difference Δt as input to the model. 

9. Verify the accuracy of the estimated clock skew by 
comparing it with the actual clock skew using the 
testing set. 

10. Refine the model by adjusting the model 
parameters or collecting more data if necessary. 

 
Algorithm for Clock Skew Estimation 

1. Calculate the differences in clock skew between 
nodes A and B. 

2. Use the differences and corresponding 
timestamps as input for the regression processor. 

3. Apply the regression model with linear and 
quadratic terms to estimate . 

4. Visualize results: 
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Figure 6. Analysis of performance for the Linear 
Quadratic Regression Model for Synchronisation 

Error in Node A and B. 

Figure 6 represents the analysis of synchronization error 
using the linear quadratic regression model. 
 

 

Figure 7. Actual and estimated outcomes 

 
Figure 7 represents the Comparison of actual vs. estimated 
values and figure 8 presents the residual plot for the 
regression model. 
 
 
 

 

Figure 8. Plot of residuals for a linear quadratic 
regression mode. 

This approach provides a robust framework for clock 
skew estimation, enabling precise synchronization in IoT 
and sensor networks. 

7. Model Validation 

Model validation is an essential step in assessing the 
performance of any model. Evaluating the goodness of fit 
is a key part of the validation process. 

• Residual plots serve as a fundamental statistical 
tool for evaluating model performance. 

• For linear regression models, residual plots are 
critical to ensure: 

o The regression function is well-defined. 
o The distribution of errors is consistent 

and independent. 
The residual plot for the proposed linear regression 
estimator is shown in Figure 8 to validate its accuracy and 
reliability. 

8. Performance Evaluation 

Figure 9 presents the results of evaluating the 
effectiveness of the linear-quadratic regression model for 
estimating clock skew in this study. To measure the 
accuracy of the model, we used commonly used metrics 
such as R-square, mean square error (MSE), root mean 
square error (RMSE), and mean absolute error (MAE).  
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Figure 9. The goodness of fit based on RMSE, R-
Square, MSE and MAE for the proposed model 

The results achieved with the proposed model 
demonstrated its strong performance and reliability. A 
significant reduction in the Root Mean Square Error 
(RMSE) to 0.379 highlights the model's accuracy in 
estimating clock skew. This low RMSE value indicates that 
the predicted clock skew values closely align with the 
actual values, reducing synchronization errors 
significantly. Additionally, the R-square value, which 
measures the goodness of fit of the model, was calculated 
to be 0.71. This value, ranging from 0 to 1, confirms that 
the model effectively captures the variance in the dataset, 
making it a robust solution for clock skew estimation. 

Further analysis of the proposed model emphasized its 
efficiency in terms of estimation speed and training time. 
These metrics are critical for real-time applications where 
quick and accurate estimations are required to maintain 
synchronization in IoT-based systems. Table VII presents 
a detailed breakdown of the model's performance, 
showcasing its ability to deliver results with minimal 
computational overhead. This efficiency is particularly 
beneficial for IoT and WSN devices, which often operate 
with limited processing power and energy resources. 

The proposed model's combination of high accuracy 
and efficiency positions it as an optimal solution for 
addressing clock skew challenges in IoT applications. Its 
performance not only meets the technical requirements for 
synchronization but also ensures scalability and 
adaptability in various real-world scenarios. These results 
underline the practical applicability of the model and its 
potential to enhance the performance of IoT-based systems 
through precise and reliable clock synchronization. 

Table X: Performance Metrics for Proposed Model: 
Estimation Speed and Training Time 

Time taken for Training  Prediction Speed 

1.725 secs ~1800 obs/sec 
 
A detailed comparative analysis was conducted to 

evaluate the performance of the proposed linear-quadratic 
regression (LQR) model against existing models. The 

models used for comparison included Gaussian Process 
Regression (GPR) [45], Linear Regression (L.R.) [44], and 
Nonlinear Gaussian Regression (NGR) [46]. The analysis 
focused on estimating clock skew using timestamps from 
the same dataset, ensuring a consistent basis for 
comparison across all models. 

The results, illustrated in Figure 10, clearly indicate the 
superior performance of the LQR model over the other 
approaches. Among the models compared, the LQR model 
demonstrated higher precision and reliability in estimating 
clock skew, with a significant reduction in error rates. This 
underscores the effectiveness of the proposed model in 
addressing the challenges associated with clock 
synchronization in IoT and WSN applications. 

One of the key findings of the study was the average 
RMSE value of 0.35 achieved by the LQR model, which 
reflects its high accuracy. This value highlights the model's 
capability to provide reliable estimates, making it a robust 
solution for clock skew estimation. The results validate the 
suitability of the proposed LQR model for practical 
applications where accurate time synchronization is 
critical, such as IoT-based systems. 

 

 

Figure 10. Comparing the Goodness of Fit of Linear 
Quadratic Regression (LQR) with Gaussian Process 
Regression (GPR), Nonlinear Gaussian Regression 

(NGR) AND LINEAR Regression (L.R.) Models. 

9. Model Stability Evaluation 

Linear Quadratic Regression models determine the 
best-fit parabolic equation for a given dataset. When 
applied to clock skew estimation, the linear quadratic 
regression model is represented by equation [7]. The 
reliability of the proposed approach can be evaluated by 
computing the correlation coefficient (Cr) and interpreting 
it based on the standards illustrated in Figure 11. 
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Figure 11. Standards for Correlation Coefficient  

Formula for calculating the mean for the linear quadratic 
regression model defined by (7) is shown in (12). 
 

mean: xˉ=n∑xi, yˉ=n∑yi, zˉ=n∑zi                     (12) 
 

The intercept term (β0 and coefficients (β1,β2) 
for the model are defined as (13), (14), &(15): 

                      
β0=yˉ−β1xˉ+β2zˉ+e                                     (13) 

 
𝛽𝛽1 = 𝜏𝜏𝑥𝑥𝑥𝑥τ−𝜏𝜏𝑧𝑧𝑥𝑥𝜏𝜏𝑥𝑥𝑧𝑧

𝜏𝜏𝑥𝑥𝑥𝑥𝜏𝜏𝑧𝑧𝑧𝑧−(𝜏𝜏𝑥𝑥𝑧𝑧)2
                                         (14) 

 
𝛽𝛽2 = 𝜏𝜏𝑧𝑧𝑥𝑥𝜏𝜏𝑥𝑥𝑥𝑥−𝜏𝜏𝑥𝑥𝑥𝑥𝜏𝜏𝑥𝑥𝑧𝑧

𝜏𝜏𝑥𝑥𝑥𝑥𝜏𝜏𝑧𝑧𝑧𝑧−(𝜏𝜏𝑥𝑥𝑧𝑧)2
                                     (15) 

 
Where, the value for function τ is defined using 

the correlation coefficient Cr as shown in (16). 
 

Cr =
�1−∑(𝑦𝑦𝑖𝑖−(𝛽𝛽0+𝛽𝛽1𝑥𝑥𝑖𝑖+𝛽𝛽2𝑧𝑧𝑖𝑖+𝑒𝑒) 

∑(𝑦𝑦𝑖𝑖−ȳ)2
                              (16) 

 
Where the components of τ are represented in Figure 12. 

 

Figure 12. Detailed Representation of Components 
of τ 

The stability of the proposed linear quadratic regression 
model was assessed using equation (16), resulting in a 
correlation coefficient of Cr = 0.86. This high correlation 
reflects a strong relationship between the actual and 
predicted clock skew values, confirming the model's 
reliability. Therefore, the proposed approach effectively 
addresses the challenge of clock synchronisation in WSN 
devices for IoT applications. 

10. Conclusion 

IoT applications are growing rapidly, posing challenges 
in developing accurate and dependable models. Clock 
synchronization for sensors and WSNs is critical for 
enhancing system performance. 

• The proposed framework leverages a clock skew 
estimator using a linear-quadratic regression model 
to synchronize time and resynchronization 
intervals. 

• The model demonstrates superior performance, 
achieving a clock skew error rate of just 0.35%, 
surpassing traditional linear regression models. 

• Stability analysis reveals a strong correlation 
coefficient of 86%, affirming the model's 
reliability. 

This framework is suitable for IoT applications 
requiring precise time synchronization, such as time-
division scheduling, low-power communication, and 
coherent temporal coordination. 
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