
EAI Endorsed Transactions
on Internet of Things Research Article

1

GTBTL-IoT: An Approach of Curtailing Task
Offloading Time for Improved Responsiveness in IoT-
MEC Model
E. F. Siddiqui1 and T. Ahmed1,*

1Advanced Computing Research Laboratory, Department of Computer Application, Integral University, Lucknow, India

Abstract

INTRODUCTION: The Internet of Things (IoT) has transformed daily life by interconnecting digital devices via integrated
sensors, software, and connectivity. Although IoT devices excel at real-time data collection and decision-making, their
performance on complex tasks is hindered by limited power, resources, and time. To address this, IoT is often combined
with cloud computing (CC) to meet time-sensitive demands. However, the distance between IoT devices and cloud servers
can result in latency issues.
OBJECTIVES: To mitigate latency challenges, Mobile Edge Computing (MEC) is integrated with IoT. MEC offers cloud-
like services through servers located near network edges and IoT devices, enhancing device responsiveness by reducing
transmission and processing latency. This study aims to develop a solution to optimize task offloading in IoT-MEC
environments, addressing challenges like latency, uneven workloads, and network congestion.
METHODS: This research introduces the Game Theory-Based Task Latency (GTBTL-IoT) algorithm, a two-way task
offloading approach employing Game Matching Theory and Data Partitioning Theory. Initially, the algorithm matches IoT
devices with the nearest MEC server using game-matching theory. Subsequently, it splits the entire task into two halves and
allocates them to both local and MEC servers for parallel computation, optimizing resource usage and workload balance.
RESULTS: GTBTL-IoT outperforms existing algorithms, such as the Delay-Aware Online Workload Allocation (DAOWA)
Algorithm, Fuzzy Algorithm (FA), and Dynamic Task Scheduling (DTS), by an average of 143.75 ms with a 5.5 s system
deadline. Additionally, it significantly reduces task transmission, computation latency, and overall job offloading time by
59%. Evaluated in an ENIGMA-based simulation environment, GTBTL-IoT demonstrates its ability to compute requests in
real-time with optimal resource usage, ensuring efficient and balanced task execution in the IoT-MEC paradigm.
CONCLUSION: The Game Theory-Based Task Latency (GTBTL-IoT) algorithm presents a novel approach to optimize
task offloading in IoT-MEC environments. By leveraging Game Matching Theory and Data Partitioning Theory, GTBTL-
IoT effectively reduces latency, balances workloads, and optimizes resource usage. The algorithm's superior performance
compared to existing methods underscores its potential to enhance the responsiveness and efficiency of IoT devices in real-
world applications, ensuring seamless task execution in IoT-MEC systems.

Keywords: Mobile Edge Computing, Internet of Things, Task Computation Latency, Time Critical Responses, Increased Responsiveness.

Received on 26-03-2024, accepted on 30-10-2024, published on 11-11-2024

Copyright © 2024 E. F. Siddiqui and T. Ahmed, licensed to EAI. This is an open access article distributed under the terms of the CC
BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so
long as the original work is properly cited.

doi: 10.4108/eetiot.5556

*Corresponding author. Email: tasneemrke@gmail.com

1. Introduction

Mobile devices are becoming more powerful and can now
run more complex applications, but their limited resources

and battery life can make it difficult to meet the growing
demand for computing power and provide real-time
experiences. Overcoming these limitations is essential for
achieving digital intelligence in various industries [1].
Current network topologies cannot handle the amount of

EAI Endorsed Transactions
on Internet of Things |

| Volume 11 | 2025 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

E. F. Siddiqui and T. Ahmed

2

data generated by IoT devices, so the cloud is a better
option for processing this data quickly and efficiently.
Clouds can provide unlimited resources and computing
services, but this comes at a cost: more energy is consumed
because the data has to be transmitted to distant servers [2].
Mobile edge computing solutions improve compute
capabilities for time- and computation-intensive IoT
applications by addressing issues like location
unawareness, mobility support, low latency, and rapid
reaction times [3]. Shifting remote processing to close edge
servers can improve computation speed, decision-making,
latency reduction, and resource efficiency, despite adding
computational burden since the distance between an edge
server and the device plays an important role in remote
computation for calculating the total task transmission and
computation latency [4]. MEC servers are recommended
for limited local resources, but this prolongs processing
latency and delays. Task offloading in MEC computing is
challenging due to factors like latency, energy
consumption, workload distribution, and longer
transmission durations, which impact model performance
and resource allocation (RA) [5].

Nonetheless, Edge Computing (EC) has enhanced cloud
capabilities near network edges, while optimal RA is still a
crucial challenge for efficient decision-making and
processing. The proposed resource allocation mechanism
in IoT enhances Quality of Service (QoS) by reducing
energy usage and utilizing all available resources within
the fog network [6]. However, the deployment of EC in
sparsely inhabited areas is another major challenge. To
overcome this challenge, a satellite-based Internet of
Things (SAT-IoT) was developed using deep
reinforcement learning to optimally distribute resources
[7]. It is essential to eliminate as much delay as possible to
deliver time-critical responses. Thus, to minimize delays in
IoT applications like healthcare, a combination of task
offloading (TO) and task scheduling (TS) combined with
effective resource allocation is proposed to reduce overall
task generation costs [8]. Also, deploying edge servers
cooperatively, where tasks are divided among MEC
servers, can reduce task computation latency, which is
more efficient than static offloading techniques [9].
Another significant problem in EC is identifying the most
appropriate resource for job computation. A three-tier TO
technique has been developed to optimize the allocation of
cells as computing resources in EC to ensure efficient cell
formation, selection, and offloading for real-time answers
[10]. In an IoT-MEC environment, both the devices and
MEC servers are resource- and power-constrained;
therefore, there is always a scarcity of resources. Resource
management and allocation in an optimal manner are thus
critical requirements [11].

The carbon emissions produced during task computation
(TC) operations are another significant difficulty for the
MEC computing environment. The alternate direction
method of multipliers (ADMM) technology reduces task
traffic congestion in the MEC computing environment by
reducing carbon emissions from TC, TO, and RA

operations [12]. The inverse relationship between energy
usage and latency suggests that evenly distributing
workload among servers can reduce total energy and
optimize latency [13–15]. Proactive caching and optimal
work allocation among MEC servers is another suggested
method to reduce TC latency using clustering and matching
game theory, but challenges include task division,
scheduling, and assignment in multi-server environments
[16–17]. Long-term evolution (LTE) is one of several
technologies that are utilized for task transfer in remote
locations. However, OpenAirInterfaces with network
slicing can be used instead of LTE for improved user
quality of experience (QoE) in remote location task transfer
[18]. The MEC platform can utilize location-based services
for computational offloading to decrease latency for mobile
users [19]. If emphasis is given to the caliber of network
connectivity and resource usage, the overall TC time may
be reduced by a substantial amount. This may be done by
using sparse code multiple access (SCMA), a method that
enhances network performance and throughput [20].
Unmanned aerial vehicles (UAVs) can create a perfect
MEC environment with minimal latency, efficient energy
usage, and high QoE based on key factors and RA
approaches [21–24]. Optimal RA approaches are also
required when data is aggregated at MEC servers and is
required to be processed in a real-time manner. The use of
smart grids in this case proves to be a better option [25].

Pre-allocation of resources can also be done before
transmitting the data for remote computation. This
significantly reduces the total uplink transmission latency.
When resolved using a distributed antenna system (DAS),
fewer resources with optimal utilization were achieved in a
5G environment [26–27]. With resource utilization, it is
very necessary to optimize energy utilization and traffic
congestion on the server. This has been achieved using an
active queue management-based green cloud model
(AGCM) under stringent deadline constraints [28–29].
Many 6G transmission techniques are being used
nowadays with enhanced data transmission rates in Tb/s
and ultra-latent responses, especially for collecting
seismological and geophysical data [30–31]. Using
multiple-offloading strategies with data portioning can also
significantly reduce total TC time and latency overhead
with balanced workloads and cell selection [32–33].
Another promising solution for a real-time IoT
environment is IoT-Grids (IoT-G), with broad optimal
spectrum resources for TC and scheduling purposes. These
activities can also be done using a multi-server
environment where tasks can be redirected for workload
balancing [34–35].

Moreover, Mobile Edge Computing (MEC) architecture
integrates with ultra-dense networks (UDNs) for 5G,
employing a DQN-AC algorithm to optimize computation
offloading and resource allocation [36]. Queuing time also
adds up to the total latency in task computation in MEC;
therefore, employing differential-difference equations to
model IoT-based MEC systems and utilizing M/M/1 queue
theory to compute performance can significantly reduce the

EAI Endorsed Transactions
on Internet of Things |

| Volume 11 | 2025 |

 GTBTL-IoT: An Approach of Curtailing Task Offloading Time for Improved Responsiveness in IoT-MEC Model

3

queuing latency [37]. A multi-task offloading scheme
utilizing a hierarchical spatial-temporal monitoring module
and fine-grained resource scheduling can be used for task
awareness, abnormality inference, and offloading
efficiency [38]. Addressing service dependencies through
joint consideration of task scheduling and resource
allocation utilizing a layered scheme and detailed
algorithms minimizes latency and energy consumption
[39]. Incorporating relay selection and adaptive bandwidth
allocation, which minimize computation time by utilizing
evolutionary algorithms, can resolve joint multi-task partial
offloading issues in MEC servers [40].

In addressing the crucial challenge of minimizing task
computation latency and making optimal task offloading
decisions for improved resource utilization and heightened
responsiveness, this paper employs two synergistic
theories. The first, Game Matching Theory, is harnessed to
determine the nearest Mobile Edge Computing (MEC)
server, thereby reducing overall task transmission and
computation time. The second theory, Data Partitioning
Theory, is applied to optimize resource utilization through
parallel task computation in both local and remote regions,
resulting in enhanced responsiveness with minimal latency
overhead. With the combination of the above two theories,
an optimal task computation and offloading algorithm has
been proposed namely the Game Theory-Based Task
Latency (GTBTL-IoT) algorithm. The proposed task
offloading and computation algorithm surpass comparable
algorithms in efficiency, significantly reducing total task
computation overhead and ensuring timely processing of
tasks in critical scenarios.

2. System Model Development

An IoT-MEC task offloading solution has been proposed
to address latency issues using IoT and MEC. It assigns
workloads to local and remote locations for parallel
computing due to IoT devices' limited storage and
calculation capabilities. The structure of the proposed IoT-
MEC model is shown in Figure 1.

Figure 1. Proposed System Model (GTBTL-IoT)

The proposed system paradigm generates various tasks
randomly in the IoT zone, each with varying data size and
computational power. Due to this variability in the nature
of tasks as well as computing devices, each task as well as
the device and server should be modeled based on its
unique ID, computation facilities and requirements, and the
amount of memory required and utilized through task
modeling, device modeling, and server modeling.

2.1. Task Modeling

IoT devices perform various tasks like sensor analysis,
streaming, and document uploading, each acting as a
standalone operation or part of a larger procedure. In
general, any generated task may be categorized as a vector
of five possible attributes, namely Task ID (∧𝐼𝐼𝐼𝐼), Task
Size (𝑑𝑑∧), Computational Intensity i.e., number of CPU
Cycles in bits (𝑐𝑐∧), Task Deadline (∧𝑡𝑡𝑡𝑡) and Task
Workload (𝑊𝑊𝑊𝑊∧). It may be modeled as ∧
(∧𝐼𝐼𝐼𝐼,𝑑𝑑∧, 𝑐𝑐∧,∧𝑡𝑡𝑡𝑡 ,𝑊𝑊𝑊𝑊∧). According to the proposed model, a
task ∧ is computed within a time which is the sum of time
to compute at the local region �𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 �, time to compute at
the remote region �𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐

𝑗𝑗 �, and total time to transmit a task
at a remote region (𝑡𝑡𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∧𝑡𝑡). 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐

𝑗𝑗 and 𝑡𝑡𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∧𝑡𝑡 is 0 in
the case of complete local task computation (TC).
The device must allocate work units for both local and
remote computing before the deadline to offload work
when local computing is insufficient. The device makes the
internal choice to offload or divide tasks, which may be
calculated as given in equation (1).

𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 = ʌ𝑇𝑇𝐼𝐼 − 𝑡𝑡
𝑡𝑡𝑠𝑠𝑐𝑐𝑠𝑠𝑖𝑖𝑡𝑡 = ʌ𝑇𝑇𝐼𝐼 − �𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜/2� (1)

EAI Endorsed Transactions
on Internet of Things |

| Volume 11 | 2025 |

E. F. Siddiqui and T. Ahmed

4

where, 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 is the total time to offload the task and 𝑡𝑡𝑠𝑠𝑐𝑐𝑠𝑠𝑖𝑖𝑡𝑡 is
the time to break the task into smaller components. The
task component is assigned to the MEC server using the
available bandwidth 𝐵𝐵𝑊𝑊𝑖𝑖 after being split into two halves.
Next, 𝑡𝑡𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ʌ𝑡𝑡 may be calculated as given in the equation
(2).

𝑡𝑡𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ʌ𝑡𝑡 =
𝑑𝑑ʌ𝑟𝑟𝑟𝑟𝑐𝑐𝑜𝑜𝑡𝑡𝑟𝑟

𝐵𝐵𝑊𝑊𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙2(1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖)
 (2)

where 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 is signal-to-interference plus noise ratio and
can be calculated as given in the equation (3).

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑗𝑗
𝑡𝑡𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ʌ𝑡𝑡𝐶𝐶ℎ𝑙𝑙𝑖𝑖𝑗𝑗

∑ 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑗𝑗𝐶𝐶ℎ𝑙𝑙𝑖𝑖𝑗𝑗 + 𝜕𝜕𝑖𝑖∈𝑁𝑁,𝑗𝑗∈𝑈𝑈
 (3)

where, 𝐵𝐵𝑊𝑊𝑖𝑖 is the bandwidth allocated to the local device,
𝑑𝑑ʌ𝑟𝑟𝑟𝑟𝑐𝑐𝑜𝑜𝑡𝑡𝑟𝑟 is the size of data for the task sub-component,
𝐶𝐶ℎ𝑙𝑙𝑖𝑖𝑗𝑗 is the channel gain between device i and server j
where 𝑖𝑖 ∈ 𝑆𝑆 and 𝑗𝑗 ∈ 𝑈𝑈 and N, U are the total numbers of
IoT devices and MEC servers present in a specified
deployment area. Next, 𝜕𝜕 is the Gaussian white noise
factor. Equations (2) and (3) are used to calculate the total
transmission time of the task as well as the signal-to-
interference ratio. The SINR is calculated since there are
millions of IoT devices connected to a single server.
Therefore, there is a high chance of packet loss and channel
fading. Therefore, the transmission time will be calculated
using the beamforming theory which calculates SINR as a
crucial component.

IoT devices connected to a single MEC server require noise
computation to prevent data transmission impacts. Parallel
remote and local computing uses parametric comparisons
and assessments for task offloading, with random split
points as P. The following equations (4), (5), and (6)
calculate the task splitting procedure for parallel
computation. Firstly, the whole task data size is divided
into 𝑡𝑡𝑝𝑝𝑡𝑡𝑐𝑐𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡 as the total number of task components is
given in equation (4).

𝑡𝑡𝑝𝑝𝑡𝑡𝑐𝑐𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡 = 𝑑𝑑ʌ⁄10 (4)

Next, the point at which these components should be split
for local and remote execution is calculated by split point
P, whose value depends on the job, device, and server state,
using the pivot point setting formula given in equation (5).

𝑃𝑃 =
npackets

ʌ𝑻𝑻𝑻𝑻� ∗ 2 (5)

Using Equations (4) and (5), the total task is split into two
halves. Next, the total computation time 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐

𝑗𝑗 in which the
task will get computed remotely can be represented as
given in equation (6).

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐
𝑗𝑗 = 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑡𝑡𝑠𝑠𝑐𝑐𝑠𝑠𝑖𝑖𝑡𝑡 + 𝑡𝑡𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ʌ𝑡𝑡 (6)

Similarly, if the task gets computed locally without any
offloading, then it may be computed as follows:

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 =
(𝑑𝑑ʌ ∗ 𝑇𝑇𝑙𝑙𝑇𝑇𝑇𝑇)

𝐶𝐶𝑡𝑡𝑝𝑝i
 (7)

where, 𝐶𝐶𝑡𝑡𝑝𝑝i is the computational capability of device i. If
the task-splitting process is carried out then the total
computation time can be calculated as:

𝑇𝑇𝑐𝑐𝑇𝑇𝑝𝑝 = �𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 + 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐
𝑗𝑗 �. (𝛼𝛼𝑖𝑖𝑗𝑗) (8)

Here 𝛼𝛼𝑖𝑖𝑗𝑗 will be 0 if no remote computation takes place. In
that case 𝑇𝑇𝑐𝑐𝑇𝑇𝑝𝑝 = 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 respectively. The task, when it gets
processed over a specific resource, will impose some
workload on it. Therefore, the total workload imposed
(WLʌ) by the task may be calculated as given in equation
(9).

WLʌ = 𝑑𝑑ʌ ∗ 𝑇𝑇𝑙𝑙𝑇𝑇𝑇𝑇 ∗ �
𝑑𝑑ʌ
𝑡𝑡
� (9)

The workload is measured in WLU and has a significant
impact on the processing time of the task in the IoT region.
The workload is the single independent factor that decides
the total number of CPU cycles that are to be utilized for
TC and, hence, how many tasks can be executed in a single
instance of time.

2.2. Device Modeling

IoT devices generate computing jobs by representing U IoT
nodes, each with potential properties like Workload (WL𝑖𝑖),
total allotted bandwidth (𝐵𝐵𝐵𝐵i), Device ID (i𝑆𝑆𝐼𝐼), and
computational capability (𝐶𝐶𝑡𝑡𝑝𝑝i). Each device is
individually recognized by ID, determining its state in the
IoT-MEC ecosystem, where device capacity is determined
by processor speed, memory health, queue size, and
network usage. Server workload is important for offloading
activities to prevent resource depletion and wasteful use
and can be calculated as given in equation (10).

WL𝑖𝑖 = � WLʌ𝑛𝑛
ʌ𝑛𝑛∈ʌ

 (10)

Each device has a threshold capacity for processing
offloaded tasks and workloads. 𝑊𝑊𝑊𝑊𝑐𝑐𝑚𝑚𝑚𝑚𝑖𝑖 represents the
maximum permissible workload, and the mathematical
formulation given in equation (11) determines the available
processing capacity for arriving loads.

𝑊𝑊𝑊𝑊𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖 = 𝑊𝑊𝑊𝑊𝑐𝑐𝑚𝑚𝑚𝑚𝑖𝑖 − WL𝑖𝑖 (11)

where, 𝑊𝑊𝑊𝑊𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖 is the remaining workload capacity left for
the device. If the incoming tasks do not fit with 𝑊𝑊𝑊𝑊𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖 ,
then it may cause workload overflow and thus it is rejected
and sent back for waiting until the current time instant is
complete.

2.3. Sever Modeling

This section covers the modeling of j edge servers, using j
(j𝑆𝑆𝐼𝐼, 𝐶𝐶𝑡𝑡𝑝𝑝j, 𝐵𝐵𝐵𝐵j, WL𝑗𝑗). Here j𝑆𝑆𝐼𝐼 represents the unique ID of

EAI Endorsed Transactions
on Internet of Things |

| Volume 11 | 2025 |

 GTBTL-IoT: An Approach of Curtailing Task Offloading Time for Improved Responsiveness in IoT-MEC Model

5

the server, 𝐶𝐶𝑡𝑡𝑝𝑝j is the computational capability of the
server measured as the total number of CPU cycles it
affords, 𝐵𝐵𝐵𝐵j is the total allocated bandwidth and WL𝑗𝑗 is the
total workload imposed upon the server. The recommended
model consists of U IoT nodes and portable N MEC
servers, with dynamic devices that can be remote or near
the server. The chosen region has the geographical
distribution of N MEC servers, allowing the server's
workload to include the total number of devices managed
and tasks created. Therefore, 𝑊𝑊𝑊𝑊𝑗𝑗 may be calculated as
follows:

WL𝑗𝑗 = � WL𝑖𝑖
𝑖𝑖∈𝑁𝑁

 (12)

To process tasks on a server, it's vital to determine the
available workload to avoid issues like request overload or
resource exhaustion, which could disrupt real-time job
computation. Thus, to calculate the remaining workload
capacity, equation (13) can be used:

𝑊𝑊𝑊𝑊𝑟𝑟𝑟𝑟𝑐𝑐
𝑗𝑗 = 𝑊𝑊𝑊𝑊𝑐𝑐𝑚𝑚𝑚𝑚

𝑗𝑗 − WL𝑗𝑗 (13)

The same is done in the case of the server where if the
incoming task exceeds 𝑊𝑊𝑊𝑊𝑟𝑟𝑟𝑟𝑐𝑐

𝑗𝑗 , it is rejected and sent back
for waiting until the current time instant is complete.

3. Task Offloading Strategies

This section discusses various offloading strategies for task
offloading, focusing on optimizing resources, minimizing
latency, and enhancing response times, as described in the
subsections.

3.1. Distance-Based Task Offloading

Multiple MEC servers are located at different locations.
Therefore, it is necessary to know the distance between the
device and these servers. Also, IoT devices are dynamic
and always moving. Because of this, the distance value is
variable at every instance of time. Let x and y represent the
coordinates of each device and server. The distance
between each pair can be calculated using equation (14).

𝑡𝑡𝑡𝑡𝑖𝑖𝑠𝑠𝑡𝑡 = �(𝑗𝑗𝑚𝑚1 − 𝑖𝑖𝑚𝑚1)2 + �𝑗𝑗𝑦𝑦1 − 𝑖𝑖𝑦𝑦1�
2, 𝑡𝑡𝑡𝑡𝑖𝑖𝑠𝑠𝑡𝑡

< 𝑡𝑡𝑡𝑡𝑖𝑖𝑠𝑠𝑡𝑡𝑐𝑐𝑚𝑚𝑚𝑚
(14)

where (𝑖𝑖𝑚𝑚1, 𝑖𝑖𝑦𝑦1) and (𝑗𝑗𝑚𝑚1, 𝑗𝑗𝑦𝑦1) are the co-ordinate of server
j and device i and 𝑡𝑡𝑡𝑡𝑖𝑖𝑠𝑠𝑡𝑡𝑐𝑐𝑚𝑚𝑚𝑚 is the maximum acceptable
distance between the associated pair i-j. Minimal uplink
transmission delay is achieved by implementing
restrictions on device connections to the closest server,
reducing task offloading time, and ensuring efficient
computing. It is therefore important to check the minimum
distance association between i-j. This can be accomplished
using equations (15) and (16).

𝐶𝐶𝑙𝑙𝑡𝑡𝑡𝑡 𝐴𝐴: 𝑇𝑇𝑖𝑖𝑡𝑡��(𝑡𝑡𝑡𝑡𝑖𝑖𝑠𝑠𝑡𝑡) < 𝑡𝑡𝑡𝑡𝑖𝑖𝑠𝑠𝑡𝑡𝑐𝑐𝑚𝑚𝑚𝑚

𝑗𝑗𝑗𝑗𝑁𝑁𝑢𝑢𝑗𝑗𝑈𝑈,

 (15)

𝐶𝐶𝑙𝑙𝑡𝑡𝑡𝑡 𝐵𝐵 = �𝛼𝛼𝑖𝑖𝑗𝑗𝜖𝜖{0,1}
𝑗𝑗𝑗𝑗𝑁𝑁

 (16)

The minimum distance is selected based on the availability
of an array of MEC servers. These servers are first
discovered, and the nearest server is selected before the
final task is offloaded. The nearest-distance resource
discovery algorithm proposes the discovery and selection
of the nearest computing resource to minimize total
transmission and computation latency and provide real-
time responses. This approach has been used for task
offloading to cut down the total transmission delay and
resource allocation within the given system deadline.

Algorithm 1: Nearest Distance Resource
Discovery Algorithm
INPUT: Set of IoT Nodes i 𝜖𝜖 U, Set of MEC Servers
j 𝜖𝜖 N.
 𝑖𝑖 = {𝑖𝑖1, 𝑖𝑖2, 𝑖𝑖3, … . . , 𝑖𝑖𝑛𝑛 , } and 𝑗𝑗 = {𝑗𝑗1, 𝑗𝑗2, 𝑗𝑗3, … . . , 𝑗𝑗𝑛𝑛, }
OUTPUT: Association pair i-j with shortest distance
START
Discover j*// possible i-j pairs
For ith device make a distance-based set of server j*
discovered for association as 𝑡𝑡𝑡𝑡𝑖𝑖𝑠𝑠𝑡𝑡

𝑗𝑗 = {𝑑𝑑1,𝑑𝑑2,𝑑𝑑3, … . . ,𝑑𝑑𝑛𝑛 , }
For k=0 to n-1
 Search for 𝑇𝑇𝑖𝑖𝑡𝑡�𝑡𝑡𝑡𝑡𝑖𝑖𝑠𝑠𝑡𝑡

𝑗𝑗 � using eq 15.
Calculate SINR by eq 3
Verify 𝐶𝐶𝑙𝑙𝑡𝑡𝑡𝑡 𝐴𝐴 𝑡𝑡𝑡𝑡𝑑𝑑 𝐶𝐶𝑙𝑙𝑡𝑡𝑡𝑡 𝐵𝐵 by eq 15 and 16
IF Yes THEN
 Set 𝛼𝛼𝑖𝑖𝑗𝑗 = 1
 Proceed To Algorithm 2
ELSE
 GOTO Step 1
STOP

As discussed in the Resource Discovery Algorithm,
initially all the available MEC servers will be discovered,
and the nearest server will be assigned for TO and TC
operations. With the help of the algorithm, TC is achieved
with optimal latency in a time-critical manner.

3.2. Device-Based Task Offloading

Task offloading splits tasks locally, remotely, at edge
servers, or in the cloud, adjusting resource requirements
and affecting execution times significantly. The
requirements of task execution include the same model of
the task, i.e. ʌ(ʌ𝐼𝐼𝐼𝐼,𝑑𝑑ʌ, 𝑐𝑐ʌ, ʌ𝑇𝑇𝐼𝐼, ʌ𝑃𝑃𝑟𝑟 ,𝑊𝑊𝑊𝑊ʌ). As discussed in
sub-section 3.1. If the device where the task is initially
generated matches the requirements, then it may get
executed locally without offloading. Otherwise, it has to be
offloaded to either an edge server or a remote server for
execution. Table 1 summarizes variables and comparisons
for task requirement-based offloading in one-to-one
parametric comparisons, aiding decision-making.

EAI Endorsed Transactions
on Internet of Things |

| Volume 11 | 2025 |

E. F. Siddiqui and T. Ahmed

6

Table 1. Parametric Comparison for Resource
Assignment

Considered
Parameters

Split
Decision

Offloading
Type Remarks

𝑑𝑑ʌ > 𝑀𝑀𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠 Yes Partial Offload to

Server
𝑑𝑑ʌ > 𝑀𝑀𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟

𝑅𝑅 Yes Partial Offload to
Cloud

WLʌ > 𝑊𝑊𝑊𝑊𝑐𝑐𝑚𝑚𝑚𝑚
𝑖𝑖 Yes Partial Offload to

Server
WLʌ > 𝑊𝑊𝑊𝑊𝑐𝑐𝑚𝑚𝑚𝑚

𝑗𝑗 Yes Partial Offload to
Cloud

𝑇𝑇𝑐𝑐𝑇𝑇𝑝𝑝 > 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖 Yes Partial Offload to

Server
𝑇𝑇𝑐𝑐𝑇𝑇𝑝𝑝 > 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐

𝑗𝑗 Yes Partial Offload to
Cloud

Now, each device i has limited memory and storage
capacity to process the tasks and give computed results. Let
M𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟 be the total free memory available unused and M𝑚𝑚𝑠𝑠𝑠𝑠𝑜𝑜𝑐𝑐
be total memory allocated for the computation of some
task; currently allocated memory will be calculated by
dividing the total memory given by the used memory.
Thus, total memory M𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑠𝑠 maybe given as M𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑠𝑠 =
 M𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟 + M𝑚𝑚𝑠𝑠𝑠𝑠𝑜𝑜𝑐𝑐. First of all, the status of computing
resources, that is, the devices and servers, will be updated
for that instant of time. Secondly, their status will be
mapped to task computation requirements as described in
Table 1, and a final TO decision will be made. If the task
computation requirements are not accomplished either by
the device or by the server, the task will be finally rejected
for that instant of time, as described in Algorithm 2. The
rejected tasks will be checked for recomputation for a
different time window after some wait time.

Algorithm 2: Task Execution Decision Algorithm
INPUT: Set of tasks ʌ𝑖𝑖=[ʌ1, ʌ2, ʌ3, … . . , ʌ𝑛𝑛] n 𝜖𝜖 ʌ.
OUTPUT: Assignment of each unit of task ʌ to a local
device or edge server or cloud for computation and
delivery of computed results
START
Let TS(t)= ʌ𝑖𝑖(t)
WHILE TS(t) ≠ NULL DO
Check task status by ʌ(ʌ𝐼𝐼𝐼𝐼,𝑑𝑑ʌ, 𝑐𝑐ʌ, ʌ𝑇𝑇𝐼𝐼, ʌ𝑃𝑃𝑟𝑟 , WLʌ) .
Check device status by i(i𝐼𝐼𝐼𝐼,𝐶𝐶𝑡𝑡𝑝𝑝i,𝐵𝐵𝐵𝐵i, E𝑖𝑖 , WL𝑖𝑖)
Check server status by j�j𝐼𝐼𝐼𝐼,𝐶𝐶𝑡𝑡𝑝𝑝j,𝐵𝐵𝐵𝐵j, E𝑗𝑗 , WL𝑗𝑗�
 FOR k=1 to n-1
CHK 1: IF 𝑇𝑇𝑐𝑐𝑇𝑇𝑝𝑝 < ʌ𝑇𝑇𝐼𝐼 AND WLʌ < 𝐶𝐶𝑡𝑡𝑝𝑝𝑖𝑖 AND 𝑑𝑑ʌ < 𝑀𝑀𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟

𝑠𝑠
 Initially ʌ𝑖𝑖 to be allocated to i for local processing
CHK 2: IF 𝑇𝑇𝑐𝑐𝑇𝑇𝑝𝑝 > ʌ𝑇𝑇𝐼𝐼 AND WLʌ > 𝐶𝐶𝑡𝑡𝑝𝑝𝑖𝑖 AND 𝑑𝑑ʌ > 𝑀𝑀𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟

𝑠𝑠
 IF WLʌ < 𝑊𝑊𝑊𝑊𝑐𝑐𝑚𝑚𝑚𝑚

𝑗𝑗 AND ʌ𝑠𝑠𝑖𝑖𝑠𝑠𝑟𝑟 < 𝑀𝑀𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟
𝑅𝑅

Initially ʌ𝑖𝑖(𝑡𝑡) to be allocated to server j for remote
processing at server
 ELSE
 CHK 3: Reject Task
Computation
 ENDIF
ENDIF
ENDFOR
 ENDWHILE
Proceed To Algorithm 3
STOP

The proposed Task Execution Decision Algorithm maps
the current status of both the device and server with that of
the task computation requirements before the final TO
decision. This will help to elevate the system’s
performance by optimally assigning computing resources
to the tasks and computing them in a real-time manner for
the proposed MEC-IoT model. Next, the task will be split
into two subcomponents: one will be computed locally,
and the other will be a computer in a remote region in
parallel. This remote region is the same to which the device
has been connected using Algorithm 1. On this server, the
split task component will be finally offloaded for remote
computation.

3.3. Split-Based Task Offloading

The goal of carrying out Task Splitting is to minimize the
total task computation latency with optimal RA. For this
purpose, two sets have been designed namely ʌ=
{ʌ1𝑠𝑠 , ʌ2𝑠𝑠 , … . . , ʌ𝑛𝑛𝑠𝑠 }, R𝑦𝑦 = {ʌ1𝑅𝑅 , ʌ2𝑅𝑅 , … . . , ʌ𝑛𝑛𝑅𝑅}, and containing
those subunits of tasks ʌ assigned for local and remote-
based computation. The size of the total task may be
represented as L𝑚𝑚 + R𝑚𝑚 in the case of the server association.
It may be formulated as given in equation (17).

ʌ𝑠𝑠𝑖𝑖𝑠𝑠𝑟𝑟 = (L𝑚𝑚 + R𝑚𝑚). (𝛼𝛼𝑖𝑖𝑗𝑗) (17)

It is a crucial requirement to optimize offloading decisions
by assigning the best resources for each task subunit's
execution and delivery, minimizing energy and latency
limitations. This is accomplished by Algorithm 3 after
successful task splitting using Algorithm 2.

Algorithm 3: Resource Assignment Decision
Algorithm (Final Task Offloading Decision)
INPUT: Set of local processing subunit L𝑚𝑚 =
{ʌ1𝑠𝑠 , ʌ2𝑠𝑠 , … . . , ʌ𝑛𝑛𝑠𝑠 }, Set of remote processing subunits R𝑦𝑦
= {ʌ1𝑅𝑅 , ʌ2𝑅𝑅 , … . . , ʌ𝑛𝑛𝑅𝑅} and Set of Cloud processing
subunits DC𝑠𝑠 = {ʌ1𝐶𝐶 , ʌ2𝐶𝐶 , … . . , ʌ𝑛𝑛𝐶𝐶}
OUTPUT: Optimal task-splitting and resource
allocation for Task Offloading.
START
GOTO CHK1
 Allocate task subunits to L𝑚𝑚 until P
GOTO CHK2
IF WLʌ < 𝐶𝐶𝑡𝑡𝑝𝑝𝑗𝑗 AND 𝑑𝑑ʌ < 𝑀𝑀𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟

𝑠𝑠 AND ʌ𝑇𝑇𝐼𝐼 < 𝑇𝑇𝑡𝑡ℎ
𝑗𝑗

 Offload to Edge server j
𝑡𝑡𝑝𝑝𝑡𝑡𝑟𝑟𝑙𝑙𝑡𝑡𝑡𝑡 = L𝑚𝑚 ∪ R𝑦𝑦

ELSE
 GOTO CHK3
 Reject

STOP

Algorithm 3 uses local computing mode and never
broadcasts tasks to distant regions, gathering all calculated
task components for decision-making. If an offloading
strategy is used, results are transmitted back to the device,
combining components for further decision-making. It
should be noted that the proposed GTBTL-IoT algorithm
only discusses uplink transmission delay. No discussion is

EAI Endorsed Transactions
on Internet of Things |

| Volume 11 | 2025 |

 GTBTL-IoT: An Approach of Curtailing Task Offloading Time for Improved Responsiveness in IoT-MEC Model

7

done on the back propagation of results to the requesting
IoT device.

4. Performance Evaluation

GTBTL-IoT's efficacy is confirmed in terms of optimal
task computation latency and balanced task offloading
decision. The suggested approach is validated by
comparing it to similar proposed algorithms such as
dynamic task scheduling (DTS) [41], Fuzzy Algorithm
(FA) [42], and Delay-Aware Online Workload Allocation
(DAOWA) algorithm [43]. The DTS [41] algorithm tends
to reduce overall latency and energy usage in the fog zone
while maintaining optimal RA. FA [42] reduces task
service time by taking into account variables such as CPU
utilization and resource needs while DAOWA [43] intends
to lower the long-term average task service latency.
ENIGMA [44] is used to simulate an Edge Environment to
assess the performance of GTBTL-IoT. It is a scalable
simulator for the fog, edge, and cloud computing
paradigms.
Dataset. A dynamic and intelligent task offloading-based
strategy dataset [45] was used to simulate the proposed
GTBTL-IoT method. This database contains information
on latency, resource usage, user activity, and network
parameters and is used as input by GTBTL-IoT for the sake
of measuring its performance and its efficacy over other
algorithms.
Simulation Setup. For simulation, 150 used nodes are
distributed over an area of 1000 X 1000 m. The capacity of
each use node 𝐶𝐶𝑡𝑡𝑝𝑝𝑖𝑖 as well as the server 𝐶𝐶𝑡𝑡𝑝𝑝𝑗𝑗 is randomly
selected from Table II. The simulator parameter settings for
the proposed model have been summarized in Table 2.

Table 2. Simulator Settings

Simulation Parameter Setting Value
Simulation duration 150-250 secs
Device Status Updating 10 sec
Server Status Updating 10 sec
IoT to Edge Delay 200 ms
IoT to Edge Jitter 50 ms
Edge To Cloud Delay 350 ms
Edge To Cloud Jitter 100 ms
SNR 100 dB
Subchannel Bandwidth 200 kHz
Packet Size 100-1000 bytes
Deployment Area Radius 1000 m
Max. Association Delay 15 ms
Fading Rayleigh Flat

Fading
Path Loss Exponent 4
Power Spectral Density of Noise -174 dBm/Hz
Data Size of Task [0.1-1] MBits
No. of Required CPU Cycles [0.1-1] GHz
Computational Capacity of Device [0.7-1] GHz
Computational Capacity of Server 20 GHz
Max. Transmission Power 300 mW
No. of Iterations 5
No. of IoT Devices 100-1000
No. Of Edge Servers 5

Max. Acceptable Latency [1.0-5.5] secs

Data Preprocessing and Visualization. Preprocessing the
data is essential before executing the code through the
database. Prior to the final implementation, this
preprocessing stage is crucial for guaranteeing the accuracy
of classifiers and removing any inconsistent or
untrustworthy data. In order to prepare the data for testing
and training, preprocessing steps include data
normalization and scaling. The dataset is first split into
training and testing sets. To be more precise, 90% of the
data is used to train the suggested model, while the
remaining 10% is set aside for testing. The task offloading
approach is made more understandable by the analysis
done in [45]. Plot axis and Pyplot have been used to show
the findings using the suggested model. The model's results
may be properly presented and interpreted with the help of
these visualization approaches.
In the modeled environment, it has been assumed that there are
three computing regions: IoT, edge, and cloud. Every IoT node
is heterogeneous in terms of resource capacity and application
execution. The value of simulation parameters within a specific
range is determined by the minimum and maximum values of
the dataset collected, which is again tuned through the
pseudocode random number generator as shown in Figure. 2.

Figure 2. Workflow diagram of GTBTL-IoT

As illustrated in Figure 2, the TC method involves
randomly creating tasks on IoT devices, verifying
connectivity with the closest server, reviewing task
requirements, and updating device and server status. If task
specifications match available computational resources,
work is offloaded locally, or task splitting occurs for distant
processing. The task's sub-components will be gathered,
and a real-time choice will be made if Algorithm 2 is
successfully applied; otherwise, the procedure ends.

EAI Endorsed Transactions
on Internet of Things |

| Volume 11 | 2025 |

E. F. Siddiqui and T. Ahmed

8

4.1 Complexity Analysis of GTBTL-IoT

The suggested Task Offloading and TC Latency
minimizing algorithm's complexity depends on the
following factors: (a) the number of resources needed for
TC, (b) the system deadline, (c) location awareness, and d)
the amount of workload being updated. Since the number
of tasks continues to grow exponentially from the initial
generation stage as the method approaches its queue size
threshold with fixed time constraints, the complexity of
tasks created is 𝑂𝑂(2^𝑡𝑡). Since it is a linear activity, updating
the device and server in terms of their remaining computational
resources and location awareness has O(n) complexity. The
greatest iterative tolerance for Algorithm 1 is based on 𝜑𝜑1 with
complexity 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙2𝑍𝑍), where Z is an n-digit complex integer
with a 𝑙𝑙𝑙𝑙𝑙𝑙10(𝜑𝜑1−1) digit. Algorithms 2 and 3 are based on linear
feasibility with maximum iterative 𝜑𝜑2and complexity
𝑂𝑂 �𝑙𝑙𝑙𝑙𝑙𝑙2

𝑊𝑊𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚−𝑊𝑊𝑊𝑊𝑟𝑟𝑟𝑟𝑚𝑚
𝜑𝜑2

�, where m is the number of inequality
constraints and n is the number of optimization variables. The
total complexity is 𝑂𝑂 �(2^𝑡𝑡) × (𝑙𝑙𝑙𝑙𝑙𝑙2𝑍𝑍) ×

�𝑙𝑙𝑙𝑙𝑙𝑙2
𝑊𝑊𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚−𝑊𝑊𝑊𝑊𝑟𝑟𝑟𝑟𝑚𝑚

𝜑𝜑2
�� what moves with polynomial time.

5. Results and Discussion

The results of the proposed GTBTL-IoT algorithm and its
usefulness in lowering overall task computation latency
and optimizing workload allocation between local devices
and MEC servers are shown in this section. It also
illustrates how the algorithm is capable of making an
optimal task-offloading decision to maximize time and
resources.

5.1 Simulation Period Analysis

The simulation time of each approach has been
investigated in this section. Within the simulation time,
tasks are received, their status is updated, the locations of
servers and devices are updated, server workloads are
computed, tasks are split and offloaded, and the results are
evaluated. The task generation rate influences the duration
of the simulation. Table 3 shows the results of the
simulation after four iterations namely #I1, #I2, #I3, and
#I4 respectively.

Table 3. Simulation Period Analysis

Duration (in Secs) 250
Warm-Up Period (in Secs) 90
Number of Active Nodes 150

 #I1 #I2 #I3 #I4 Average
DTS 12 14 15 16 14.52
FA 10 12 13 14 12.25

DAOWA 9 11 12 13 11
GTBTL-IoT 8 9.5 9.8 10 9.32

The simulation time was set to 250 seconds, with a warm-
up period of 90 seconds. Table 3 and Figure 4 show that
the DTS method occupied the majority of the simulation
time, 14.52 seconds on average. FA and DAOWA took
12.25 and 11 seconds, respectively. The suggested
GTBTL-IoT method, on the other hand, outperformed the
other three by requiring just 9.32 seconds on average for
simulation over all four iterations, demonstrating its
efficiency in terms of time and resource utilization.

Figure 3. Simulated Performance Vs Number of
Active Nodes

5.2 Latency Evaluation

The packet sizes of the incoming tasks vary from 100 to
1000 bytes. As a result, the task computation latency of
these variable-sized tasks varies. The total latency is
determined by a variety of factors, including the time it
takes to record the available resources, the deployment area
for task computing, the waiting or queue time, task
transmission time (if transferred for remote computation),
server queue time, and other critical variables. Table 4
summarizes the results of the latency evaluation after
simulating for four iterations respectively.

Table 4. Latency Analysis

Duration (in Secs) 250

Warm-Up Period (in Secs) 90
Number of Active Nodes 150

 #I1 #I2 #I3 #I4 Average
DTS 148 150 165 180 160.75
FA 143 145 160 175 155.75

DAOWA 137 140 156 170 150.75
GTBTL-IoT 129 132 150 164 143.75

EAI Endorsed Transactions
on Internet of Things |

| Volume 11 | 2025 |

 GTBTL-IoT: An Approach of Curtailing Task Offloading Time for Improved Responsiveness in IoT-MEC Model

9

The goal is to develop a task-computing approach that will
undoubtedly lower total work computation time. Based on
Table 4 and Figure 5, it can be stated that GTBTL-IoT
outperforms DTS, FA, and DAOWA in terms of
minimizing total job computation delay. The overall
latency induced by the request from the IoT node until the
final results were delivered was simulated for all four
algorithms across four iterations. Finally, when GTBTL-
IoT caused the least latency overhead which is 143.75
seconds, DTS, FA, and DAOWA required 160.75 seconds,
155.75 seconds, and 150.75 seconds, respectively. Packet
sizes of up to 1000 bytes were progressively and steadily
raised to test performance.

Figure 4. Latency Analysis Vs Packet Size

5.3 Task Offloading Decision

The choice to offload a task is dependent on the task
requirements, memory requirements, and constraints such
as workload overflow, device-server distance, allotted
server and device memory, and maximum resource
computing capabilities. Offloading a task as per the
GTBTL-IoT algorithm, includes breaking it into two parts,
calculating one locally and sending the other to the closest
server available, and then computing both in parallel inside
the same timeframe.

Figure 5. Task Offloading Decision

After Simulation, it was found that the GTBTL-IoT
algorithm chose parallel computing for 54.2% of the
incoming jobs, local computation for 24.6%, totally remote
computation for 8.6%, and total cloud offloading for 12.6%
of the workloads, as shown in Figure 6. The above
comparison analysis demonstrates how effectively the
proposed technique works. Also, an analysis of optimal
task offloading decisions was carried out in the same way
for DTS, FA, and DAOWA algorithms, whose results are
illustrated in Figure 6.

Figure 6. Task Offloading Efficiency

From Figure 6, it can be seen that DTS offloads its
maximum generated task to the remote server fully, FA
uses both parallel as well as full remote offloading
approaches while DAOWA offloads its task fully to the
cloud, which is again a complex process. However, as
compared to these three, GTBTL-IoT uses parallel
offloading and task computation approach which proves to
be optimal for time and resource utilization.

5.4 Execution Time Analysis

The task's execution once it is delegated to a resource is the
subject of concern, but its interpretation in a real-time

EAI Endorsed Transactions
on Internet of Things |

| Volume 11 | 2025 |

E. F. Siddiqui and T. Ahmed

10

situation results are useful if they are received in a timely
way. The task generation variable is continuously provided
different values at various points in time t' for its
examination across various algorithms, as shown in Figure.
8, to assess the effectiveness of the GTBTL-IoT algorithm.
The task arrival rate in ms is given as rate = 0.1, 0.5, 1.0,
1.5, 1.7, 2.0, 2.5, 3.0, 3.5, and 3.8. The average number of
tasks created in the IoT region with regard to ‘t' is used to
calculate the task execution time. This analysis is
summarized using Table 5.

Table 5. Execution Table Analysis

Duration (in Secs) 250
Warm-Up Period (in Secs) 90
Number of Active Nodes 150

 #I1 #I2 #I3 #I4 Average
DTS 98 212 654 802 441.5
FA 86 203 623 792 426

DAOWA 82 198 601 779 415
GTBTL-IoT 78 164 588 765 398.75

Figure 7. Task Execution Efficiency Vs Incoming
Tasks

Based on Table 5 and Figure 7, it can be stated that
GTBTL-IoT outperforms DTS, FA, and DAOWA in terms
of task execution. The execution time can be determined
based on available memory, wait times in queues, allotted
resource blocks, and transmission times. After simulation
for all four algorithms across four iterations, it was found
that GTBTL-IoT took the least execution time that is
398.75 milliseconds seconds, as compared to DTS, FA, and
DAOWA which took 441.5 milliseconds, 426
milliseconds, and 415 milliseconds, respectively. It should
be remembered that 𝒕𝒕𝑻𝑻𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕ʌ𝒕𝒕 = 𝟎𝟎 in the case of local TC.
Therefore, a smaller number for the local computation
timeframe is received. The proposed algorithm works
better than any previous TO or computing technique.

5.5 Workload Distribution Analysis

The Poisson Distribution approach has been used to
analyze the load placed on various local and
remote resources for an array of tasks that are growing
exponentially. It would be easier to analyze the workload
imposed and the job computation efficiency when the task
is spread among the various available resource blocks in
accordance with the particular approach used. The task
distribution has a significant influence on the computation
and timely delivery of the results.

Figure 8. Workload Distribution

It is observed that the DTS spreads its maximum
workload evenly between cloud and local resources,
whereas the FA prefers to divide its workload over local
resources. DAOWA places a remote edge server under its
maximum workload, which may result in data packet
congestion and an uneven distribution of workload
calculations. However, the proposed method minimizes TC
delay by making the most use of both local and
remote computing resources while moving the smallest
possible tasks to the cloud.

5.6 Resource Allocation

The term "resource block allocation time" essentially refers
to the period of time during which a resource block will be
assigned to the execution of a certain job. RBAlloc time
affects how quickly randomly generated jobs are
completed by the system deadline. This is crucial for
preserving a real-time environment for real-time responses.
The summary of resource allocation time of DTS, FA,
DAOWA, and GTBTL-IoT is shown in Table 6.

EAI Endorsed Transactions
on Internet of Things |

| Volume 11 | 2025 |

 GTBTL-IoT: An Approach of Curtailing Task Offloading Time for Improved Responsiveness in IoT-MEC Model

11

 Table 6. Resource Allocation time

Duration (in Secs) 250

Warm-Up Period (in Secs) 90
Number of Active Nodes 150

 #I1 #I2 #I3 #I4 Average
DTS 14 26 34 50 31
FA 12 21 30 45 27

DAOWA 10 18 27 40 23.75
GTBTL-IoT 8 15 23 36 20.5

The packet size taken for simulation and resource
allocation of DTS, FA, DAOWA, and GTBTL-IoT
algorithms is plotted together and shown in Figure 9.

Figure 9. Resource Allocation Vs Packet Size

Based on Table 6 and Figure 9, it can be concluded that
GTBTL-IoT has the shortest RBAlloc time when compared
to the DTS, FA, and DAOWA Task Offloading
Algorithms. For a 10-unit task queue size, GTBTL-IoT
required 20.5 seconds on average of four iterations. DTS,
FA, and DAOWA took 31, 27, and 23.75 seconds,
respectively. As a result, it can be said that the suggested
method performed better than the other three.

6. Conclusion

The study suggests that a partial TO strategy is more
effective than sending the task to a remote server, and that
distance significantly reduces offloading overhead and TC
latency. Allocating tasks to local and remote regions in
parallel for computing reduces task processing delays and
improves system performance by enhancing responses.
The simulation findings show that the GTBTL-IoT
algorithm was effective in reducing the overall TC latency
at 143.75 ms as compared to DTS at 160.75 ms, FA at
155.75 ms, and DAOWA at 150.75 ms. In the future, this
work may be extended to enhance real-time responses in
IoT environments with better decision-making using deep
learning (DL) techniques. The DL models may be used to

classify and prioritize the tasks for better resource
utilization and their computation with a time-critical
approach.

Data Availability.
The data used for test setup and experimental analysis may
be made available by the authors upon request.

Conflicts of Interest.
The authors declare that they have no conflicts of interest
regarding the publication of the research work.

Author Contributions.
• Research Idea Formulation, Research Content

Collection, Designing of Algorithms, Experimental
Setup-Ms. Eram Fatima Siddiqui

• Literature Survey, Result Interpretation, Research
Writing, and Proofreading- Dr. Tasneem Ahmed.

Acknowledgements.
The authors are thankful to the Advanced Computing
Research Laboratory, Department of Computer Application,
Integral University, Lucknow for providing the necessary
support to carry out the research work. The manuscript
communication number issued by Integral University is
IU/R&D/2023-MCN0002229.

References
[1] C. Swain et al., “METO: Matching-Theory-Based Efficient

task offloading in IoT-FOG interconnection networks,”
IEEE Internet of Things Journal, vol. 8, no. 16, pp. 12705–
12715, Aug. 2021, doi: 10.1109/jiot.2020.3025631.

[2] M. Ali, N. Riaz, M. I. Ashraf, S. Qaisar, and M. Naeem,
“Joint cloudlet selection and latency minimization in FoG
networks,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 9, pp. 4055–4063, Sep. 2018, doi:
10.1109/tii.2018.2829751.

[3] J. Xue and Y. An, “Joint task offloading and resource
allocation for Multi-Task Multi-Server NOMA-MEC
networks,” IEEE Access, vol. 9, pp. 16152–16163, Jan.
2021, doi: 10.1109/access.2021.3049883.

[4] A. Rafiq, P. Wang, M. Wei, S. H. Hong, and N. N. Josbert,
“Optimizing Energy consumption and Latency based on
computation offloading and cell association in MEC
enabled Industrial IoT environment,” 2021 6th
International Conference on Intelligent Computing and
Signal Processing (ICSP), Apr. 2021, doi:
10.1109/icsp51882.2021.9408693.

[5] S. Xia, X. Wen, Z. Yao, Y. Li, and G. Wang, “Dynamic
Task Offloading and Resource Allocation for
Heterogeneous MEC-enable IoT,” 2020 IEEE/CIC
International Conference on Communications in China
(ICCC), 2020, Aug. 2020, doi:
10.1109/iccc49849.2020.9238863.

[6] S. K. T, “EFFICIENT RESOURCE ALLOCATION AND
QOS ENHANCEMENTS OF IOT WITH FOG
NETWORK,” Journal of ISMAC the Journal of IoT in
Social, Mobile, Analytics, and Cloud, Sep. 2019, doi:
10.36548/jismac.2019.2.003.

[7] G. Cui, X. Li, L. Xu, and W. Wang, “Latency and energy
optimization for MEC enhanced SAT-IoT networks,” IEEE

EAI Endorsed Transactions
on Internet of Things |

| Volume 11 | 2025 |

E. F. Siddiqui and T. Ahmed

12

Access, vol. 8, pp. 55915–55926, Jan. 2020, doi:
10.1109/access.2020.2982356.

[8] H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi,
and C. Assi, “Dynamic task offloading and scheduling for
Low-Latency IoT services in Multi-Access edge
computing,” IEEE Journal on Selected Areas in
Communications, vol. 37, no. 3, pp. 668–682, Mar. 2019,
doi: 10.1109/jsac.2019.2894306.

[9] J. Liu and Q. Zhang, “Adaptive Task Partitioning at Local
Device or Remote Edge Server for Offloading in MEC,”
2020 IEEE Wireless Communications and Networking
Conference (WCNC), May 2020, doi:
10.1109/wcnc45663.2020.9120484.

[10] W. Almughalles, R. Chai, J. Lin, and A. Zubair, “Task
Execution Latency Minimization-based Joint Computation
Offloading and Cell Selection for MEC-Enabled HetNets,”
2019 28th Wireless and Optical Communications
Conference (WOCC), May 2019, doi:
10.1109/wocc.2019.8770582.

[11] Y. Gu, W. Saad, M. Bennis, M. Debbah, and Z. Han,
“Matching theory for future wireless networks:
fundamentals and applications,” IEEE Communications
Magazine, vol. 53, no. 5, pp. 52–59, May 2015, doi:
10.1109/mcom.2015.7105641.

[12] T. Cuong, N. H. Tran, C. Pham, Md. G. R. Alam, J. H. Son,
and C. S. Hong, “A proximal algorithm for joint resource
allocation and minimizing carbon footprint in geo-
distributed fog computing,” 2015 International Conference
on Information Networking (ICOIN), Jan. 2015, doi:
10.1109/icoin.2015.7057905.

[13] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal
workload allocation in FOG-Cloud computing towards
balanced delay and power consumption,” IEEE Internet of
Things Journal, p. 1, Jan. 2016, doi:
10.1109/jiot.2016.2565516.

[14] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint
optimization of task scheduling and image placement in
FOG Computing supported Software-Defined embedded
system,” IEEE Transactions on Computers, vol. 65, no. 12,
pp. 3702–3712, Dec. 2016, doi: 10.1109/tc.2016.2536019.

[15] H. Zhang, Y. Xiao, S. Bu, D. Niyato, F. R. Yu, and Z. Han,
“Computing Resource Allocation in Three-Tier IoT FOG
Networks: A joint optimization approach combining
Stackelberg game and matching,” IEEE Internet of Things
Journal, vol. 4, no. 5, pp. 1204–1215, Oct. 2017, doi:
10.1109/jiot.2017.2688925.

[16] M. S. Elbamby, M. Bennis, and W. Saad, “Proactive edge
computing in latency-constrained fog networks,” 2017
European Conference on Networks and Communications
(EuCNC), Jun. 2017, doi: 10.1109/eucnc.2017.7980678.

[17] T. Yang, R. Chai, and L. Zhang, “Latency Optimization-
based Joint Task Offloading and Scheduling for Multi-user
MEC System,” 2020 29th Wireless and Optical
Communications Conference (WOCC), May 2020, doi:
10.1109/wocc48579.2020.9114942.

[18] N. Nikaein, X. Vasilakos, and A. Huang, “LL-MEC:
Enabling Low Latency Edge Applications,” 2018 IEEE 7th
International Conference on Cloud Networking (CloudNet),
Oct. 2018, doi: 10.1109/cloudnet.2018.8549500.

[19] B. Brik, P. A. Frangoudis, and A. Ksentini, “Service-
Oriented MEC Applications Placement in a Federated Edge
Cloud Architecture,” ICC 2020 - 2020 IEEE International
Conference on Communications (ICC), Jun. 2020, doi:
10.1109/icc40277.2020.9148814.

[20] A. Alnoman, S. Erkucuk, and A. Anpalagan, “Sparse code
multiple Access-Based edge computing for IoT systems,”

IEEE Internet of Things Journal, vol. 6, no. 4, pp. 7152–
7161, Aug. 2019, doi: 10.1109/jiot.2019.2914570.

[21] R. Han, Y. Wen, L. Bai, J. Liu, and J. Choi, “Rate splitting
on mobile edge computing for UAV-Aided IoT systems,”
IEEE Transactions on Cognitive Communications and
Networking, vol. 6, no. 4, pp. 1193–1203, Dec. 2020, doi:
10.1109/tccn.2020.3012680.

[22] R. Gu, L. Yu, and J. Zhang, “MeFILL: A Multi-edged
Framework for Intelligent and Low Latency Mobile IoT
Services,” 2020 IEEE Wireless Communications and
Networking Conference (WCNC), May 2020, doi:
10.1109/wcnc45663.2020.9120786.

[23] I. Kovacevic, E. Harjula, S. Glisic, B. Lorenzo, and M.
Ylianttila, “Cloud and edge computation offloading for
latency limited services,” IEEE Access, vol. 9, pp. 55764–
55776, Jan. 2021, doi: 10.1109/access.2021.3071848.

[24] K. Chen, Y. Wang, Z. Fei, and X. Wang, “Power Limited
Ultra-Reliable and Low-Latency Communication in UAV-
Enabled IoT Networks,” 2020 IEEE Wireless
Communications and Networking Conference (WCNC),
May 2020, doi: 10.1109/wcnc45663.2020.9120565.

[25] H. Yoshino, K. Ota, and T. Hiraguri, “Adaptive Control of
Statistical Data Aggregation to Minimize Latency in IoT
Gateway,” 2018 Global Information Infrastructure and
Networking Symposium (GIIS), Oct. 2018, doi:
10.1109/giis.2018.8635712.

[26] J.-P. Hong, J. Park, W. Shin, and S. Beak, “Distributed
antenna system design for Ultra-Reliable Low-Latency
Uplink communications,” 2019 International Conference
on Electronics, Information, and Communication (ICEIC),
Jan. 2019, doi: 10.23919/elinfocom.2019.8706492.

[27] M. Yang, S.-Y. Lim, S.-M. Oh, and J. G. Shin, “An Uplink
Transmission Scheme for TSN Service in 5G Industrial
IoT,” 2020 International Conference on Information and
Communication Technology Convergence (ICTC), Oct.
2020, doi: 10.1109/ictc49870.2020.9289303.

[28] A. H. Ismail, T. A. Soliman, G. M. Salama, N. A. El-
Bahnasawy, and H. F. A. Hamed, “Congestion-Aware and
Energy-Efficient MEC Model with Low Latency for 5G,”
2019 7th International Japan-Africa Conference on
Electronics, Communications, and Computations, (JAC-
ECC), Dec. 2019, doi: 10.1109/jac-
ecc48896.2019.9051312.

[29] K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang,
“Mobile edge computing and networking for Green and
Low-Latency Internet of Things,” IEEE Communications
Magazine, vol. 56, no. 5, pp. 39–45, May 2018, doi:
10.1109/mcom.2018.1700882.

[30] Z. Zhang et al., “6G Wireless Networks: vision,
requirements, architecture, and key technologies,” IEEE
Vehicular Technology Magazine, vol. 14, no. 3, pp. 28–41,
Sep. 2019, doi: 10.1109/mvt.2019.2921208.

[31] N. Germenis, P. Fountas, and C. Koulamas, “Low Latency
and Low Cost Smart Embedded Seismograph for Early
Warning IoT Applications,” 2020 9th Mediterranean
Conference on Embedded Computing (MECO), Jun. 2020,
doi: 10.1109/meco49872.2020.9134088.

[32] G. Calice, A. Mtibaa, R. Beraldi, and H. Alnuweiri,
“Mobile-to-mobile opportunistic task splitting and
offloading,” 2015 IEEE 11th International Conference on
Wireless and Mobile Computing, Networking and
Communications (WiMob), Oct. 2015, doi:
10.1109/wimob.2015.7348012.

[33] N. Kherraf, S. Sharafeddine, C. Assi, and A. Ghrayeb,
“Latency and Reliability-Aware workload assignment in
IoT networks with mobile edge clouds,” IEEE Transactions

EAI Endorsed Transactions
on Internet of Things |

| Volume 11 | 2025 |

 GTBTL-IoT: An Approach of Curtailing Task Offloading Time for Improved Responsiveness in IoT-MEC Model

13

on Network and Service Management, vol. 16, no. 4, pp.
1435–1449, Dec. 2019, doi: 10.1109/tnsm.2019.2946467.

[34] H. Hao, Y. Wang, Y. Shi, Z. Li, Y. Wu, and C. Li, “IoT-G:
A Low-Latency and High-Reliability Private Power
Wireless Communication Architecture for Smart Grid,”
2019 IEEE International Conference on Communications,
Control, and Computing Technologies for Smart Grids
(SmartGridComm), Oct. 2019, doi:
10.1109/smartgridcomm.2019.8909773.

[35] J. Park and Y. Lim, “Balancing Loads among MEC Servers
by Task Redirection to Enhance the Resource Efficiency of
MEC Systems,” Applied Sciences, vol. 11, no. 16, p. 7589,
Aug. 2021, doi: 10.3390/app11167589.

[36] C. Duo, D. Jia, Q. Gao, B. Li, and Y. Li, “MEC
Computation Offloading-Based Learning Strategy in Ultra-
Dense Networks,” Information, vol. 13, no. 6, p. 271, May
2022, doi: 10.3390/info13060271.

[37] S. Bebortta and D. Senapati, “Toward Cost-Aware
computation offloading in IoT-Based MEC systems,”
National Academy Science Letters, vol. 46, no. 6, pp. 531–
534, May 2023, doi: 10.1007/s40009-023-01260-9.

[38] Z. Ai, W. Zhang, M. Li, P. Li, and L. Shi, “A smart
collaborative framework for dynamic multi-task offloading
in IIoT-MEC networks,” Peer-to-Peer Networking and
Applications, vol. 16, no. 2, pp. 749–764, Jan. 2023, doi:
10.1007/s12083-022-01441-1.

[39] J. Chen, Y. Leng, and J. Huang, “An intelligent approach
of task offloading for dependent services in Mobile Edge
Computing,” Journal of Cloud Computing, vol. 12, no. 1,
Jul. 2023, doi: 10.1186/s13677-023-00477-9.

[40] H. H. Imtiaz and S. Tang, “Multi-Task Partial Offloading
with Relay and Adaptive Bandwidth Allocation for the
MEC-Assisted IoT,” Sensors, vol. 23, no. 1, p. 190, Dec.
2022, doi: 10.3390/s23010190.

[41] F. Alenizi and O. F. Rana, “Minimising delay and energy
in online dynamic fog systems,” arXiv (Cornell University),
Dec. 2020, doi: 10.48550/arxiv.2012.12745.

[42] J. Almutairi and M. Aldossary, “A novel approach for IoT
tasks offloading in edge-cloud environments,” Journal of
Cloud Computing, vol. 10, no. 1, Apr. 2021, doi:
10.1186/s13677-021-00243-9.

[43] L. Li, M. Guo, L. Ma, H. Mao, and Q. Guan, “Online
workload allocation via FOG-FOG-Cloud cooperation to
reduce IoT task service delay,” Sensors, vol. 19, no. 18, p.
3830, Sep. 2019, doi: 10.3390/s19183830.

[44] E. Del-Pozo-Puñal, F. Garcia-Carballeira, and D.
Camarmas-Alonso, “A scalable simulator for cloud, fog and
edge computing platforms with mobility support,” Future
Generation Computer Systems, vol. 144, pp. 117–130, Jul.
2023, doi: 10.1016/j.future.2023.02.010.

[45] Zumnan, “GitHub - Zumnan/Dynamic-Intelligent-Edge-
Task-Offloading-in-MEC-Network,” GitHub.
https://github.com/Zumnan/Dynamic-Intelligent-Edge-
Task-Offloading-in-MEC-Network/tree/main

EAI Endorsed Transactions
on Internet of Things |

| Volume 11 | 2025 |

	The results of the proposed GTBTL-IoT algorithm and its usefulness in lowering overall task computation latency and optimizing workload allocation between local devices and MEC servers are shown in this section. It also illustrates how the algorithm i...

