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Abstract 

INTRODUCTION: The division of a 3D point cloud into various meaningful regions or objects is known as point cloud 
segmentation. 
OBJECTIVES: The paper discusses the challenges faced in 3D point cloud segmentation, such as the high dimensionality 
of point cloud data, noise, and varying point densities. 
METHODS: The paper compares several commonly used datasets in the field, including the ModelNet, ScanNet, S3DIS, 
and Semantic 3D datasets, ApploloCar3D, and provides an analysis of the strengths and weaknesses of each dataset. Also 
provides an overview of the papers that uses Traditional clustering techniques, deep learning-based methods, and hybrid 
approaches in point cloud semantic segmentation. The report also discusses the benefits and drawbacks of each approach. 
CONCLUSION: This study sheds light on the state of the art in semantic segmentation of 3D point clouds. 
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1. Introduction

The accessibility and cost-effectiveness of 3D sensors, such 
as LiDARs and RGB-D cameras, have revolutionized 
numerous disciplines by providing rich 3D data that was 
previously unavailable or difficult to acquire. The utilization 
of 3D data offers a significant benefit in that it furnishes 
insights into the geometry and morphology of objects, which 
cannot be obtained through conventional 2D imagery. 
Autonomous vehicles, robots, remote sensing, and even 
medical care could all benefit greatly from the availability of 
3D information [1]. 

*Corresponding author. Email: sagarpande30@gmail.com 

The point cloud format is a common choice for the 
representation of three-dimensional data. Unlike other 
formats, such as meshes or volumetric grids, point clouds do  
not require any discretization or surface approximation, and 
therefore they can preserve the original geometric 
information of the object or scene being represented. A three-
dimensional point cloud is the representation of the 
coordinates of an object or surface, and it is composed of a 
group of data points that span all three dimensions. These 
points are often captured using 3D scanners or LIDAR (Light 
Detection and Ranging) technology, which can collect 
millions of points in a single scan. A point cloud is a 
collection of points, each of which has its own distinct x, y, 
and z coordinates that characterize its location in 3D space. 
The resolution of the scanner used to get the data can change 
how dense the point cloud is, or how many points there are 
per unit of space. [2]. The aim of point cloud segmentation is 
to split the points in a cloud into distinct segments based on 
their shared characteristics, such as the presence or absence 
of geometric structures like planes, spheres, or cylinders. 
Color, texture, shape, and density are all examples of 
segmentation criteria. The enhanced object recognition, data 
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visualization, and precise depth perception made 3D point 
segmentation a valuable instrument for a variety of 
applications. 

Semantic, instance, and part segmentation are broad 
classifications for 3D point cloud segmentation techniques. 
The process of assigning a label, often describing the kind of 
item or surface that the point belongs to each individual point 
in the cloud is what is known as semantic segmentation. This 
is helpful for activities such as analyzing the scene or 
detecting and identifying objects in the scene. Instance 
segmentation, on the other hand, involves identifying and 
segmenting individual objects within the point cloud. This 
can be useful for tasks such as object tracking or robot 
navigation. Part segmentation involves segmenting objects 
into smaller sub-parts or components. This can be helpful for 
operations like moving or putting things together. Different 
deep-learning strategies for segmenting point clouds were 
provided in the reviewed publications [3-7]. In this research, 
we present a high-level summary of point-cloud-based 3D 
semantic segmentation. Section II outlines the key issues 
facing the field that serve as the driving forces behind the 
different approaches and describes the commonly available 
3D point cloud datasets 

2. Challenges and Datasets

2.1. Challenges 

In 3D data, we can precisely identify an object's shape, size, 
and other characteristics. However, it is not a simple task to 
extract features from 3D point clouds. Cloud information is 
typically unorganized, scarce, and noisy. There is also no 
clear pattern in the data, suggesting that the surface's form is 
more likely to be artificial rather than naturally occurring. 
3D point cloud segmentation faces the following challenges: 
(i) Disorganisation, including both high- and low-density
areas.
(ii) Unstructured/no grid: Point clouds, unlike other types of
3D data like voxel grids, do not have a predefined grid layout.
(iii) Unordered: The points in a point cloud are not arranged
in any pattern.
(iv) Noise and Outliers: Point clouds can contain noise and
outliers due to sensor inaccuracies, occlusions, or reflections.
(v) Large data sets: The processing time, storage space, and
memory requirements of point clouds can be prohibitive if the 
clouds include many points.
(vi) Limited sensor resolution: The resolution of 3D sensors
used to capture point clouds can be limited, resulting in loss
of detail and accuracy.

The development of a segmentation algorithm is a 
challenging task considering these issues [6]. Section III 
discusses various methods of segmentation addressing these 
challenges. 

2.1. Datasets 

In 3D point semantic segmentation, data sets play a crucial 
role in developing and training effective algorithms for 
accurately classifying and labeling points in a cloud.  This 
section, we will discuss a set of datasets that sees regular use 
in 3D point cloud segmentation: 

ModelNet [8] 
The ModelNet40 dataset has become a standard benchmark 
for evaluating 3D object recognition and classification 
algorithms. It has been used to evaluate the efficiency of 
various algorithms and to evaluate the impact of different 
factors, such as point cloud resolution and object occlusion, 
on recognition accuracy. CAD-generated meshes totalling 
12,311 in 40 different classes, including plants, tables, chairs, 
desks, lamps, vehicles, and airplanes, are included in the 
Mod- elNet40 benchmark dataset. There are 9,843 models in 
the training set and 2,468 models in the test set of the 
ModelNet40 dataset. 

PC-Urban (Urban Point Cloud) [9] 
The PC-Urban dataset was obtained using a 64-channel 
Ouster LiDAR sensor. The dataset consists of approximately 
4 billion 300 million points collected over 66 thousand sensor 
frames. The labeled data is separated into raw and registered 
point cloud frames, with a variable number of consecutive 
registered frames associated with each raw frame. It provides 
25 class identifiers for the 23-million-point dataset with 5,000 
instances. End users can simply extend labeling, which is 
performed by PC- Annotate, using the same application. 

Semantic3D [10] 
This benchmark dataset contains over 3 billion points and 8 
class labels. It contains 15 training and test scenes. It is a 
valuable resource for building and testing machine learning 
models for 3D object recognition, scene interpretation, and 
similar applications. The diversity of scenes included in the 
dataset, ranging from churches to soccer fields, should help 
ensure that models trained on this dataset are robust and 
generalizable to a wide variety of real-world environments. 

Joint 2D-3D-semantic data for understanding 
indoor scenes [11] 
The dataset is gathered in six sizable interior spaces that are 
part of three separate, primarily office and educational 
buildings. When viewed from the same coordinate system, 
there is a one-to-one relationship between the various 
modalities at each point. The collection is an assemblage of 
1,413 equirectangular RGB images alongside a grand total of 
70,496 conventional RGB photographs. Additionally, it 
encompasses the depths, outer layer averages, semantic 
annotations, global XYZ OpenEXR form, and camera 
metadata for each individual image. 

Semantic KITTI [12] 
A sizable dataset featuring outstanding point-wise annotation 
detail and a total of 28 classes, which can be put to a variety 
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of diverse uses. This dataset stands out from others because 
of the meticulous scan-wise tagging of the sequences. 
Annotation work has been performed on all 22 sequences that 
make up the odometry benchmark that is part of the KITTI 
Vision Benchmark. This dataset consists of close to 43,000 
scans in total. In addition, the data is labeled for the rotating 
laser sensor's whole horizontal field of view, which indicates 
that annotations are provided for each point that is acquired 
by the sensor as it scans its surroundings. This can be seen by 
the fact that the field of view spans 360 degrees horizontally. 

Habitat-Matterport 3D Semantics Dataset [13] 
There are 3,100 rooms and 142,646 object instance 
annotations spread throughout two hundred and sixteen 3D 
spaces. The quantity, caliber, and variety of object 
annotations are all significantly higher than in previous 
datasets. The texture data usage to identify pixel-accurate 
object boundaries distinguishes HM3DSEM from other 
datasets in a significant way. Using various techniques, we 
show how well the HM3DSEM dataset performs for the 
Object Goal Navigation task. HM3DSEM-trained policies 
outperform those that were trained using earlier datasets. 

AppolloCar3D [14] 
ApolloCar3DT data set contains 5,000 high-quality images 
and more than 60,000 car instances, this dataset provides a 
rich source of data for training and testing object detection 
and recognition models. Models trained on this dataset should 
be very accurate and reliable because they are based on 
precise 3D CAD representations of individual vehicles, 
complete with measured model sizes and semantically 
labeled critical points. In addition, the dataset's substantial 
size renders it a prime asset for the development and 
assessment of deep learning models. These models frequently 
demand extensive data to attain remarkable levels of 
precision. ApolloCar3DT represents a remarkable leap in the 
advancement and assessment of computer vision models 
specifically tailored for driving scenarios, owing to its 
impressive dimensions and exceptional quality. 

3. Methods for Semantic Segmentation of
Point Clouds

Semantic segmentation is a computer vision technique that 
splits an image into many segments or areas, each one 
representing a different object or class. In contrast to object 
detection, which only identifies the location of an object in an 
image, semantic segmentation labels every pixel in the image, 
providing a more detailed understanding of the image content 
[15][16]. The board classification of methods of semantic 
segmentation is shown in Figure 1. 

3.1. Weak And Semi-Supervised Semantic 
Segmentation 

The challenge of effectively labeling substantial volumes of 
data poses a significant obstacle in the realm of Semantic 
segmentation. One approach to address this challenge is to 
use weakly supervised or semi-supervised learning 
techniques (SSL). To train a model that can execute pixel-
level segmentation, these methods make use of 
supplementary sources of information, such as image-level or 
region-level labels. Semantic segmentation techniques that 
rely only on semi-supervision or weak supervision are 
discussed at length in [16–24]. 

Figure. 1. Methods for semantic segmentation 

Yassine Ouali et al. [16] have made a significant contribution 
to the field of semantic segmentation by introducing a novel 
semi-supervised approach through the utilization of cross-
consistency training. A well-known method of semi-
supervised learning is called consistency training. The 
approach described here leverages unlabeled data and is 
based on the principle of clustering, which posits that the 
decision boundary should be situated in regions of sparse data 
density. The authors posit that the low-density regions exhibit 
a greater prominence in the hidden representations as 
compared to the inputs for semantic segmentation. To solve 
this problem, the authors offered cross-consistency training, 
in which the predictions stay the same even when the 
encoder's outputs are changed in different ways. This makes 
the encoder's representations better, which makes the division 
more accurate. 
Dong-Hyun Lee [17] proposed a method for semi-supervised 
semantic segmentation called Entropy Minimization with 
Pseudo-Labels (EMPL), which is a combination of 
supervised and unsupervised learning. The method employed 
in this approach involves the simultaneous utilization of both 
labeled and unlabeled data. It incorporates entropy 
regularization to the unlabeled data within the context of 
semi-supervised learning. A common assumption made in 
this scenario is the presence of a low-density separation 
between classes. The entropy regularization encourages the 
model to develop this separation between classes with low 
density. The method uses Pseudo- Labels, which are the 
predicted labels with the highest probability as if they were 
true labels for the unlabeled data. This approach is equal to 
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entropy regularization, where the model is encouraged to 
produce low-entropy outputs for the unlabeled data.  
With bounding box annotations, which are simpler to get than 
pixel-level segmentation masks, J. Dai et al. [18] presented 
the "BoxSup" approach for semantic segmentation. The 
procedure is divided into two stages: autonomously 
generating region recommendations and training 
convolutional networks. To restore segmentation masks and 
gradually enhance the networks, these processes are repeated. 
The proposed method has several advantages over fully 
supervised methods. First, obtaining bounding box 
annotations is significantly simpler than pixel-level 
segmentation masks, which can be expensive and time-
consuming. Second, BoxSup offers the opportunity to utilize 
an extensive array of bounding box annotations, thereby 
enhancing the overall performance of the model. Thirdly, the 
technique is adaptable and readily applicable to other datasets 
and tasks. 
In their notable work, Nasim Souly et al. [19] introduced a 
compelling solution to tackle the scarcity of pixel-level 
labeled data in the field of semantic segmentation. Their 
approach, rooted in the principles of Generative Adversarial 
Networks (GANs), offers a promising semi-supervised 
framework. The proposed methodology incorporates an 
extensive collection of unlabeled or partially labeled data, 
alongside artificially generated images produced by GANs. A 
multi-class classifier serving as the discriminator in the GAN 
framework is supported by the system's generator network, 
which also supplies additional training instances. The 
classifier la- bels each sample with one of K potential labels 
or flags it as a bogus sample (extra class). The system drives 
genuine samples to be closer together in the feature space by 
introducing a lot of fictitious visual data, which enhances 
multiclass pixel classification. 
In their scholarly work, Hung et al. [20] present a meticulous 
approach aimed at augmenting the precision of semantic 
segmentation. This approach ingeniously leverages the 
combined power of labeled and unlabeled data, thereby 
offering a comprehensive strategy for achieving superior 
results in this domain. The main advance is the creation of a 
pixel-level (rather than an image-level) fully convolutional 
discriminator. This discriminator is trained to distinguish 
between the ground-truth segmentation distribution and the 
anticipated probability maps generated by the segmentation 
model, while also considering the resolution of the maps. The 
technique recommended involves the integration of the 
adversarial loss and the conventional cross-entropy loss 
within the segmentation model. This integration enhances the 
accuracy of the segmentation process, particularly in regions 
of the image where the model is prone to producing erroneous 
outcomes. 
The major innovation of [21]'s approach is the use of 
changing dilation rates to transfer prejudiced information to 
non-discriminative portions of the image, which aids in the 
appearance of these regions in object localization maps. The 
suggested method will enhance both weak and semi-
supervised segmentation using semantics by providing dense 
and trustworthy object localization maps. 

Lee et. al., in [22] proposed a novel approach based on 
FickleNet addresses a critical limitation of weakly supervised 
semantic image segmentation by generating more ac- curate 
localization maps that capture both discriminative and non-
discriminative parts of objects. The approach is simple yet 
effective, and its ability to generate ensemble effects from a 
single network is particularly noteworthy. 
Geoff French et al. [23] came up with a new method based on 
the CutMix regularizer, which is a data augmentation tool that 
replaces rectangular patches of one image with patches from 
another image during training. This promotes better 
generalization and the learning of stable, invariant properties 
by the model. By adapting CutMix to semantic segmentation, 
the authors were able to apply consistency regularization to 
improve segmentation accuracy. 
A promising method for poorly supervised semantic 
segmentation utilizing bounding box annotations was 
presented by C. Song et al. in [24]. The proposed method 
consists of two parts: an adaptive loss based on the filling rate 
(FR-Loss) and a class masking model based on boxes (BCM). 
Using bounding box annotations as a guide, the BCM is used 
to delete unnecessary portions of each class. 
The accuracy of the segmentation is improved since attention 
is focused only on the relevant regions. The bounding box 
annotations' pixel-level segment recommendations are used 
to calculate each class's mean filling rates, which form the 
FR- Loss. The filling ratios act as a crucial prior cue that 
directs the machine to disregard incorrectly labeled pixels in 
the proposals. This enhances the accuracy of the 
segmentation and lessens the detrimental effects of proposals 
with inaccurate labels. 

3.2. Semantic Segmentation Using Deep 
Learning 

Deep learning-based semantics is a cutting-edge technique 
employed in the realm of computer vision. Its primary 
purpose is to partition an image into numerous segments, with 
the added ability to assign each individual pixel within the 
image to a distinct class or category. This process is 
performed using deep learning algorithms, particularly 
convolutional neural networks (CNNs). These deep neural 
networks can learn high-dimensional representations or 
features from raw data, such as images, audio, or text, without 
the need for domain-specific knowledge or feature 
engineering. In contrast, it is worth noting that traditional 
machine learning methods frequently depend on meticulously 
crafted features that have been carefully developed based on 
domain-driven expertise and intuition. The utilisation of deep 
learning techniques the categorization of point-based, voxel-
based, and multi-view-based cloud semantic segmentation 
algorithms can be attributed to the structural characteristics of 
the input data in neural networks. The categories in question 
encompass multi-view, voxel, and point-based approaches, 
each with their own unique characteristics and applications. 
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Multi-view-based semantic segmentation refers to the task 
of segmenting objects or regions of interest in 3D scenes 
using multiple views of the same scene. This task involves 
combining information from multiple views to obtain more 
accurate segmentation. In terms of overall performance 
improvements, multi-view max-pooling of feature maps 
excels at both single-view segmentation and the combination 
of several views. Both scenarios have the potential to benefit 
from these changes. Very few studies are available on multi-
view-based PCSS. A deep neural network strategy was put 
forth by L. Ma et al. [25] for the prediction of semantic 
segmentation from RGB-D sequences. The main 
advancement is the network's self-supervised training to 
forecast multi-view consistent semantics. The network is 
constructed using a novel approach to deep learning called 
single-view learning, which integrates RGB and depth 
information for semantic object-class segmentation. This 
method is improved by minimizing loss on several scales via 
multi-scale optimization, which further boosts the 
performance of the network. 
The multi-view representation learning approach proposed in 
[26], aims to simultaneously extract useful features and learn 
a shared representation in a joint feature space. This strategy 
offers an effective mechanism for capturing underlying 
correlations. To enhance the training data as well as learning 
capacity, the model is trained via groups of video frames. 

One significant disadvantage of Multiview-based approaches 
is that they can result in geometric information loss because 
2D Multiview images are simply approximations of 3D 
situations. This limitation can be especially problematic for 
complex tasks such as point cloud semantic segmentation 
(PCSS), where the performance can be limited and 
unsatisfactory due to the loss of geometric structure. Multiple 
perspectives are necessary to cover all the spaces containing 
points, which is another drawback of Multiview-based 
approaches. It can be difficult to choose enough appropriate 
perspectives for Multiview projection in vast and complicated 
scenes, which might result in a lack of comprehensive point 
cloud coverage and the omission of crucial details. 

Voxel-based semantic segmentation can be used to segment 
and classify individual points included inside a point cloud. 
This is achieved by assigning a semantic designation to each 
cloud point. It involves separating the point cloud to voxels, 
which are small volumetric elements, and extracting features 
from each voxel to classify the points contained within. These 
features can include the raw coordinates, as well as other 
attributes such as shape, orientation, and connectivity. To 
further characterize point clusters and facilitate supervised or 
un- supervised classification, F. Poux et al. [27] suggested a 
voxel-based feature engineering approach for point cloud 
data processing. To provide compatibility between frame- 
works, the technique offers various feature generalization 
degrees. The first feature set (SF1) is shape-based and uses 
only the point cloud's basic X, Y, and Z properties.  
The second feature set (SF2) produces a 3D structural 
connectivity feature set by de- riving relationships and 
topologies between voxel elements. For planar-dominant 

classes, the method outperforms both innovative and cutting-
edge deep learning methods on the entire S3DIS dataset, with 
an F1-score of > 85% and a low barrier to integration. 

Point-Voxel CNN (PVCNN), a new 3D deep learning model 
that makes use of sparsity and has a smaller memory 
footprint, was proposed by Zhijian Liu et al. [28]. It encodes 
3D input data as point clouds. In addition, the model employs 
voxel-based convolution to create contiguous memory access 
patterns, which enhances performance in comparison to 
existing point-based models. Numerous tests on various tasks 
show that PVCNN beats voxel-based baselines while using 
10 times less memory, on average, and 7 times more speed 
than the most advanced point-based models. Overall, 
PVCNN is a promising method for 3D deep learning since it 
provides excellent accuracy while also offering memory and 
compute savings. 

Methods for Processing Point Cloud Data Directly: 
Processing point cloud data directly entails conducting tasks 
such as the process of segmentation, recognition of objects, 
and 3D reconstruction without first converting the data into 
another format such as a mesh or voxel grid. The following 
are some of the many techniques available for direct 
processing of point cloud data. 

PointNet: Point clouds are simpler and more unified 
structures than meshes, which can have varying topologies 
and connectivity. This makes point clouds easier to work with 
and learn from in many cases. Meshes can have many 
combinatorial irregularities and complexities that can make it 
difficult to extract useful features or to perform operations 
like convolutions. Point clouds, on the other hand, are just 
collections of 3D points, and can be processed using simple 
geometric operations and shared MLPs in point-based 
networks like PointNet [29]. The performance of PointNet on 
large outdoor point clouds of metropolitan landscapes is 
assessed by A. Nurunnabi et al. in their study [30], and they 
conclude that PointNet has the potential for semantic 
segmentation. PointNet does not account for the 
neighborhood structure provided by the measurement space 
created by its neighbors. The study also examines how input 
vectors influence the efficacy of Point-Net and how sensitive 
it is to meta-parameters such as the size of the batch, block 
partitioning, and block point count. 

PointNet++: PointNet++ is an extension of PointNet that 
fixes the problem of not considering local structure, which is 
caused by the measurement space made by its nearby 
neighbors. By utilizing the distance measure inherent to the 
underlying space, this method effectively partitions the set of 
points into local regions that overlap with one another. 
Convolutional neural networks (CNNs) employ a similar 
approach by examining small local regions to identify 
distinctive features. Higher-level features are generated by 
processing these local features after they have been 
aggregated into larger units. Up until the entire point set's 
features are obtained, this process is repeated. Partitioning the 
point set and decoupling point collections or local feature 
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learners utilising a local feature learner are two challenges 
that must be overcome in the design of PointNet++. To share 
the local feature learner weights just as the convolutional 
setting, the point set must be partitioned such that common 
structures exist across partitions [31]. The experimental 
findings presented in reference [32] showcase the remarkable 
performance of various point-based deep learning techniques. 
Among these techniques, it is worth noting that PointNet++ 
stands out as the frontrunner, exhibiting the highest level of 
segmentation accuracy. The benefit of PointNet++ is that it 
offers flexibility in the sizes of the point cloud data's 
hierarchical organization. All architectures, except for 
PointNet, performed better after pre-training with artificial 
3D models. 
 
Point Convolution: Point clouds are irregular and unordered, 
making convolution difficult, unlike regular dense grids in 
images. Convolution kernels consist of the weight and density 
functions, which are treated as non-linear functions based on 
the regional coordinates of the 3D points, they represent. The 
kernel density estimation method is used to teach density 
functions, while perceptron networks are used for weight 
functions. Wu et al. [33] developed a technique called 
PointConv that allows for convolution on point sets in 3D 
space that is both translation- and permutation-invariant. 
Since point clouds are typically unstructured and irregular, 
this method offers a way to execute convolutional operations 
on them. The PointConv technique provides an answer for 
restoring the original resolution of a point cloud that has been 
subsampled. It achieves this by functioning as a 
deconvolution operator, which allows for the up sampling of 
the feature representation. The biggest achievement of this 
work is the development of a novel method for efficiently 
computing weight functions. This allows for the network to 
be scaled up, which in turn leads to a large gain in 
performance. When applied to challenging semantic 
segmentation benchmarks on 3D point clouds, such as 
ModelNet40, ShapeNet, and ScanNet, the suggested 
technique achieves results that are at the cutting edge of the 
field. 
 
Graph based convolution: Graph Convolution Neural 
Networks (GCN) are a fascinating class of neural networks 
that specialize in processing graphs, enabling the analysis of 
diverse data structures. The spatial interactions between 
points in a cloud can be represented by a graph, with each 
point serving as a node. GCNs operate on these graphs to 
learn representations that capture the structure and features of 
the point cloud. Point cloud semantic segmentation was given 
a new approach by Yuan [34], who proposed using GCNs to 
learn both local and global properties of the point cloud. The 
method also includes a novel approach for generating 
complete pseudo labels, which can be used to increase the 
amount of labeled information available for training the 
GCN.Wang et al. [35] presented EdgeConv, a new neural 
network module aimed to restore topology and improve point 
cloud representation ability. The EdgeConv module is well-
suited for the CNN-based high-level point cloud 
segmentation and classification tasks. The EdgeConv module 

utilizes dynamically generated graphs from each network 
layer. It includes local neighbourhood knowledge and can be 
stacked to learn global shape fea- tures. The module can be 
simply inserted into pre-existing designs and is differentiable. 
The authors evaluated the performance of the EdgeConv 
module on several standard benchmarks, including 
ModelNet40, ShapeNetPart, and S3DIS. They demonstrate 
that their model is superior to other approaches when it comes 
to classifying and segmenting point clouds.  
The HDGCN, a groundbreaking innovation proposed by Z. 
Liang et al. [36], offers a novel approach to categorizing point 
clouds according to their semantic significance. Capturing 
local patterns or relationships is one of the major difficulties 
in learning from point clouds. A potent method for obtaining 
neighborhood shape information is graph convolution. The 
authors suggest a depthwise graph convolution that, in 
comparison to earlier graph convolution techniques, uses less 
memory and is inspired by depthwise convolution. In contrast 
to pointwise convolution, the depthwise graph convolution 
method accumulates characteristics on a per-channel basis. 
The authors have introduced a novel block, referred to as 
Depthwise graph Convolution (DGConv), which is designed 
for local feature extraction. Combining depth-wise graph 
convolution with point-wise convolution yields this obstruct. 
The DGConv block exhibits invariance to diverse point 
ordering and facilitates the transfer of features to neighboring 
points, as well as the extraction of features from individual 
points. The HDGCN model is meticulously crafted by 
incorporating a sequence of DGConv modules. These 
modules are designed with a hierarchical structure, enabling 
them to effectively capture global as well as local 
characteristics of point cloud data. The model's performance 
was deemed satisfactory in both the S3DIS and Paris-Lille-
3D datasets. 
 

3.3. Hybrid Methods 

Hybrid methods for point cloud semantic segmentation refer 
to the combination of multiple techniques or algorithms to 
achieve more precise and effective segmentation results on 
point cloud data. When a voxel contains points from many 
classes, voxel-based convolutions may generate confusing or 
incorrect predictions. Other techniques, such as PointNets 
and point-wise convolutions, have high memory and 
processing costs, however. When it comes to the 
segmentation of point clouds, this offers a hurdle. 
 
These issues were addressed by the FusionNet design 
proposed by F. Zhang et al. [37], which supplements voxel-
based representations with a mini-PointNet for feature 
learning and a fusion module for quick feature aggregation. 
Compared to standard methods, FusionNet appears to have 
several benefits. It can learn point-wise predictions that are 
more accurate while also using less memory and processing 
resources than voxel-based convolutional networks. Because 
of this, it excels at jobs involving large-scale point cloud 
segmentation. By using a structure called a super point graph 
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(SPG), which divides the scene into geometrically 
homogeneous elements, the method proposed by 
The work of L. Landrieu et al. [38] can capture contextual 
relationships between object pieces in a representation that is 
both compact and rich. This allows for the semantic 
segmentation of massive point clouds. 
 A hybrid methodology for 3D semantic scene labeling is 
described by L. Jiang et al. [39], and it entails giving semantic 
labels to specific places inside a 3D scene. The method 
models the edges between points and their contextual 
neighbors to represent the semantic links between the two. 
Two branches make up the strategy: an edge branch that 
creates edge features that incorporate point features, and an 
encoder-decoder branch that predicts point labels. The graph 
starts out with a crude layer in the hierarchical graph 
architecture, and it gradually becomes richer as the point 
decoding process moves along. The point prediction 
algorithm is improved by the edge branch, that forecasts label 
of every edge in the final graph to show the semantic 
consistency of the two connected points. Additionally, edge 
characteristics are provided into the relevant point module at 
several layers to incorporate contextual data for message 
transmission improvement in local areas. 
A quick overview of the papers reviewed along with 
methodologies and the data sets used is given in Table 1. 

Table 1. A Taxonomy of the 3D point cloud semantic 
segmentation methods 
 

 

 

4. Conclusion 

Semantic segmentation of three-dimensional point clouds has 
been briefly discussed in this research. We presented a 
thorough taxonomy of the techniques and present a 
comparison of their performance. We also talk about the pros 
and cons of each method. Frequently used datasets for 3D 
point cloud semantic segmentation are also presented; these 
can be used as standards when comparing algorithms' results. 
In the future, hybrid datasets can be used for comparison of 
3D Point cloud semantic segmentation. 
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