
1

Internet Traffic Prediction Using Recurrent Neural

Networks

Mircea Eugen Dodan1, Quoc-Tuan Vien1,* and Tuan T. Nguyen2

1Faculty of Science and Technology, Middlesex University, United Kingdom. Email: mircea.eugen.dodan@gmail.com;

q.vien@mdx.ac.uk.
2School of Computing and Mathematical Sciences, University of Greenwich, United Kingdom. Email:

Tuan.Nguyen@greenwich.ac.uk.

Abstract

Network traffic prediction (NTP) represents an essential component in planning large-scale networks which are in general

unpredictable and must adapt to unforeseen circumstances. In small to medium-size networks, the administrator can

anticipate the fluctuations in traffic without the need of using forecasting tools, but in the scenario of large-scale networks

where hundreds of new users can be added in a matter of weeks, more efficient forecasting tools are required to avoid

congestion and over provisioning. Network and hardware resources are however limited; and hence resource allocation is

critical for the NTP with scalable solutions. To this end, in this paper, we propose an efficient NTP by optimizing recurrent

neural networks (RNNs) to analyse the traffic patterns that occur inside flow time series, and predict future samples based

on the history of the traffic that was used for training. The predicted traffic with the proposed RNNs is compared with the

real values that are stored in the database in terms of mean squared error, mean absolute error and categorical cross

entropy. Furthermore, the real traffic samples for NTP training are compared with those from other techniques such as

auto-regressive moving average (ARIMA) and AdaBoost regressor to validate the effectiveness of the proposed method. It

is shown that the proposed RNN achieves a better performance than both the ARIMA and AdaBoost regressor when more

samples are employed.

Keywords: Internet traffic prediction; recurrent neural networks; network planning

Received on 09 June 2022, accepted on 28 August 2022, published on 02 September 2022

Copyright © 2022 Mircea Eugen Dodan et al., licensed to EAI. This is an open access article distributed under the terms of the CC

BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so

long as the original work is properly cited.

doi: 10.4108/eetinis.v9i4.1415

*Corresponding author. Email: q.vien@mdx.ac.uk

1. Introduction

Over the last couple of decades, network traffic has become

increasingly more diverse and complex. According to [1],

the global IP traffic reached 1.2 zeta Bytes (ZB) of data

in 2016 and such trend is growing exponentially.

Considering this exponential growth in traffic, it is useful

for a network manager to have more efficient tools that

would help to make more reliable decisions in planning

future expansions of the network and consider a better

management of resources including bandwidth allocation for

certain flows while at the same time alleviating congestion

in the network [2], [3]. The forecasting of traffic is also

important in the security field, since unusual patterns in

traffic can be detected and compared with the predicted

results [4], [5], in case of botnets attacks. There are

techniques such as [6] that do not require machine learning

or artificial intelligence in order to forecast traffic, but they

are not reliable since long-term dependencies are not

considered.

Network traffic prediction (NTP) represents a branch of

network planning and capacity monitoring, that heavily

depends on a set of historical data collected throughout the

years. In order to make accurate forecasts about the future

characteristics of the flows, multiple factors need to be

considered in forecasting future traffic based on previous

EAI Endorsed Transactions
on Industrial Networks and Intelligent Systems Research Article

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems
09 2022 - 12 2022 | Volume 9 | Issue 4 | e1

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:q.vien@mdx.ac.uk

Mircea Eugen Dodan, Quoc-Tuan Vien, and Tuan T. Nguyen

2

experience. Some of these factors are the statistical

characteristics of the Internet traffic which is self-similar

and nonlinear in nature [1]. Specifically, the nonlinear

nature of the traffic cannot be modelled by either a Poisson

or a Gaussian distribution and the long-term dependencies

must be modelled with nonlinear predictors.

In order to model highly non-linear time series, recurrent

neural networks (RNNs) have been well investigated as a

powerful prediction tool. The original RNN was

designed by David Rumelhart in 1986 as a secondary

method to the already developed autoregressive models. It

has gained more popularity since the problem of gradient

vanishing and gradient explosion were solved using Gated

recurrent units (GRU) and Long-short term memory cells

(LSTM) [1], [7]. With the help of LSTM and higher order

statistics, the long-term dependencies in a data set could be

partially solved for the prediction capabilities of the

original RNN.

In this paper, we investigate the optimization of RNN

model in order to achieve more accurate mean traffic

forecasting in NTP as well as individual flow prediction, by

considering the history of the traffic as training input for

the neural networks. The main contributions of this paper

can be summarized as follows:

• RNNs are adopted to model the characteristics

of Internet traffic flows.

• The impact of changing the dictionary of an RNN is

analyzed with the aim of increasing the frequency of

certain patterns. Also, the concatenation of multiple

LSTM units is investigated to increase the

generalization capabilities of the neural network.

• Considering the weekly periodicity and monthly

periodicity inside the training data set, their impacts on

the number of samples fed into the network are

validated along with the delay time whilst training the

neural network.

• A heuristic algorithm is proposed to find an optimal

RNN architecture for NTP by solving the dissimilarities

between the predicted values and the real values.

Specifically, the proposed algorithm seeks to

minimize the prediction errors including mean

squared error, mean absolute error and normalized

mean squared error.

• Simulation results are provided for the proposed

algorithm and compared with the real traffic values,

as well as other counterpart techniques such as

Auto-regressive integrated moving average (ARIMA)

model and AdaBoost regressor which is based on

decision trees.

The rest of this paper is organized as follows: Section II

discusses some of the existing research related to network

traffic forecasting. Section III analyses some of the

architectural aspects of the proposed RNN for NTP, while

also examining the mathematical aspects of the other

methodologies that are used for comparison purposes.

Section IV presents the simulation results for the proposed

scheme and the comparisons with those in counterpart

models. Finally, Section V concludes our paper.

2. Related works

This section reviews some of the methodologies and

previous works that were carried out on traffic prediction

domain by using: i) Linear models with ARIMA, ii)

Decision trees using AdaBoost regressor, and iii) Non-

linear models with RNNs.

A. Linear Models

Linear models represent one of the most common

approaches for network flow predictions and they have

been largely examined in the literature. There are multiple

types of linear models such as ARIMA and fractal

autoregressive integrated moving average (FARIMA). The

ARIMA model out of all the linear models provides the best

results. According to [8], [9], the ARMA model which is a

subset of ARIMA, can be used in the particular scenario

where the time series

B. Decision Trees and AdaBoost Regressor

AdaBoost regressor, which is also known as adaptive

boosting regressor, is a technique that is based on weak

learners such as decision trees, that are grouped together in

different types of topologies in order to improve different

classification capabilities. The boosting process combines

these weak learners, mostly represented by binary decision

trees, in order to improve the overall results after multiple

iterations. Each decision tree tries to improve the prediction

of the previous tree by using a set of weights and by

observing where the previous model made mistakes. One of

the key drawbacks of this method, is the inability to predict

the non-linear behaviour of the traffic, while the long-term

dependencies are not taken into account, even though the

system has a non-linear behaviour.

C. Non-linear Models and Neural Networks

One simple way to predict future traffic is by using hidden

Markov models (HMM) which describes the non-linearity of

the system using statistics between the current state of the

system and the future possible states. The HMM uses

transitioning probabilities and expectations in order to

describe the most likely set of hidden states that are going

to happen [13], [14]. Even though HMM is a great

method of describing non-linear systems, it requires a lot

of training data and it does not take into consideration long-

term dependencies because it doesn’t have a memory

included.

One of the best non-linear techniques that is capable

of predicting the non-linear behaviour of the traffic apart

from HMM, are neural networks (NNs). The NNs represent

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems
09 2022 - 12 2022 | Volume 9 | Issue 4 | e1

Internet Traffic Prediction Using Recurrent Neural Networks

3

a set of inter- connected computational units, which are also

called neurons. All these neurons perform simple functions

that are easy to understand, but after combining these

neurons together in different topologies, the functions that

can be performed become complex and nonlinear [15].

Because of these nonlinear properties, the NNs are capable

to predict Network Traffic behaviour, which is inherently

non-linear and also has long-range dependence between

different moments in time [1], [2], [15], [16].

In order for an artificial NN (ANN) to work under any

given input set of data and to predict the future behaviour

of the time series, the ANN must be trained by using either

supervised Learning or unsupervised learning. In the case

of supervised learning, the real values that have to be

predicted are already available to the programmer. The

purpose of the supervised learning is to minimize the error

between the real value and the predicted value, by using

different types of metrics such as mean square error (MSE),

mean absolute error (MAE), mean relative error (MRE) and

relative mean square error (RMSE) [2], or in some cases of

the RNNs there is also mean absolute percentage error

(MAPE) [17]. According to [15] the most common learning

algorithms for supervised learning are resilient propagation,

backpropagation and Levenberg- Marquardt.

There are multiple types of NNs that can be used for

traffic forecasting, such as: i) Multi-layer autoencoder which

is a feed forward neural networks (FFNN) useful in the

scenarios where the entire training data is presented at the

beginning of the learning process and there is no need for

recurrence and back-propagation, [2], ii) Convolutional NNs

which are mostly used in image processing but it can also be

used for traffic classification [18], iii) Modified Elman NNs

[19], and iv) RNNs that detects patterns inside time series.

Variants of the RNNs were examined in [1], [7], [15], [17],

[20]. The reason that the RNNs are so popular is due to the

fact that they introduce a recurrent structure that establishes

a connection between the current neuron and itself in a

feedback loop format [17]. This circular structure acts as a

memory that helps each neuron of the RNN to keep track of

a state from a previous moment in time. This memory

allows the network to influence the current state by using

the information from the previous state [17].

This paper will examine how an RNN can predict future

traffic samples for NTP, by using a variable sliding window

algorithm that takes as input the amount of traffic that

happened in the first couple of days and tries to predict the

future characteristic based on this training information.

Because the sliding window has a limited size, the samples

that were predicted in previous time steps are fed back into

the window in order to predict future samples.

3. Proposed RNN for NTP

This section investigates how a typical RNN that acts as

an encoder – decoder system can work as a prediction

mechanism to forecast network traffic. For a better

understanding, two other methodologies are used for

comparison purposes, including ARIMA and AdaBoost

Regressor which are firstly investigated, followed by the

proposed RNN model for the NTP.

A. ARIMA Model

ARIMA model is shown to be the best suited for the

scenario where the time series presents stationarity

between two adjacent moments in time. The stationarity of

a data set is important because it indicates if the statistical

properties, such as mean, variance and auto- correlation,

are constant over small time intervals. The traffic estimation

(xt1 for the particular moment in time t1), in the ARIMA

model is strongly correlated with all the previous

moments in time, i.e. t = t1–1, t = t1 − 2, t = t1–3, . . . All the

elements of the time series present a linear relation between

them. The predicted value (xt1) is proportional with (xt1=0),

plus some noise components, which can be described using

Gaussian distribution. The dependencies between the

different traffic samples can be expressed, by using a

polynomial equation with the following form [8], [9]:

xt + ψ1xt−1 − ψ2xt−2 − . . . − ψrxt−r = zt − θ1zt−1 −

θ2zt−2 − . . . − θszt−s, (1)

where zt represents the randomness that is introduced in the

traffic following a normal distribution with zero mean and

variance of σ2
 [8]. According to [9] the parameters ψ1, ψ2,

ψ3, . . . , ψr in (1) represent the auto-regressive operators

which define the stationarity of the given data points at

every point in time, while θ1, θ2, θ3, . . . , θs are the moving

average operators. It can be noticed that the sample taken

at time t is correlated with all other samples taken at t

− 1, t − 2, . . . , t − r. The relation is linear between two

adjacent moments in time because the traffic predicted at

time t − 1 is proportional with that at moment t as follows

[8], [9]:

 xt−1 = Bxt, (2)

 xt−r = Brxt, (3)

where B denotes the lag operator which correlates the

sample collected at time t with all other previous samples.

All the received traffic has to be collected and stored in a

database in order to create a functional prediction model.

The extended version of (1) can be rewritten in a polynomial

format, that also includes the differentiating factor ∆ = 1 −

B, which is an integral part of the ARIMA model. The factor

∆ comes from the difference between two adjacent moments

in time (∆xt = xt − xt−1). We can express (1) as [8], [9]:

 ψ(B)∆dxt = θ(B)zt, (4) (4)

 ψ(B) = 1 − ψ1B − ψ2B2
 − ... − ψrBr, (5) (5)

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems
09 2022 - 12 2022 | Volume 9 | Issue 4 | e1

Mircea Eugen Dodan, Quoc-Tuan Vien, and Tuan T. Nguyen

4

 θ(B) = 1 − θ1B − θ2B2
 − ... − θsBs, (6)

 where ψ(B) and θ(B) can be estimated with the Box-

Jenkins algorithm, in order to determine the order of the

polynomials r, s and also the differentiating factor ∆ [8].

The Box-Jenkins approach consists in performing a

difference of the time series elements, until all the

components of the series appear to originate from a general

stationary process, but there is also another methodology

called fitting curve method which is used together with Box-

Jenkins algorithm, in which the fitted values are subtracted

from the original set of data [8]. Finding the order of the

polynomials requires the determination of several nonlinear

equations by approximating the solutions using numerical

techniques. The numerical approximation involves two

different techniques such as nonlinear least squares and

maximum likelihood forecasting.

The proposed ARIMA and RNN model will take as

training input the amount of traffic that is destined for a

particular website or group of websites during a time frame

and it is going to predict the future behaviour of the traffic

based on that training data. The ARIMA model used, is

going to be described by three parameters: p called the

lag order, d which is the number of times that the raw

observations are differenced and finally q which is the size

of the moving average window [21]. This linear model will

be used only for comparative purposes against the proposed

RNN model to evaluate the accuracy of the predictions

when the same set of data is given to both techniques.

B. Regression Trees Model and AdaBoost

This subsection discusses how decision trees are used for

predictive modelling and how to boost the performance of

the trees by using the AdaBoost function. The first type

of decision tree is called classification tree, where the

target variable can take a discrete set of values and the

tree structure has leaves which represent labels of a

specific class, while the branches are conjunctions of

features that lead to those labels. The second type of

decision tree is called Regression tree and it is used when

the predicted outcome is considered a real number, unlike

the Classification tree where the outcome is a class. The

tree like structure is maintained in the case of regression

trees, but the value obtained by terminal nodes in the

training data is the average response that falls within a

region of training. In our scenario the real value that has to

be predicted is the mean traffic value, which is a real

number. Because decision trees learners can create overly

complex trees that do not generalize the data well (process

called Over-fitting), there is a need to reduce the complexity

of the trees by implementing pruning which reduces the

size of the decision tree. Another problem is the fact that the

decision trees can become unstable due to small variations

in the data set, which can be addressed by using a booster

such as AdaBoost. AdaBoost is a machine learning

algorithm that utilizes multiple weak learners in order to

improve the overall performance of the system. The

output of the weak learners, which are usually binary

decision trees, are taken into consideration in a weighted

sum [22]. This weighted sum is used as the result of the

AdaBoost and it helps the algorithm to improve the

predictions. One of the key components in the case of

AdaBoost is the creation of the future binary trees based

on the previous stumps. The next binary decision trees are

created based on the error of the previous stump, so in

the case of AdaBoost the order of creating the stumps

matters and influences the final objective of regression.

C. Proposed RNN Model

The proposed RNN model follows a memory-based

approach to determine the characteristics of a time series by

keeping track of the previous states. In case of standard feed

forward neural Network (FFNN), the input training vector

(−X→0) is injected into the FFNN, is not dependent of

another input vector (−X→1) which is going to be fed at the

next moment in time [24]. However, in case of time series,

there is usually a dependency between the vectors inserted

for training purposes. The RNN architecture used in this

scenario has only one layer of LSTM cells that are

interconnected with one another in a series topology. The

input layer is used to take training information in order to

feed it inside the neural network. The training info is

grouped inside a window of size n, where the first n − 1

elements of the window represent the pattern that is

going to be remembered by the neural network, while

the nth element of the window is the” predicted” value

associated with that pattern, during the training process.

Both the input layer and the output layer are encoded using

one hot encoding, for the RNN to understand the format

of the data that is fed inside [26]. The general architecture of

the inputs and outputs that form an RNN cell is illustrated

in Fig. 1, which consists of:

 Figure 1. Weights and biases that are fed into the
Recurrent Neural Network. [24]

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems
09 2022 - 12 2022 | Volume 9 | Issue 4 | e1

Internet Traffic Prediction Using Recurrent Neural Networks

5

• Xt represents the encoded message that is fed into the

network at the moment t. The encoding method

includes an embedding technique which produces a

vector value. This encoding process is required to

convert the original value or set of values into a

representation that can be interpreted by the RNN

[24].

• represents the encoded message that is fed into the

network at moment instance t. In the scenario of

network traffic prediction, this encoded information

represents the predicted internet traffic at time

instance t. The representation of this predicted traffic

is usually done in the form of a vector.

• ht in this scenario signifies the memory cell, and the

value that is stored inside the cell at time t. This value

is dependent on the previous value that was stored

inside the cell at a previous moment in time (ht−1). The

current state of the memory is also related with the

encoded input sample at time t (xt).

• The RNN cell takes several other inputs such as

(W (xh), W (hh), bh) apart from (xt, ht−1). All these

components represent the weights and biases that are

applied to the RNN to facilitate the learning process.

As it was mentioned in the description of the

parameter ht, the memory cells are dependent on both

the current input as well as the previous state of the

memory cell (ht−1). Here, W (xh)
 represents the

amount of contribution (the weight) that (xt) will

have on the memory cell ht. The other parameter that

is taken into consideration is W (hh)
, which correlates

the memory cell at time (t − 1) (ht−1) with the

memory cell in the next moment in time t.

The architecture of the RNN that is used for predicting

future network traffic is based on an encoder-decoder

model, that takes as input the mean value (mean ()) or

the real value of each vector () and propagates the

information from the encoder side to the decoder segment

as shown in Fig. 2. This type of methodology is also

called seq2seq model and it was originally used for

machine translation problems. It was proved to be very

effective for many applications [24] where the encoder-

decoder design requires two different RNNs to be

concatenated with one another in a serial method. The

training information will be passed throughout the encoder

from one neuron to another until it reaches the decoder

segment.

In order to improve the encoder-decoder model, the

forecasting tool must take into consideration the long-term

dependencies between the data points and also the

seasonality of the time series that are provided. According to

[27] the data traffic that is received and stored by a flow

monitor can be categorized into three types of seasonality: i)

daily seasonality that correlates Dayn with Dayn−1 and has

the largest contribution; ii) weekly seasonality that

correlates Dayn with Dayn+7; and iii) monthly seasonality

that correlates Dayn with Dayn+30.

Figure 2. Structure of the encoder-decoder.

D. Evaluating the results

The level of accuracy of the prediction model is established

by using various types of error estimation parameters. The

purpose of these error estimators is to make a comparison

between the real data which is received after performing the

experiment and the predicted data which is obtained from

mathematical interpretations. In the ideal case the difference

between the predicted value and real value should be close

to zero, but this scenario cannot be achieved in a real

environment. Choosing an appropriate error estimator is

therefore vital since not all estimators provide identical

outcomes given the same data. In this paper, the following

estimators are considered:

• Mean square error (MSE): is the simplest type of

error estimator which can be computed by:

 M SE = E(−)
2
, (7)

Where and denote the real value and the

predicted value, respectively.

• Normalized MSE (NMSE): takes into consideration the

proportionality with a normalizing factor σ to mitigate

the large spikes in error that happen in the scenario

when the difference between the predicted value and

the real value is very large. The NMSE is thus given

by:

 (8)

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems
09 2022 - 12 2022 | Volume 9 | Issue 4 | e1

Mircea Eugen Dodan, Quoc-Tuan Vien, and Tuan T. Nguyen

6

Where σ denotes the standard deviation of the predicted

data after the training is complete and n represents the total

number of days for which the traffic will be predicted.

• Mean absolute error (MAE): is a common measure

of forecasting error in time series analysis and it

helps to compare series that have the same scale. The

MAE is based on an arithmetic mean, and thus the

peek values that do not fit on top of the real values

will not have a significant influence on the final

measurement. The MAE is expressed as:

 (9)

• Relative error (RE): is also called approximation error

and it reflects the discrepancy between the exact data

that is observed and the approximated data. This type

of error is usually represented in percentage by:

 (10)

The model proposed in this paper seeks to maximize

the prediction capabilities of the RNN by considering the

long-term dependencies between daily seasonality, weekly

periodicity and monthly seasonality. The numerical results

of the proposed structure will be presented in the next

section together with a comparison between the proposed

RNN and the other two methods, i.e. ARIMA and

AdaBoost.

4. Experimental Results

This section presents the numerical results that are obtained

during the experiments, with various forms of RNNs, while

also emphasizing the characteristics of each RNN. The

experimental results of two other methodologies, ARIMA

and AdaBoost regressor, which are trained on the same

data set as the RNN, are also described in this section to

evaluate the proposed methodology. The training of the

RNN, the simulation of the results and the graphical

plotting of the predicted values of traffic are implemented

using Python programming language.

A. Prepossessing

Before getting into the results of the prediction, it is

important to explain the concept of dictionary which

represents the entire vocabulary or the entire set of symbols,

that is known by the RNN after the training process. The

number of individual symbols that are recognizable by the

neural network is an important parameter that has to be

considered when designing the model. One of the key

criteria of choosing the dictionary size (L) is based on how

much training data is available to the RNN. If the training

data that is going to be fed into the network is quite large

and has multiple duplicates of the same symbols, then the

vocabulary set can also be left large without adjusting the

symbols to a more favourable intermediate value.

One of the methodologies to reduce the size of the

dictionary is to replace the real values of the traffic, with

approximate values that are the closest to them. This can be

achieved by generating equally spaced values in a

predetermined range using a step value of L. All the

elements of this sequence will have the following format: L, 2

∗ L, 3 ∗ L, . . . , n ∗ L and they represent a multiplicative

set. In order to approximate one of the real values with

an element that is present inside the multiplicative set, the

shortest Euclidean distance must be calculated and the

minimum value from that set must be selected. The

format of the operation is:

 replace_value = min(|real value – multicaplative_set|) (11)

By using this method all the values that occurred

uniquely in the database are replaced with approximated

values that occur more often. In this way the RNN is more

capable of understanding the real patterns that are present

inside the training data set and ignore the noisy

information that is not important for the training model.

B. The Effect of modifying the dictionary size
L

Case1 - L=0: In this case, the mean traffic value is predicted

instead of individual traffic value and the parameter L is

considered 0, so the dictionary of the RNN is not modified.

By putting L = 0, the RNN will not distinguish between the

real patterns and the noise that is present inside the data.

The other parameters that describe the RNN are as follows:

Number−of−neurons = 150, Number−of−epochs

=1000,Batch−size=128,Number−of−samples−for−training =

300. After the data passes the LSTM cells layer, two more

layers are added which consists in a rectified linear unit

layer (RELU) and a SoftMax layer. The loss function used

for training purposes is categorical cross-entropy and it is

usually used in the context of comparing two discrete

probability distributions with one another and it is well

suited for scenarios where classification is required to

achieve.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems
09 2022 - 12 2022 | Volume 9 | Issue 4 | e1

Internet Traffic Prediction Using Recurrent Neural Networks

7

Figure 3. Prediction of mean traffic for 60 days with
L=0

As it can be seen in Fig. 3, the RNN is not capable of

accurately predicting the future 60 samples. The output is

noisy and it doesn’t capture the true nature of the training

data samples.

Case2 - L=10: In this second case, we examine the same

situation in which the mean traffic value is predicted instead

of individual traffic value, but the L values is 10. By putting

L = 10, the RNN will distinguish between the real patterns

and the noise and the prediction becomes more accurate. All

the other parameters remain the same, including the two

more layers that are added at the end.

Figure 4. Prediction of mean traffic for 60 days with
L=10

As it can be seen in Fig. 4, the RNN is capable of

predicting the general trend of the next 60 data points and

it can distinguish between relevant data and noisy data, but

it is not capable of predicting the exact value without some

significant error.

Case3 - L=25: The last case examines the same situation,

but the L value is 25. All the other parameters remain the

same, including the two more layers that are added at the

end.

By increasing the value of L to 25, all the small variations

that are present in the training data set, shall be

approximated with the value of 1200, while only a small set

of them are approximated with 1250. Because of this

reduced dictionary, the RNN is not capable of predicting the

small variations present inside the data sequence. As it can

be seen in Fig. 5 by using this type of training data the

neural network does not get the general trend of the data

given and it completely misses the mean value of the real

traffic that is provided.

From cases 1, 2 and 3 we can observe how important

preprocessing of the data is for accurate predictions and how

the size of the dictionary can influence how the data is

interpreted by the neural network. By increasing the

parameter L to large values, the small variations inside the

data are lost, but if L it is set to 0 all the noise inside the data

remains and the prediction becomes chaotic and

unpredictable. That is why it is important to adjust the L

parameter according to the data given and the small

variations present inside the training data.

Figure 5. Prediction of mean traffic for 60 days with
L=25

C. The Effect of modifying the learning rate

and β factor of the Adam optimizer

The learning rate is a hyper-parameter that controls how

much the gradient will adjust, based on the estimated error

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems
09 2022 - 12 2022 | Volume 9 | Issue 4 | e1

Mircea Eugen Dodan, Quoc-Tuan Vien, and Tuan T. Nguyen

8

and how much the weights are changed. Choosing the

learning rate can be a difficult process, because a learning

rate that is too small can result in long periods of training

and sometimes the optimization process might get stuck in a

local minimum value [28]. If the learning rate is too large,

the neural network might become unstable during the

training process and it may result in sub-optimal results. The

learning rate is usually defined as a number between 0 and

1, but the default value that is used in Python programming

language is 0.001. There are also optimizers such as Adam,

that have adaptive learning rates based either on the

momentum value, or by changing the learning rate

automatically based on the number of epochs and the loss

function. The other parameter β is also called the

exponential decay rate for the first moment estimate and the

default value is 0.9. The purpose of this β is to control the

exponential decaying rates of the averages that describe the

gradient descent function [29], [30].

In the following tested scenarios the other variables that

describe the neural network are also modified from the

previous studied case, such as: the number of neurons used

by the recurrent neural network and the number of epochs in

which the training takes place. Throughout this case, the

number of neurons and epochs will be constant and only the

learning rate and β will be changed in order to examine the

effects of these parameters.

Case1 - Learning−Rate=0.0025 and β = 0.99: In this

case we predict mean traffic value instead of individual

traffic value and the parameter L is considered 10, while the

default learning rete is changed from 0.001 to 0.0025 and

the β is changed to 0.99. The other parameters are

configured as follows: Number−of−neurons = 350,

Number−of−epochs=1500,Batch−size=110,Number−of−sa

mples−for−training = 300, Learning−rate = 0.0025. There

is no RELU function added after the LSTM cells, but the

SoftMax is still kept. The loss function used for training

purposes in this scenario is categorical cross-entropy which

was also used in the previous case to make the required

classifications.

 After the prediction is complete the loss of the

categorical cross-entropy function goes down from loss =

5.1 to loss = 0.6. The value of MSE = 15698.2 and the value

of the mean absolute error is MAE = 98.1.

Figure 6. Prediction of mean traffic for learning rate

LR=0.0025 and β=0.99.

Case2 - Learning−Rate=0.04 and β = 0.9999: In this

second scenario we predict the mean traffic value, in a

similar way with case1 by keeping all the parameters the

same, except Learning−rate = 0.04 and β = 0.9999.

Figure 7. Prediction of mean traffic for learning rate

LR=0.04 and β=0.9999.

The loss of the categorical cross-entropy function goes

down from loss = 5.1 to loss = 3.46 after training process is

complete, which represents the worst performance out of all

the scenarios which were examined. The MSE = 17824

and MAE = 97.2. We can see an improvement in terms

of MAE compared to case1, but because of the large

learning rate, the Adam optimizer is not capable of

reaching a point of minimum and the algorithm will keep

fluctuating.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems
09 2022 - 12 2022 | Volume 9 | Issue 4 | e1

Internet Traffic Prediction Using Recurrent Neural Networks

9

D. RNN and ARIMA prediction results

Comparison between the RNN model and the ARIMA
model - 300 samples for training:
The RNN model considered in this case, is the one which

includes the weekly periodicity but not monthly periodicity

and has 500 neurons and the SoftMax layer at the end. The

batch size in this case is 128, the number of epochs is 1250

and the learning rate is 0.0016. The error of the predictors

are as follows: MSE−RNN = 14728, MAE−RNN =

94, NMSE−RNN = 177, while the errors for the

ARIMA are MSE−ARIMA = 20997, MAE−ARIMA

= 104 and NMSE−ARIMA = 199.2. The RNN

manages to capture the general trend of the real data

better than ARIMA in terms of MSE and MAE, but

the predicted values of RNN have a smaller dispersion

than in the case of ARIMA, so the NMSE−ARIMA

is larger than the NMSE−RNN . The variables (p,d,q)

chosen for the ARIMA in this case are (8,0,1) so the

ARIMA has the auto regressive component equal to 8, the

integration component equal to 0 and the moving average

component equal to 1.

Figure 8. RNN predictor and ARIMA predictor for
300 training samples.

Comparison between the RNN model and the
ARIMA model - 400 samples for training:
The RNN structure used in this case is identical with the

one from the previous comparison, but in this scenario the

next 60 points that have to be predicted are different from

the training data set that was fed initially. The learning rate

is kept to 0.0001 and the number of epochs is 1250. The

results of the error terms such as the mean squared error,

mean absolute error and normalized mean squared error

have the following values: MSE−RNN = 59689,

MAE−RNN = 179.38 and NMSE−RNN = 284.26,

while the MSE−ARIMA = 196221.6, MAE−ARIMA =

343, NMSE−ARIMA = 576. In this case the RNN

manages to reduce all the error parameters by almost half

compared with the results achieved with ARIMA.

Figure 9. RNN predictor and ARIMA predictor for
400 training samples.

E. RNN and AdaBoost prediction results

Comparison between the RNN model and the
AdaBoost model - 300 samples for training:
In this scenario the RNN model considered is the same

one used in the case of ARIMA, and it includes the weekly

periodicity but not monthly periodicity and has 500 neurons

and the SoftMax layer.

The AdaBoost in this case has 10000 decision trees and a

learning rate of 0.01, while the RNN has 500 neurons, batch

size = 128, epochs = 1250 and a learning rate of 0.0016. As

it can be seen in Fig. 10, the AdaBoost outperforms the

RNN model, by capturing the general trend inside the data

more accurately, but this can also be seen in the error terms

where AdaBoost manages to score very small error values:

MSE−RNN = 14728, MAE−RNN = 94, and NMSE−RNN =

177, while MSE−AdaBoost = 1943, MAE−AdaBoost = 30

and NMSE−AdaBoost = 36. The reason for which the

AdaBoost manages to score better than the RNN, is because

the AdaBoost is well suited for scenarios when data presents

some sort of periodicity inside.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems
09 2022 - 12 2022 | Volume 9 | Issue 4 | e1

Mircea Eugen Dodan, Quoc-Tuan Vien, and Tuan T. Nguyen

10

Figure 10. RNN predictor and AdaBoost predictor for
300 training samples.

Comparison between the RNN model and the
AdaBoost model - 400 samples for training:
This second scenario uses the same models for RNN and

AdaBoost as in the previous case, but this time 400

samples that do not present stationarity or periodicity are

fed into both models.

In this second case (see Fig. 11) the RNN outperforms the

AdaBoost and this can also be seen in the error terms:

MSE−RNN = 59689, MAE−RNN = 179, NMSE−RNN =

284.26 while the error terms of AdaBoost are

MSE−AdaBoost = 116545, MAE−AdaBoost = 221,

NMSE−AdaBoost = 1837. Because the testing data presents

a high level of non-stationarity the AdaBoost cannot

converge to a small value of error and the classifications

made by the weak learners cannot classify the future traffic

accurately.

Figure 11. RNN predictor and AdaBoost predictor for
400 training samples.

In this second case (see Fig. 11) the RNN outperforms

the AdaBoost and this can also be seen in the error terms:

MSE−RNN = 59689, MAE−RNN = 179, NMSE−RNN =

284.26 while the error terms of AdaBoost are

MSE−AdaBoost = 116545, MAE−AdaBoost = 221,

NMSE−AdaBoost = 1837.

Because the testing data presents a high level of non-

stationarity the AdaBoost cannot converge to a small value

of error and the classifications made by the weak learners

cannot classify the future traffic accurately.

F. RNN, ARIMA and AdaBoost prediction
results for individual flows

Comparison between the RNN model and the
ARIMA model for individual flows - 300 samples
for training:
In this scenario unlike the previous ones, we predict the

amount of times a particular webpage was accessed during a

time span of 60 days, by feeding the training data only from

a single flow. In the previous scenarios which were

analysed, the mean value of traffic was examined without

considering a particular destination website. The ARIMA

model considered in this case, has the following values for

(p, d, q): (4, 0, 1), but similar results are obtained with (8, 0,
1). The RNN model used in this scenario is similarly set

with 500 neurons, a learning rate of 0.0016 and all the

other parameters are the same.

The RNN model as it can be seen in Fig. 12 manages to

capture the general trend more accurately than the ARIMA

model, because the ARIMA totally overestimates the

amount of traffic between the time interval of day 40 and

day 50. The values of the error functions are: MSE−RNN =

1115, MAE−RNN = 13.2, NMSE−RNN = 84, while for the

ARIMA MSE−ARIMA = 5862, MAE−ARIMA = 30,

NMSE−ARIMA = 86. The error values in the case of

RNN can be seen that are smaller than the errors of

ARIMA.

 Figure 12. RNN predictor and AdaBoost predictor
for 300 training samples-single flow.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems
09 2022 - 12 2022 | Volume 9 | Issue 4 | e1

Internet Traffic Prediction Using Recurrent Neural Networks

11

Comparison between the RNN model and the
AdaBoost model for individual flows - 300 samples
for training:
The AdaBoost and RNN models are similar to those used as

in the previous cases, but we use single flow traffic for

training purposes instead of mean traffic value.

Figure 13. RNN predictor and AdaBoost predictor for
300 training samples single flow.

Even if the values of the MSE and MAE are smaller than

in the case of RNN, the neural network manages to capture

the small transitions more accurately than the AdaBoost,

thing which can also be seen in NMSE criterion. We can see

in Fig. 13 that the AdaBoost approximates all the small

transitions with values in between (23 − 26) packets, while

the RNN tries to capture even the small transitions. The

values of the errors are as follows: AdaBoost−MSE = 886,

AdaBoost−MAE = 10.7, AdaBoost−NMSE = 182, while the

error values of RNN are: MSE−RNN = 1115, MAE−RNN =

13, NMSE−RNN = 84.

G. Comparison of the performance using
MSE, MAE, NMSE and Relative error

This section takes all the MSE terms described in previous

sections and compares the results.

Performance evaluation of RNN, ARIMA and AdaBoost
models for mean traffic values 300 samples for training:
The values of error previously obtained in the other

subsections, indicate the capability of each model to

predict future samples based on previous 300 days of

training data.

Figure 14. Comparing the MSE between RNN,
ARIMA, and AdaBoost for 300 samples.

Figure 14 shows that AdaBoost has the smallest MSE and

it has the most accurate prediction, when stationary samples

must be predicted.

Performance evaluation of RNN, ARIMA and AdaBoost
models for mean traffic values - 400 samples for

training: This section evaluates the performance of the

models, by using the results obtained in the previous

subsections where 400 non-stationary data-points were used

for training purposes.

Figure 15. Comparing the MSE between RNN,
ARIMA, and AdaBoost for 400 samples.

Performance evaluation of RNN, ARIMA and AdaBoost
models for single flow traffic values 300 samples for
training:
This last comparison takes the MSE values obtained for

single flow prediction. As it can be seen in Fig. 16 the RNN

and AdaBoost obtain similar error values, even if in Fig. 13,

we can see that the RNN captures the small fluctuations

more accurately. Both models capture the general trend

quite well, but none of them was capable of predicting the

spike which happened in day 52.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems
09 2022 - 12 2022 | Volume 9 | Issue 4 | e1

Mircea Eugen Dodan, Quoc-Tuan Vien, and Tuan T. Nguyen

12

Figure 16. Comparing the MSE between RNN,
ARIMA, and AdaBoost for single flow

Performance evaluation of RNN, ARIMA and
AdaBoost models for relative error values when
300 samples are used for training:
This section is similar with the previous section, but it takes

the relative error terms given by equation (10) and compares

the results.

Figure 17. Comparing the Relative error between
RNN, AdaBoost, ARIMA for 300 samples.

As shown in Fig. 17, the relative error values obtained for

RNN, ARIMA and AdaBoost are: Relative_Error_RNN=

7.49, Relative_Error_ARIMA =6.98 and finally AdaBoost

has Relative_Error_AdaBoost = 2.27.

Performance evaluation of RNN, ARIMA and
AdaBoost models for relative error values when
400 samples are used for training:

Figure 18. Comparing the Relative error between
RNN, AdaBoost, ARIMA for 400 samples.

Figure 18 plots the relative error values obtained for

RNN, ARIMA and AdaBoost as follows:

Relative_Error_RNN= 10.96, Relative_Error_ARIMA =

21.48 and finally AdaBoost has Relative_Error_AdaBoost

= 11.89. As it can be seen the recurrent neural network

methodology performs best in this scenario in terms of

relative error and it captures the general trend of the real

data much more accurately, as it can also be seen in Fig. 11.

The AdaBoost does not capture the initial peak traffic that

happens between day 0 and day 10, even though the other

50 days are predicted reasonably well. Comparing between

the scenario where 400 samples are given for training and

the scenario where 300 samples are given for training, it can

be seen that AdaBoost performs well when the data displays

periodicity, but RNN performs very well even in scenarios

where periodicity is not present inside the data.

Performance evaluation using Relative error of
RNN, ARIMA and AdaBoost models for single flow
traffic values using 300 samples of training:
Considering single flow traffic prediction, Fig. 19 shows the

relative error values obtained for RNN, ARIMA and

AdaBoost as follows: Relative_Error_RNN= 59.8,

Relative_Error_ARIMA = 178.89 and finally AdaBoost has

Relative_Error_AdaBoost = 44.38. As it can be seen the

ARIMA model has a large error of 175 percent, but this

error is mainly caused by the value predicted in day 40 as it

can be seen in Fig. 12. Unlike ARIMA and RNN the

AdaBoost performs better in terms of Relative error, but the

AdaBoost does not capture the small variations in the data

and it interprets all the days between 0 and 40 almost as a

constant value, as it can be seen in Fig. 13.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems
09 2022 - 12 2022 | Volume 9 | Issue 4 | e1

Internet Traffic Prediction Using Recurrent Neural Networks

13

Figure 19. Comparing the Relative error between
RNN, AdaBoost, ARIMA for 300 samples, single flow

Considering single flow traffic prediction, Fig. 19 shows

the relative error values obtained for RNN, ARIMA and

AdaBoost as follows: Relative_Error_RNN= 59.8,

Relative_Error_ARIMA = 178.89 and finally AdaBoost has

Relative_Error_AdaBoost = 44.38. As it can be seen the

ARIMA model has a large error of 175 percent, but this

error is mainly caused by the value predicted in day 40 as it

can be seen in Fig. 12. Unlike ARIMA and RNN the

AdaBoost performs better in terms of Relative error, but the

AdaBoost does not capture the small variations in the data

and it interprets all the days between 0 and 40 almost as a

constant value, as it can be seen in Fig. 13.

5. Conclusions

Network traffic forecasting using artificial intelligence is a

research area that is relevant for both current and future

medium to largescale networks, because of the various

advantages that offers, such as better capacity planning,

improved quality of service and better intrusion detection

systems.

In this research, the impact of various factors, such as

approximating the training values that are learned by the

RNN, modifying the intermediate layer functions between

the LSTM cells and the SoftMax output, introducing weekly

periodicity and monthly periodicity into the training data set,

modifying the learning rate and exponential decay rate of

the neural network to see how the predictions are affected.

A heuristic algorithm was proposed to create a recurrent

neural network model that uses a sliding window algorithm

in order to separate the training data samples that are fed

into the network from the results that have to be achieved

after the prediction is complete. The simulation results

showed that the proposed scheme is capable of predicting

future traffic values with good accuracy. In terms of error

estimation values, the RNN minimizes the mean square

error, mean absolute error and the normalized mean squared

error better than the ARIMA model in both scenarios where

300 samples are used for training and also in the case when

400 samples are used for training. The second algorithm that

was used as a comparison with the proposed model, is the

AdaBoost regressor which is a robust algorithm capable of

predicting the data that presents periodicity inside of it. The

results obtained using AdaBoost regressor, when 300

samples were used for training purposes, achieved better

error results than the proposed RNN model while also

capturing the general trend more accurately. On the

other hand, the results achieved when 400 samples were

used for training, achieved far worst results than the

proposed neural network.

6. References

[1] N. Ramakrishnan and T. Soni, ”Network Traffic Prediction

Using Recurrent Neural Networks,” 2018 17th IEEE

International Conference on Machine Learning and

Applications (ICMLA), Orlando, FL, 2018, pp. 187-193, doi:

10.1109/ICMLA.2018.00035.

[2] W. Wang et al., ”A network traffic flow prediction with deep

learning approach for large-scale metropolitan area

network,” NOMS 2018 - 2018 IEEE/IFIP Network

Operations and Management Symposium, Taipei, 2018, pp.

1-9, doi: 10.1109/NOMS.2018.8406252.

[3] S. Troia, R. Alvizu, Y. Zhou, G. Maier and A. Pattavina,

”Deep Learning-Based Traffic Prediction for Network

Optimization,” 2018 20th International Conference on

Transparent Optical Networks (ICTON), Bucharest, 2018, pp.

1-4, doi: 10.1109/ICTON.2018.8473978.

[4] T. Ding, A. AlEroud and G. Karabatis, ”Multi-granular

aggregation of network flows for security analysis,” 2015

IEEE International Conference on Intelligence and Security

Informatics (ISI), Baltimore, MD, 2015, pp. 173-175, doi:

10.1109/ISI.2015.7165965.

[5] G. Vormayr, T. Zseby and J. Fabini, ”Botnet Communication

Patterns,” in IEEE Communications Surveys Tutorials, vol.

19, no. 4, pp. 2768-2796, Fourthquarter 2017, doi:

10.1109/COMST.2017.2749442.

[6] F. Shen, W. Zhang and P. Chang, ”An Engineering

Approach to Prediction of Network Traffic Based on

Time- Series Model,” 2009 International Joint Conference on

Artificial Intelligence, Hainan Island, 2009, pp. 432-435, doi:

10.1109/JCAI.2009.104.

[7] D. H. Hagos, P. E. Engelstad, A. Yazidi and Ø. Kure,

”Recurrent Neural Network-Based Prediction of TCP

Transmission States from Passive Measurements,” 2018

IEEE 17th International Symposium on Network Computing

and Applications (NCA), Cambridge, MA, 2018, pp. 1-10,

doi: 10.1109/NCA.2018.8548064.

[8] H.Zare Moayedi and M. A. Masnadi-Shirazi Arima

model:”Arima model for network traffic prediction and

anomaly detection”. In 2008 International Symposium on

Information Technology, Kuala Lumpur, 2008, pp. 1-6, doi:

10.1109/IT-SIM.2008.4631947

[9] Y. Yu, J. Wang, M. Song and J. Song, ”Network Traffic

Prediction and Result Analysis Based on Seasonal

ARIMA and Correlation Coefficient,” 2010 International

Conference on Intelligent System Design and Engineering

Application, Changsha, 2010, pp. 980-983, doi:

10.1109/ISDEA.2010.335.

[10] T. H. H. Aldhyani and M. R. Joshi, ”Integration of time series

models with soft clustering to enhance network traffic

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems
09 2022 - 12 2022 | Volume 9 | Issue 4 | e1

Mircea Eugen Dodan, Quoc-Tuan Vien, and Tuan T. Nguyen

14

forecasting,” 2016 Second International Conference on

Research in Computational Intelligence and Communication

Networks (ICRCICN), Kolkata, 2016, pp. 212-214, doi:

10.1109/ICRCICN.2016.7813658.

[11] Y. Song, M. Liu, S. Tang and X. Mao, ”Time series matrix

factorization prediction of internet traffic matrices,” 37th

Annual IEEE Conference on Local Computer Networks,

Clearwater, FL, 2012, pp. 284-287, doi:

10.1109/LCN.2012.6423629.

[12] B. Yu, G. Graciani, A. Nascimento and J. Hu, ”Cost-adaptive

Neural Networks for Peak Volume Prediction with EMM

Filtering,” 2019 IEEE International Conference on Big Data

(Big Data), Los Angeles, CA, USA, 2019, pp. 4208-4213,

doi: 10.1109/BigData47090.2019.9006188.

[13] Zhitang Chen, Jiayao Wen and Yanhui Geng, ”Predicting

future traffic using Hidden Markov Models,” 2016 IEEE 24th

International Conference on Network Protocols (ICNP),

Singapore, 2016, pp. 1-6, doi: 10.1109/ICNP.2016.7785328.

[14] Joao Paulo Coelho, Tatiana M. Pinho, Jose Boaventura-

Cunha, “Hidden Markov Models, Theory and

Implementation using MATLAB”, 2019 by Taylor Francis

Group, LLC, CRC Press, Version Date: 20190401,

International Standard Book Number-13: 978-0-367-20349-8

(Hardback).

[15] J. Rodrigues, A. Nogueira and P. Salvador, ”Improving the

Traffic Prediction Capability of Neural Networks Using

Sliding Window and Multi-task Learning Mechanisms,” 2010

2nd International Conference on Evolving Internet,

Valcencia,2010, pp. 1-8, doi: 10.1109/INTERNET.2010.11.

[16] G. Feng, ”Network Traffic Prediction Based on Neural

Network,” 2015 International Conference on Intelligent

Transporta- tion, Big Data and Smart City, Halong Bay,

2015, pp. 527-530, doi: 10.1109/ICITBS.2015.136.

[17] Q. Zhuo, Q. Li, H. Yan and Y. Qi, ”Long short-term

memory neural network for network traffic prediction,”

2017 12th International Conference on Intelligent Systems

and Knowledge Engineering (ISKE), Nanjing, 2017, pp. 1-6,

doi: 10.1109/ISKE.2017.8258815.

[18] T. Ko, S. M. Raza, D. T. Binh, M. Kim and H. Choo,

”Network Prediction with Traffic Gradient Classification

using Convolutional Neural Networks,” 2020 14th

International Conference on Ubiquitous Information

Management and Communication (IMCOM), Taichung,

Taiwan, 2020, pp. 1-4, doi:

10.1109/IMCOM48794.2020.9001712.

[19] X. Wang, C. Zhang and S. Zhang, ”Modified Elman neural

network and its application to network traffic prediction,”

2012 IEEE 2nd International Conference on Cloud

Computing and Intelligence Systems, Hangzhou, 2012, pp.

629-633, doi: 10.1109/CCIS.2012.6664250.

[20] J. Skupa and J. Safarik, ”Survey of traffic prediction methods

for dynamic routing in overlay networks,” 2017 IEEE 14th

International Scientific Conference on Informatics, Poprad,

2017, pp. 339-343, doi:

10.1109/INFORMATICS.2017.8327271.

[21] Jason Brownlee, “Introduction to Time Series Forecasting

with Python - How to Prepare Data and Develop Models to

Predict the Future”

https://machinelearningmastery.com/make-sample-forecasts-

arima-python/, https://machinelearningmastery.com/arima-

for-time-series-forecasting-with-python/

[22] Jason Brownlee, “ XGBoost With Python”,” Gradient

Boosted Trees with XGBoost and scikit-learn” Edition: v1.14

https://machinelearningmastery.com/adaboost-ensemble-in-

python/

[23] S. Wu and H. Nagahashi, ”Parameterized AdaBoost:

Introducing a Parameter to Speed Up the Training of Real

AdaBoost,” in IEEE Signal Processing Letters, vol. 21, no. 6,

pp. 687-691, June 2014, doi: 10.1109/LSP.2014.2313570.

[24] Simeon Kostadinov, “Recurrent Neural Networks with

Python Quick Start Guide”, November 2018, Published by

Packt Publishing Ltd., 35 Livery Street Birmingham

[25] Jason Brownlee, “Long Short-Term Memory Networks with

Python – Develop Sequence Prediction Models With Deep

Learning”, Copyright 2017 Jason Brownlee. All Rights

Reserved, Edition: v1.0

[26] Dhruvil Shah, “Exploring the Next Word Predictor! –

Different approaches for building the Next Word Predictor”,

May 8 2020, https://towardsdatascience.com/exploring-the-

next-word-predictor-5e22aeb85d8f

[27] https://www.kaggle.com/c/web-traffic-time-series-

forecasting/discussion/43795

[28] Jason Brownlee, “Master Machine Learning Algorithms,

Discover How They Work and Implement Them From

Scratch”

[29] Diederik P. Kingma, Jimmy Lei Ba, ”ADAM: A

METHOD FOR STOCHASTIC OPTIMIZATION”

Published as a conference paper at ICLR 2015

https://arxiv.org/pdf/1412.6980.pdf

[30] Jason Brownlee, ”Better Deep Learning - Train Faster,

Reduce Overfitting, and Make Better Predictions”,

https://machinelearningmastery.com/better-deep-learning/

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems
09 2022 - 12 2022 | Volume 9 | Issue 4 | e1

https://machinelearningmastery.com/arima-for-time-series-forecasting-with-python/
https://machinelearningmastery.com/arima-for-time-series-forecasting-with-python/
https://towardsdatascience.com/exploring-the-next-word-predictor-5e22aeb85d8f
https://towardsdatascience.com/exploring-the-next-word-predictor-5e22aeb85d8f
https://www.kaggle.com/c/web-tra
http://www.kaggle.com/c/web-traffic-time-series-forecasting/discussion/43795
http://www.kaggle.com/c/web-traffic-time-series-forecasting/discussion/43795
https://arxiv.org/pdf/1412.6980.pdf

