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Abstract 

Network traffic prediction (NTP) represents an essential component in planning large-scale networks which are in general 

unpredictable and must adapt to unforeseen circumstances. In small to medium-size networks, the administrator can 

anticipate the fluctuations in traffic without the need of using forecasting tools, but in the scenario of large-scale networks 

where hundreds of new users can be added in a matter of weeks, more efficient forecasting tools are required to avoid 

congestion and over provisioning. Network and hardware resources are however limited; and hence resource allocation is 

critical for the NTP with scalable solutions. To this end, in this paper, we propose an efficient NTP by optimizing recurrent 

neural networks (RNNs) to analyse the traffic patterns that occur inside flow time series, and predict future samples based 

on the history of the traffic that was used for training. The predicted traffic with the proposed RNNs is compared with the 

real values that are stored in the database in terms of mean squared error, mean absolute error and categorical cross 

entropy. Furthermore, the real traffic samples for NTP training are compared with those from other techniques such as 

auto-regressive moving average (ARIMA) and AdaBoost regressor to validate the effectiveness of the proposed method. It 

is shown that the proposed RNN achieves a better performance than both the ARIMA and AdaBoost regressor when more 

samples are employed. 
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1. Introduction

Over the last couple of decades, network traffic has become 

increasingly more diverse and complex. According to [1], 

the global IP traffic reached 1.2 zeta Bytes (ZB) of data 

in 2016 and such trend is growing exponentially. 

Considering this exponential growth in traffic, it is useful 

for a network manager to have more efficient tools that 

would help to make more reliable decisions in planning 

future expansions of the network and consider a better 

management of resources including bandwidth allocation for 

certain flows while at the same time alleviating congestion 

in the network [2], [3]. The forecasting of traffic is also 

important in the security            field, since unusual patterns in 

traffic can be detected and compared with the predicted 

results [4], [5], in case of botnets attacks. There are 

techniques such as [6] that do not require machine learning 

or artificial intelligence in order to forecast traffic, but they 

are not reliable since long-term dependencies are not 

considered. 

Network traffic prediction (NTP) represents a branch of 

network planning and capacity monitoring, that heavily 

depends on a set of historical data collected throughout the 

years. In order to make accurate forecasts about the future 

characteristics of the flows, multiple factors need to be 

considered in forecasting future traffic based on previous 
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experience. Some of these factors are the statistical 

characteristics of the Internet traffic which is self-similar 

and nonlinear in nature [1]. Specifically, the nonlinear 

nature of the traffic cannot be modelled by either a Poisson 

or a Gaussian distribution and the long-term dependencies 

must be modelled with nonlinear predictors. 

In order to model highly non-linear time series, recurrent 

neural networks (RNNs) have been well investigated as a 

powerful prediction tool. The original RNN was 

designed by David Rumelhart in 1986 as a secondary 

method to the already developed autoregressive models. It 

has gained more popularity since the problem of gradient 

vanishing and gradient explosion were solved using Gated 

recurrent units (GRU) and Long-short term memory cells 

(LSTM) [1], [7]. With the help of LSTM and higher order 

statistics, the long-term dependencies in a data set could be 

partially solved for the prediction capabilities of the 

original RNN. 

In this paper, we investigate the optimization of RNN 

model in order to achieve more accurate mean traffic 

forecasting in NTP as well as individual flow prediction, by 

considering the history of the traffic as training input for 

the neural networks. The main contributions of this paper 

can be summarized as follows: 

• RNNs are adopted to model the characteristics  

of Internet traffic flows. 

• The impact of changing the dictionary of an RNN is 

analyzed with the aim of  increasing the frequency of 

certain patterns. Also, the concatenation of multiple 

LSTM units is investigated to increase the 

generalization capabilities of the neural network. 

• Considering the weekly periodicity and monthly 

periodicity inside the training data set, their impacts on 

the number of samples fed into the network are 

validated along with the delay time whilst training the 

neural network. 

• A heuristic algorithm is proposed to find an optimal 

RNN architecture for NTP by solving the dissimilarities 

between the predicted values and the real values. 

Specifically, the proposed algorithm seeks to 

minimize the prediction errors including mean 

squared error, mean absolute error and normalized 

mean squared error. 

• Simulation results are provided for the proposed 

algorithm and compared with the real traffic values, 

as well as other counterpart techniques such as 

Auto-regressive integrated moving average (ARIMA) 

model and AdaBoost regressor which is based on 

decision trees. 

The rest of this paper is organized as follows: Section II 

discusses some of the existing research related to network 

traffic forecasting. Section III analyses some of the 

architectural aspects of the proposed RNN for NTP, while 

also examining the mathematical aspects of the other 

methodologies that are used for comparison purposes. 

Section IV presents the simulation results for the proposed 

scheme and the comparisons with those in counterpart 

models. Finally, Section V concludes our paper. 

2. Related works 

This section reviews some of the methodologies and 

previous works that were carried out on traffic prediction 

domain by using: i) Linear models with ARIMA, ii) 

Decision trees using AdaBoost regressor, and iii) Non-

linear models with RNNs. 

A. Linear Models 

Linear models represent one of the most common 

approaches for network flow predictions and they have 

been largely examined in the literature. There are multiple 

types of linear models such as ARIMA and fractal 

autoregressive integrated moving average (FARIMA). The 

ARIMA model out of all the linear models provides the best 

results. According to [8], [9], the ARMA model which is a 

subset of ARIMA, can be used in the particular scenario 

where the time series 

B. Decision Trees and AdaBoost Regressor 

AdaBoost regressor, which is also known as adaptive 

boosting regressor, is a technique that is based on weak 

learners such as decision trees, that are grouped together in 

different types of topologies in order to improve different 

classification capabilities. The boosting process combines 

these weak learners, mostly represented by binary decision 

trees, in order to improve the overall results after multiple 

iterations. Each decision tree tries to improve the prediction 

of the previous tree by using a set of weights and by 

observing where the previous model made mistakes. One of 

the key drawbacks of this method, is the inability to predict 

the non-linear behaviour of the traffic, while the long-term 

dependencies are not taken into account, even though the 

system has a non-linear behaviour. 

C. Non-linear Models and Neural Networks 

One simple way to predict future traffic is by using hidden 

Markov models (HMM) which describes the non-linearity of 

the system using statistics between the current state of the 

system and the future possible states. The HMM uses 

transitioning probabilities and expectations in order to 

describe the most likely set of hidden states that are going 

to happen [13], [14]. Even though HMM is a great 

method of describing non-linear systems, it requires a lot 

of training data and it does not take into consideration long-

term dependencies because it doesn’t have a memory 

included. 

One of the best non-linear techniques that is capable 

of predicting the non-linear behaviour of the traffic apart 

from HMM, are neural networks (NNs). The NNs represent 
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a set of inter- connected computational units, which are also 

called neurons. All these neurons perform simple functions 

that are easy to understand, but after combining these 

neurons together in different topologies, the functions that 

can be performed become complex and nonlinear [15]. 

Because of these nonlinear properties, the NNs are capable 

to predict Network Traffic behaviour, which is inherently 

non-linear and also has long-range dependence between 

different moments in time [1], [2], [15], [16]. 

In order for an artificial NN (ANN) to work under any 

given input set of data and to predict the future behaviour 

of the time series, the ANN must be trained by using either 

supervised Learning or unsupervised learning. In the case 

of supervised learning, the real values that have to be 

predicted are already available to the programmer. The 

purpose of the supervised learning is to minimize the error 

between the real value and the predicted value, by using 

different types of metrics such as mean square error (MSE), 

mean absolute error (MAE), mean relative error (MRE) and 

relative mean square error (RMSE) [2], or in some cases of 

the RNNs there is also mean absolute percentage error 

(MAPE) [17]. According to [15] the most common learning 

algorithms for supervised learning are resilient propagation, 

backpropagation and Levenberg- Marquardt. 

There are multiple types of NNs that can be used for 

traffic forecasting, such as: i) Multi-layer autoencoder which 

is a feed forward neural networks (FFNN) useful in the 

scenarios where the entire training data is presented at the 

beginning of the learning process and there is no need for 

recurrence and back-propagation, [2], ii) Convolutional NNs 

which are mostly used in image processing but it can also be 

used for traffic classification [18], iii) Modified Elman NNs 

[19], and iv) RNNs that detects patterns inside time series. 

Variants of the RNNs were examined in [1], [7], [15], [17], 

[20]. The reason that the RNNs are so popular is due to the 

fact that they introduce a recurrent structure that establishes 

a connection between the current neuron and itself in a 

feedback loop format [17]. This circular structure acts as a 

memory that helps each neuron                          of the RNN to keep track of 

a state from a previous moment in time. This memory 

allows the network to influence the current state by using 

the information from the previous state [17]. 

This paper will examine how an RNN can predict future 

traffic samples for NTP, by using a variable sliding window 

algorithm that takes as input the amount of traffic that 

happened in the first couple of days and tries to predict the 

future characteristic based on this training information. 

Because the sliding window has a limited size, the samples 

that were predicted in previous time steps are fed back into 

the window in order to predict future samples. 

3. Proposed RNN for NTP  

This section investigates how a typical RNN that acts as 

an encoder – decoder system can work as a prediction 

mechanism to forecast network traffic. For a better 

understanding, two other methodologies are used for 

comparison purposes, including ARIMA and AdaBoost 

Regressor which are firstly investigated, followed by the 

proposed RNN model for the NTP. 

A. ARIMA Model 

ARIMA model is shown to be the best suited for the 

scenario where the time series presents stationarity 

between two adjacent moments in time. The stationarity of 

a data set        is important because it indicates if the statistical 

properties, such as mean, variance and auto- correlation, 

are constant over small time intervals. The traffic estimation 

(xt1 for the particular moment in time t1), in the ARIMA 

model is strongly correlated with all the previous 

moments in time, i.e. t = t1–1, t = t1 − 2, t = t1–3, . . . All the 

elements of the time series present a linear relation between 

them. The predicted value (xt1) is proportional with (xt1=0), 

plus some noise components, which can be described using 

Gaussian distribution. The dependencies between the 

different traffic samples can be expressed, by using a 

polynomial equation with the following form [8], [9]: 

 

xt + ψ1xt−1 − ψ2xt−2 − . . . − ψrxt−r = zt − θ1zt−1 − 

θ2zt−2 − . . . − θszt−s,            (1) 

 

where zt represents the randomness that is introduced in the 

traffic following a normal distribution with zero mean and 

variance of σ2
 [8]. According to [9] the parameters ψ1, ψ2, 

ψ3, . . . , ψr in (1) represent the auto-regressive operators 

which define the stationarity of the given data points at 

every point in time, while θ1, θ2, θ3, . . . , θs are the moving 

average operators. It can be noticed that the sample taken 

at time t is correlated with all other samples taken at t 

− 1, t − 2, . . . , t − r. The relation is linear between two 

adjacent moments in time because the traffic predicted at 

time t − 1 is proportional with that at moment t as follows 

[8], [9]: 

                          xt−1 = Bxt,                       (2) 

                           xt−r = Brxt,                       (3) 

 

where B denotes the lag operator which correlates the 

sample collected at time t with all other previous samples. 

All the received traffic has to be collected and stored in a 

database in order to create a functional prediction model. 

The extended version of (1) can be rewritten in a polynomial 

format, that also includes the differentiating factor ∆ = 1 − 

B, which is an integral part of the ARIMA model. The factor 

∆ comes from the difference between two adjacent moments 

in time (∆xt = xt − xt−1). We can express (1) as [8], [9]: 

                    ψ(B)∆dxt = θ(B)zt,                       (4) (4) 

                  ψ(B) = 1 − ψ1B − ψ2B2
 − ... − ψrBr,       (5) (5) 
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             θ(B) = 1 − θ1B − θ2B2
 − ... − θsBs,               (6) 

 

 where ψ(B) and θ(B) can be estimated with the Box-

Jenkins algorithm, in order to determine the order of the 

polynomials r, s and also the differentiating factor ∆ [8]. 

The Box-Jenkins approach consists in performing a 

difference of the time series elements, until all the 

components of the series appear to originate from a general 

stationary process, but there is also another methodology 

called fitting curve method which is used together with Box-

Jenkins algorithm, in which the fitted values are subtracted 

from the original set of data [8]. Finding the order of the 

polynomials requires the determination of several nonlinear 

equations by approximating the solutions using numerical 

techniques. The numerical approximation involves two 

different techniques such as nonlinear least squares and 

maximum likelihood forecasting. 

The proposed ARIMA and RNN model will take as 

training input the amount of traffic that is destined for a 

particular website or group of websites during a time frame 

and it is going to predict the future behaviour of the traffic 

based on that training data. The ARIMA model used, is 

going to be described by three parameters:  p called the 

lag order, d which is the number of times that the raw 

observations are differenced and finally q which is the size 

of the moving average window [21]. This linear model will 

be used only for comparative purposes against the proposed 

RNN model to evaluate the accuracy of the predictions 

when the same set of data is given to both techniques. 

B. Regression Trees Model and AdaBoost 

This subsection discusses how decision trees are used for 

predictive modelling and how to boost the performance of 

the trees by using the AdaBoost function. The first type 

of decision tree is called classification tree, where the 

target variable can take a discrete set of values and the 

tree structure has leaves which represent labels of a 

specific class, while the branches are conjunctions of 

features that lead to those labels. The second type of 

decision tree is called Regression tree and it is used when 

the predicted outcome is considered a real number, unlike 

the Classification tree where the outcome is a class. The 

tree like structure is maintained in the case of regression 

trees, but the value obtained by terminal nodes in the 

training data is the average response that falls within a 

region of training. In our scenario the real value that has to 

be predicted is the mean traffic value, which is a real 

number. Because decision trees learners can               create overly 

complex trees that do not generalize the data well (process 

called Over-fitting), there           is a need to reduce the complexity 

of the trees by implementing pruning which reduces the 

size            of the decision tree. Another problem is the fact that the 

decision trees can become unstable due   to small variations 

in the data set, which can be addressed by using a booster 

such as AdaBoost. AdaBoost is a machine learning 

algorithm that utilizes multiple weak learners in order to  

improve the overall performance of the system. The 

output of the weak learners, which are usually binary 

decision trees, are taken into consideration in a weighted 

sum [22]. This weighted sum is used as the result of the 

AdaBoost and it helps the algorithm to improve the 

predictions. One of the key components in the case of 

AdaBoost is the creation of the future binary trees based 

on the previous stumps. The next binary decision trees are 

created based on the error of  the previous stump, so in 

the case of AdaBoost the order of creating the stumps 

matters and influences the final objective of regression. 

C. Proposed RNN Model 

The proposed RNN model follows a memory-based 

approach to determine the characteristics of a time series by 

keeping track of the previous states. In case of standard feed 

forward neural Network (FFNN), the input training vector 

(−X→0) is injected into the FFNN, is not dependent of 

another input vector (−X→1) which is going to be fed at the 

next moment in time [24]. However, in case of time series, 

there is usually a dependency between the vectors inserted 

for training purposes. The RNN architecture used in this 

scenario has only one layer of LSTM cells that are 

interconnected with one another in a series topology. The 

input layer is used to take training information in order to 

feed it inside the neural network. The training info is 

grouped inside a window of size n, where the first n − 1 

elements of the window represent the pattern that is 

going to be remembered by the neural network, while 

the nth element of the window is the” predicted” value 

associated with that pattern, during the training process. 

Both the input layer and the output layer are encoded using 

one hot encoding, for the RNN to understand  the format 

of the data that is fed inside [26]. The general architecture of 

the inputs and outputs that form an RNN cell is illustrated 

in Fig. 1, which consists of: 

 

     Figure 1. Weights and biases that are fed into the 
Recurrent Neural Network. [24] 
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• Xt represents the encoded message that is fed into the 

network at the moment t. The encoding method 

includes an embedding technique which produces a 

vector value. This encoding process is required to 

convert the original value or set of values into a 

representation that can be interpreted by the RNN 

[24].   

•    represents the encoded message that is fed into the 

network at moment instance t.  In the scenario of 

network traffic prediction, this encoded information 

represents the predicted internet traffic at time 

instance t. The representation of this predicted traffic 

is usually done in the  form of a vector.  

 

• ht in this scenario signifies the memory cell, and the 

value that is stored inside the cell at time t. This value 

is dependent on the previous value that was stored 

inside the cell at a previous moment in time (ht−1). The 

current state of the memory is also related with the 

encoded input sample at time t (xt). 

 

• The RNN cell takes several other inputs such as 

(W (xh), W (hh), bh) apart from (xt, ht−1). All these 

components represent the weights and biases that are 

applied to the RNN to facilitate the learning process. 

As it was mentioned in the description of the 

parameter ht, the memory cells are dependent on both 

the current input as well as the previous state of the 

memory cell (ht−1). Here, W (xh)
 represents the 

amount of contribution (the weight) that (xt) will 

have on the memory cell ht. The other parameter that 

is taken into consideration is W (hh)
, which correlates 

the memory cell at time (t − 1) (ht−1) with the 

memory cell in the next moment in time t. 

The architecture of the RNN that is used for predicting 

future network traffic is based on an encoder-decoder 

model, that takes as input the mean value (mean ( )) or 

the real value of each vector ( ) and propagates the  

information  from  the  encoder  side  to  the  decoder  segment  

as shown in Fig. 2. This type of methodology is also 

called seq2seq model and it was originally used for 

machine translation problems. It was proved to be very 

effective for many applications [24] where the encoder-

decoder design requires two different RNNs to be 

concatenated with one another in a serial method. The 

training information will be passed throughout the encoder 

from one neuron to another until it reaches the decoder 

segment.  

In order to improve the encoder-decoder model, the 

forecasting tool must take into consideration the long-term 

dependencies between the data points and also the 

seasonality of the time series that are provided. According to 

[27] the data traffic that is received and stored by a flow 

monitor can be categorized into three types of seasonality: i) 

daily seasonality that correlates Dayn with Dayn−1 and has 

the largest contribution; ii) weekly seasonality that 

correlates Dayn with Dayn+7; and iii) monthly seasonality 

that correlates Dayn  with Dayn+30. 

 

 

Figure 2. Structure of the encoder-decoder. 

D. Evaluating the results 

The level of accuracy of the prediction model is established 

by using various types of error estimation parameters. The 

purpose of these error estimators is to make a comparison 

between the real data which is received after performing the 

experiment and the predicted data which is obtained from 

mathematical interpretations. In the ideal case the difference 

between the predicted value and real value should be close 

to zero, but this scenario cannot be achieved in a real 

environment. Choosing an appropriate error estimator is 

therefore vital since not all estimators provide identical 

outcomes given the same data. In this paper, the following 

estimators are considered: 

• Mean square error (MSE): is the simplest type of 

error estimator which can be computed by: 

                M SE = E( − )
2
,                     (7)  

 

Where  and  denote the real value and the 

predicted value, respectively.  

• Normalized MSE (NMSE): takes into consideration the 

proportionality with a normalizing factor σ to mitigate 

the large spikes in error that happen in the scenario 

when the difference between the predicted value and 

the real value is very large. The NMSE is thus given 

by: 

                                   (8) 
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Where σ denotes the standard deviation of the predicted 

data after the training is complete and n represents the total 

number of days for which the traffic will be predicted. 

 

• Mean absolute error (MAE): is a common measure 

of forecasting error in time series analysis and it 

helps to compare series that have the same scale. The 

MAE is based on an arithmetic mean, and thus the 

peek values that do not fit on top of the real values 

will not have a significant influence on the final 

measurement. The MAE is expressed as: 

 

                               (9) 

 

• Relative error (RE): is also called approximation error 

and it reflects the discrepancy between the exact data 

that is observed and the approximated data. This type 

of error is usually represented in percentage by: 

 

                               (10) 

The model proposed in this paper seeks to maximize 

the prediction capabilities of the RNN by considering the 

long-term dependencies between daily seasonality, weekly 

periodicity and monthly seasonality. The numerical results 

of the proposed structure will be presented in the next 

section together with a comparison between the proposed 

RNN and the other two methods, i.e. ARIMA and 

AdaBoost. 

4. Experimental Results 

This section presents the numerical results that are obtained 

during the experiments, with various forms of RNNs, while 

also emphasizing the characteristics of each RNN. The 

experimental results of two other methodologies, ARIMA 

and AdaBoost regressor, which are trained on the same 

data set as the RNN, are also described in this section to 

evaluate the proposed methodology. The training of the 

RNN, the simulation of the results and the graphical 

plotting of the predicted values of traffic are implemented 

using Python programming language. 

A. Prepossessing 

Before getting into the results of the prediction, it is 

important to explain the concept of dictionary which 

represents the entire vocabulary or the entire set of symbols, 

that is known by the RNN after the training process. The 

number of individual symbols that are recognizable by the 

neural network is an important parameter that has to be 

considered when designing the model. One of the key 

criteria of choosing the dictionary size (L) is based on how 

much training data is available to the RNN. If the training 

data that is going to be fed into the network is quite large 

and has multiple duplicates of the same symbols, then the 

vocabulary set can also be left large without adjusting the 

symbols to a more favourable intermediate value. 

One of the methodologies to reduce the size of the 

dictionary is to replace the real values of the traffic, with 

approximate values that are the closest to them. This can be 

achieved by generating equally spaced values in a 

predetermined range using a step value of L. All the 

elements of this sequence will have the following format: L, 2 

∗ L, 3 ∗ L, . . . , n ∗ L and they  represent a multiplicative 

set. In order to approximate one of the real values with 

an element that is present inside the multiplicative set, the 

shortest Euclidean distance must be calculated     and the 

minimum value from that set must be selected. The 

format of the operation is: 

 

  replace_value = min(|real value – multicaplative_set|) (11) 

 

By using this method all the values that occurred 

uniquely in the database are replaced with approximated 

values that occur more often. In this way the RNN is more 

capable of understanding the real patterns that are present 

inside the training data set and ignore the noisy 

information that is not important for the training model. 

B. The Effect of modifying the dictionary size 
L 

Case1 - L=0: In this case, the mean traffic value is predicted 

instead of individual traffic value and the parameter L is 

considered 0, so the dictionary of the RNN is not modified. 

By putting L = 0, the RNN will not distinguish between the 

real patterns and the noise  that is present inside the data. 

The other parameters that describe the RNN are as follows:  

Number−of−neurons = 150, Number−of−epochs 

=1000,Batch−size=128,Number−of−samples−for−training = 

300. After the data passes the LSTM cells layer, two more 

layers are added which consists in a rectified linear unit 

layer (RELU) and a SoftMax layer. The loss function used 

for training purposes is categorical cross-entropy and it is 

usually used in the context of comparing two discrete 

probability distributions with one another and it is well 

suited for scenarios where classification is required to 

achieve. 
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Figure 3. Prediction of mean traffic for 60 days with 
L=0 

As it can be seen in Fig. 3, the RNN is not capable of 

accurately predicting the future 60 samples. The output is 

noisy and it doesn’t capture the true nature of the training 

data samples. 

Case2 - L=10: In this second case, we examine the same 

situation in which the mean traffic value is predicted instead 

of individual traffic value, but the L values is 10. By putting 

L = 10, the RNN will distinguish between the real patterns 

and the noise and the prediction becomes more accurate. All 

the other parameters remain the same, including the two 

more layers that are added at the end. 

 

 

Figure 4. Prediction of mean traffic for 60 days with 
L=10 

 

As it can be seen in Fig. 4, the RNN is capable of 

predicting the general trend of the next    60 data points and 

it can distinguish between relevant data and noisy data, but 

it is not capable of predicting the exact value without some 

significant error. 

Case3 - L=25: The last case examines the same situation, 

but the L value is 25. All the other parameters remain the 

same, including the two more layers that are added at the 

end. 

By increasing the value of L to 25, all the small variations 

that are present in the training data set, shall be 

approximated with the value of 1200, while only a small set 

of them are approximated with 1250. Because of this 

reduced dictionary, the RNN is not capable of predicting the 

small variations present inside the data sequence. As it can 

be seen in Fig. 5 by using this type of training data the 

neural network does not get the general trend of the data 

given and it completely misses the mean value of the real 

traffic that is provided. 

From cases 1, 2 and 3 we can observe how important 

preprocessing of the data is for accurate predictions and how 

the size of the dictionary can influence how the data is 

interpreted by the neural network. By increasing the 

parameter L to large values, the small variations inside the 

data are lost, but if L it is set to 0 all the noise inside the data 

remains and the prediction becomes chaotic and 

unpredictable. That is why it is important to adjust the L 

parameter according to the data given and the small 

variations present inside the training data. 

 

 

Figure 5. Prediction of mean traffic for 60 days with 
L=25 

C. The Effect of modifying the learning rate 

and β factor of the Adam optimizer 

The learning rate is a hyper-parameter that controls how 

much the gradient will adjust, based on the estimated error 
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and how much the weights are changed. Choosing the 

learning rate can be a difficult process, because a learning 

rate that is too small can result in long periods of training 

and sometimes the optimization process might get stuck in a 

local minimum value [28]. If the learning rate is too large, 

the neural network might become unstable during the 

training process and it may result in sub-optimal results. The 

learning rate is usually defined as a number between 0 and 

1, but the default value that is used in Python programming 

language is 0.001. There are also optimizers such as Adam, 

that have adaptive learning rates based either on the 

momentum value, or by changing the learning rate 

automatically based on the number of epochs and the loss 

function. The other parameter β is also called the 

exponential decay rate for the first moment estimate and the 

default value is 0.9. The purpose of this β is to control the 

exponential decaying rates of the averages that describe the 

gradient descent function [29], [30]. 

In the following tested scenarios the other variables that 

describe the neural network are also modified from the 

previous studied case, such as: the number of neurons used 

by the recurrent neural network and the number of epochs in 

which the training takes place. Throughout this case, the 

number of neurons and epochs will be constant and only the 

learning rate and β will be changed in order to examine the 

effects of these parameters. 

Case1 - Learning−Rate=0.0025 and β = 0.99: In this 

case we predict mean traffic value instead of individual 

traffic value and the parameter L is considered 10, while the 

default learning rete is changed from 0.001 to 0.0025 and 

the β is changed to 0.99. The other parameters are 

configured as follows: Number−of−neurons = 350, 

Number−of−epochs=1500,Batch−size=110,Number−of−sa

mples−for−training = 300, Learning−rate = 0.0025. There 

is no RELU function added after the LSTM cells, but the 

SoftMax is still kept. The loss function used for training 

purposes in this scenario is categorical cross-entropy which 

was also used in the previous case to make the required 

classifications.  

  After the prediction is complete the loss of the 

categorical cross-entropy function goes down from loss = 

5.1 to loss = 0.6. The value of MSE = 15698.2 and the value 

of the mean absolute error is MAE = 98.1. 

 

 

 

 

 

 
 

Figure 6. Prediction of mean traffic for learning rate 

LR=0.0025 and β=0.99. 

Case2 - Learning−Rate=0.04 and β = 0.9999: In this 

second scenario we predict the mean traffic value, in a 

similar way with case1 by keeping all the parameters the 

same, except Learning−rate = 0.04 and β = 0.9999. 

 

Figure 7. Prediction of mean traffic for learning rate 

LR=0.04 and β=0.9999. 

The loss of the categorical cross-entropy function goes 

down from loss = 5.1 to loss = 3.46 after training process is 

complete, which represents the worst performance out of all 

the scenarios which were examined. The MSE = 17824 

and MAE = 97.2. We can see an improvement in terms 

of MAE compared to case1, but because of the large 

learning rate, the Adam optimizer is not capable of 

reaching a point of minimum and the algorithm will keep 

fluctuating. 
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D. RNN and ARIMA prediction results 

Comparison between the RNN model and the ARIMA 
model - 300 samples for training: 
The RNN model considered in this case, is the one which 

includes the weekly periodicity but not monthly periodicity 

and has 500 neurons and the SoftMax layer at the end. The 

batch size in this case is 128, the number of epochs is 1250 

and the learning rate is 0.0016. The error of the predictors 

are as follows: MSE−RNN = 14728, MAE−RNN = 

94, NMSE−RNN = 177, while the errors for the 

ARIMA are MSE−ARIMA = 20997, MAE−ARIMA 

= 104 and NMSE−ARIMA = 199.2. The RNN 

manages to capture the general trend of the real data 

better than ARIMA in terms of MSE and MAE, but 

the predicted values of RNN have a smaller dispersion 

than in the case of ARIMA, so the NMSE−ARIMA 

is larger than the NMSE−RNN . The variables (p,d,q) 

chosen for the ARIMA in this case are (8,0,1) so the 

ARIMA has the auto regressive component equal to 8, the 

integration component equal to 0 and  the moving average 

component equal to 1.  

Figure 8. RNN predictor and ARIMA predictor for 
300 training samples. 

Comparison between the RNN model and the 
ARIMA model - 400 samples for training:  
The RNN structure used in this case is identical with the 

one from the previous comparison, but in this scenario the 

next 60 points that have to be predicted are different from 

the training data set that was fed initially. The learning rate 

is kept to 0.0001 and the number of epochs is 1250. The 

results of the error terms such as the mean squared error, 

mean absolute error and normalized mean squared error 

have the following values: MSE−RNN = 59689, 

MAE−RNN = 179.38 and NMSE−RNN = 284.26, 

while the MSE−ARIMA = 196221.6, MAE−ARIMA = 

343, NMSE−ARIMA = 576. In this case the RNN 

manages to reduce all the error parameters by almost half 

compared with the results achieved with ARIMA. 

Figure 9. RNN predictor and ARIMA predictor for 
400 training samples. 

E. RNN and AdaBoost prediction results 

Comparison between the RNN model and the 
AdaBoost model - 300 samples for training: 
In this scenario the RNN model considered is the same 

one used in the case of ARIMA, and it includes the weekly 

periodicity but not monthly periodicity and has 500 neurons 

and the SoftMax layer. 

The AdaBoost in this case has 10000 decision trees and a 

learning rate of 0.01, while the RNN has 500 neurons, batch 

size = 128, epochs = 1250 and a learning rate of 0.0016. As 

it can be seen in Fig. 10, the AdaBoost outperforms the 

RNN model, by capturing the general trend inside the data 

more accurately, but this can also be seen in the error terms 

where AdaBoost manages to score very small error values: 

MSE−RNN = 14728, MAE−RNN = 94, and NMSE−RNN = 

177, while MSE−AdaBoost = 1943, MAE−AdaBoost = 30 

and NMSE−AdaBoost = 36. The reason for which the 

AdaBoost manages to score better than the RNN, is because 

the AdaBoost is well suited for scenarios when data presents 

some sort of periodicity inside. 
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Figure 10. RNN predictor and AdaBoost predictor for 
300 training samples. 

Comparison between the RNN model and the 
AdaBoost model - 400 samples for training: 
This second scenario uses the same models for RNN and 

AdaBoost as in the previous case, but this time 400 

samples that do not present stationarity or periodicity are 

fed into both  models.  

In this second case (see Fig. 11) the RNN outperforms the 

AdaBoost and this can also be seen in the error terms: 

MSE−RNN = 59689, MAE−RNN  = 179,  NMSE−RNN = 

284.26  while the error terms of AdaBoost are 

MSE−AdaBoost = 116545, MAE−AdaBoost = 221, 

NMSE−AdaBoost =  1837. Because the testing data presents 

a high level of non-stationarity the AdaBoost cannot 

converge to a small value of error and the classifications 

made by the weak learners cannot classify the future traffic 

accurately. 

 

 

Figure 11. RNN predictor and AdaBoost predictor for 
400 training samples. 

In this second case (see Fig. 11) the RNN outperforms 

the AdaBoost and this can also be seen in the error terms: 

MSE−RNN = 59689, MAE−RNN  = 179,  NMSE−RNN = 

284.26  while  the error terms of AdaBoost are 

MSE−AdaBoost = 116545, MAE−AdaBoost = 221, 

NMSE−AdaBoost =  1837. 

Because the testing data presents a high level of non-

stationarity the AdaBoost cannot converge to a small value 

of error and the classifications made by the weak learners 

cannot classify the future traffic accurately. 

F. RNN, ARIMA and AdaBoost prediction 
results for individual flows 

Comparison between the RNN model and the 
ARIMA model for individual flows - 300 samples 
for training:  
In this scenario unlike the previous ones, we predict the 

amount of times  a particular webpage was accessed during a 

time span of 60 days, by feeding the training data only from 

a single flow. In the previous scenarios which were 

analysed, the mean value of  traffic was examined without 

considering a particular destination website. The ARIMA 

model considered in this case, has the following values for 

(p, d, q): (4, 0, 1), but similar results are obtained with (8, 0, 
1). The RNN model used in this scenario is similarly set 

with 500 neurons, a learning rate of 0.0016 and all the 

other parameters are the same. 

The RNN model as it can be seen in Fig. 12 manages to 

capture the general trend more accurately than the ARIMA 

model, because the ARIMA totally overestimates the 

amount of traffic between the time interval of day 40 and 

day 50. The values of the error functions are: MSE−RNN = 

1115, MAE−RNN = 13.2, NMSE−RNN = 84, while for the 

ARIMA MSE−ARIMA = 5862, MAE−ARIMA = 30, 

NMSE−ARIMA = 86. The error values in the case of 

RNN can be seen that are smaller than the errors of 

ARIMA. 

 

  Figure 12. RNN predictor and AdaBoost predictor 
for 300 training samples-single flow. 
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Comparison between the RNN model and the 
AdaBoost model for individual flows - 300 samples 
for training:  
The AdaBoost and RNN models are similar to those used as 

in the previous cases, but we use single flow traffic for 

training purposes instead of mean traffic value. 

 

 
 

Figure 13. RNN predictor and AdaBoost predictor for 
300 training samples single flow. 

 

Even if the values of the MSE and MAE are smaller than 

in the case of RNN, the neural network manages to capture 

the small transitions more accurately than the AdaBoost, 

thing which can also be seen in NMSE criterion. We can see 

in Fig. 13 that the AdaBoost approximates all the small 

transitions with values in between (23 − 26) packets, while 

the RNN tries to capture even the small transitions. The 

values of the errors are as follows: AdaBoost−MSE = 886, 

AdaBoost−MAE = 10.7, AdaBoost−NMSE = 182, while the 

error values of RNN are: MSE−RNN = 1115, MAE−RNN = 

13, NMSE−RNN = 84. 

G. Comparison of the performance using 
MSE, MAE, NMSE and Relative error 

This section takes all the MSE terms described in previous 

sections and compares the results. 

 
Performance evaluation of RNN, ARIMA and AdaBoost 
models for mean traffic values 300 samples for training: 
The values of error previously obtained in the other 

subsections, indicate the capability of each model to 

predict future samples based on previous 300 days of 

training data. 

 

Figure 14. Comparing the MSE between RNN, 
ARIMA, and AdaBoost for 300 samples. 

Figure 14 shows that AdaBoost has the smallest MSE and 

it has the most accurate prediction, when stationary samples 

must be predicted.  

 
Performance evaluation of RNN, ARIMA and AdaBoost 
models for mean traffic values - 400 samples for 

training: This section evaluates the performance of the 

models, by using the results obtained in the previous 

subsections where 400 non-stationary data-points were used 

for training purposes. 

 

 

Figure 15. Comparing the MSE between RNN, 
ARIMA, and AdaBoost for 400 samples. 

Performance evaluation of RNN, ARIMA and AdaBoost 
models for single flow traffic values 300 samples for 
training:  
This last comparison takes the MSE values obtained for 

single flow prediction. As it can be seen in Fig. 16 the RNN 

and AdaBoost obtain similar error values, even if in Fig. 13, 

we can see that the RNN captures the small fluctuations 

more accurately. Both models capture the general trend 

quite well, but none of them was capable of predicting  the 

spike which happened in day 52.  
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Figure 16. Comparing the MSE between RNN, 
ARIMA, and AdaBoost for single flow 

Performance evaluation of RNN, ARIMA and 
AdaBoost models for relative error values when 
300 samples are used for training:  
This section is similar with the previous section, but it takes 

the relative error terms given by equation (10) and compares 

the results. 

 

 

Figure 17. Comparing the Relative error between 
RNN, AdaBoost, ARIMA for 300 samples. 

As shown in Fig. 17, the relative error values obtained for 

RNN, ARIMA and AdaBoost are: Relative_Error_RNN= 

7.49, Relative_Error_ARIMA =6.98 and finally AdaBoost 

has  Relative_Error_AdaBoost = 2.27. 

 

 
 
 
 
 

Performance evaluation of RNN, ARIMA and 
AdaBoost models for relative error values when 
400 samples are used for training: 
 

 

Figure 18. Comparing the Relative error between 
RNN, AdaBoost, ARIMA for 400 samples. 

Figure 18 plots the relative error values obtained for 

RNN, ARIMA and AdaBoost as follows: 

Relative_Error_RNN= 10.96, Relative_Error_ARIMA = 

21.48 and finally AdaBoost has  Relative_Error_AdaBoost 

= 11.89. As it can be seen the recurrent neural network 

methodology performs best in this scenario in terms of 

relative error and it captures the general trend of the real 

data much more accurately, as it can also be seen in Fig. 11. 

The AdaBoost does not capture the initial peak traffic that 

happens between day 0 and day 10, even though the other 

50 days are predicted reasonably well. Comparing between 

the scenario where 400 samples are given for training and 

the scenario where 300 samples are given for training, it can 

be seen that AdaBoost performs well when the data displays 

periodicity, but RNN performs very well even in scenarios 

where periodicity is not present inside the data. 

Performance evaluation using Relative error of 
RNN, ARIMA and AdaBoost models for single flow 
traffic values using 300 samples of training:  
Considering single flow traffic prediction, Fig. 19 shows the 

relative error values obtained for RNN, ARIMA and 

AdaBoost as follows: Relative_Error_RNN= 59.8, 

Relative_Error_ARIMA = 178.89 and finally AdaBoost has 

Relative_Error_AdaBoost = 44.38. As it can be seen the 

ARIMA model has a large error of 175 percent, but this 

error is mainly caused by the value predicted in day 40 as it 

can be seen in Fig. 12. Unlike ARIMA and RNN the 

AdaBoost performs better in terms of Relative error, but the 

AdaBoost does not capture the small variations in the data 

and it interprets all the days between 0 and 40 almost as a 

constant value, as it can be seen in Fig. 13. 
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Figure 19. Comparing the Relative error between 
RNN, AdaBoost, ARIMA for 300 samples, single flow 

Considering single flow traffic prediction, Fig. 19 shows 

the relative error values obtained for RNN, ARIMA and 

AdaBoost as follows: Relative_Error_RNN= 59.8, 

Relative_Error_ARIMA = 178.89 and finally AdaBoost has  

Relative_Error_AdaBoost = 44.38. As it can be seen the 

ARIMA model has a large error of 175 percent, but this 

error is mainly caused by the value predicted in day 40 as it 

can be seen in Fig. 12. Unlike ARIMA and RNN the 

AdaBoost performs better in terms of Relative error, but the 

AdaBoost does not capture the small variations in the data 

and it interprets all the days between 0 and 40 almost as a 

constant value, as it can be seen in Fig. 13. 

5. Conclusions 

Network traffic forecasting using artificial intelligence is a 

research area that is relevant for both current and future 

medium to largescale networks, because of the various 

advantages that offers, such as better capacity planning, 

improved quality of service and better intrusion detection  

systems. 

In this research, the impact of various factors, such as 

approximating the training values that are learned by the 

RNN, modifying the intermediate layer functions between 

the LSTM cells and the SoftMax output, introducing weekly 

periodicity and monthly periodicity into the training data set, 

modifying the learning rate and exponential decay rate of 

the neural network to see how the predictions are affected. 

A heuristic algorithm was proposed to create a recurrent 

neural network   model that uses a sliding window algorithm 

in order to separate the training data samples that are fed 

into the network from the results that have to be achieved 

after the prediction is complete. The simulation results 

showed that the proposed scheme is capable of predicting 

future traffic values with good accuracy. In terms of error 

estimation values, the RNN minimizes the mean square 

error, mean absolute error and the normalized mean squared 

error better than the ARIMA model in both scenarios where 

300 samples are used for training and also in the case when 

400 samples are used for training. The second algorithm that 

was used as a comparison with the proposed model, is the 

AdaBoost regressor which is a robust algorithm capable of 

predicting the data that presents periodicity inside of it. The 

results obtained using AdaBoost regressor, when 300 

samples were used for training purposes, achieved better 

error results than the proposed RNN model while also 

capturing the general trend more accurately. On the 

other hand, the results achieved when 400 samples were 

used for training, achieved far worst results than the 

proposed neural network. 
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