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Abstract

In this paper, we focus on the performance analysis and optimization of an RF energy harvesting (EH) mobile
edge computing (MEC) network by the assistance of the intelligent reflecting surface (IRS) and non-orthogonal
multiple access (NOMA) schemes. Specifically, a pair of users harvest RF energy from a hybrid access point
(HAP) and offloads their tasks to the MEC server at HAP through wireless links by employing an IRS-aided
and uplink NOMA scheme. To evaluate the performance of this proposed system, the closed-form expressions
of successful computation and energy transfer efficiency probabilities are derived. We further formulate a
multi-objective optimization problem and propose an algorithm to find the optimal energy harvesting time
switching ratio value to achieve the best performance, namely SENSGA-II. Moreover, the impacts of the
network parameters are provided to draw helpful insight into the system performance. Finally, the Monte-
Carlo simulation results are shown to confirm the correctness of our analysis. The results have shown that the
deployment of IRS can improve the performance of this considered RF EH NOMA system by increasing the
number of reflecting elements.

Received on 08 June 2022; accepted on 09 August 2022; published on 11 August 2022

Keywords: mobile edge computing, intelligent reflecting surface, radio frequency energy harvesting, non-orthogonal
multiple access, successful computation probability, energy consumption probability

Copyright © 2022 Dac-Binh Ha et al., licensed to EAI. This is an open access article distributed under the terms of
the Creative Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium
so long as the original work is properly cited.

doi:10.4108/eetinis.v9i32.1376

1. Introduction

In recent years, the Internet of Things (IoT) has
been proliferating and applied in many different areas,
e.g., industry, agriculture, transportation, military, and
so on. Many latency-sensitive applications exist, such
as virtual reality, autonomous driving, and interactive
online gaming [1]. The mobile edge computing (MEC)
approach has been proposed to support new applications
and services that have significant data with latency
constraints [2–4]. In the MEC paradigm, the servers with
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powerful computation ability move to the edge of the
network to aid users in executing tasks via wireless links.

In fact, MEC has been proposed in many scenarios
and has shown a positive impact when improving
the performance of ultra-reliable and low latency
communications (URLLC) systems [5, 6]. The authors in
[5] recommend a digital twin metaverse based on MEC
that guarantees real-time requirements. Specifically,
industrial IoT devices are connected to the access point
(AP) via the URLLC link and get the computation as
well as caching supporting services to reduce system
latency. An alternating optimization approach solves the
latency optimization problem. The results show that
the proposed optimization model and algorithm improve
system performance. A case study on MEC is presented
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in [6], which presents the design of a MEC system with
task offloading and resource allocation requirements.
Besides theoretical calculations, the authors also build an
experimental model based on Intel’s hardware, namely
the EdgeFlow system. Experimental results show that
the system can improve the computational efficiency
from 15 to 45% compared to the local computing system.

However, many challenges are still posed when
implementing IoT based on MEC systems in practice.
Besides the limited computing capability of mobile edge
devices, they are often equipped with energy-limited
batteries to ensure dimensions standards. Accordingly,
radio frequency (RF) power transfer is a new approach
to supply energy for wireless devices based on RF
waves [7, 8]. This solution is expected to prolong the
life of network connections, extend coverage range, and
improve communication network performance. RF power
stations can be built independently of the MEC network
as dedicated RF power stations, microwave stations,
and TV towers [9]. In addition, RF power stations
can also be integrated with access points called hybrid
stations [10–12]. In [12], the authors investigate the
MEC model applied in industrial IoT using RF energy
harvesting (EH). In particular, two industrial sensor
clusters operate according to the cluster head mechanism
to collect radio energy from the hybrid AP to offload
the tasks to the MEC server. Experiments of EH time,
transmit power, task length, and the number of SNs in
each cluster are analyzed to clarify the efficiency of the
proposed MEC-based system.

Besides, billions of devices connected to IoT
applications can create a complex operating scenario. It
leads to orthogonal multiple access techniques such as
FDMA and TDMA use of frequency or time resources
which may not work inefficiency. The non-orthogonal
multiple access (NOMA) approaches are considered
a solution to improve spectrum efficiency, fair power
distribution, and enhance network performance [13–
16]. In [15], the authors investigated a two-user SISO
NOMA MEC uplink model, which was supported by
offloading to an AP. The simulation results show that
incorporating the NOMA technique in the MEC network
can significantly improve system performance compared
to the traditional approach. For a more complex model,
in [16], the authors studied a system model of a wireless
sensor network with two groups of NOMA users and a
multi-antenna access point, in which the best antenna
and user selection scheme are used to enhance the
performance of the NOMA MEC system.

In addition, to improve the performance of the
wireless communication system, the intelligent reflecting
surface (IRS) was proposed and attracted much
research attention [17–19]. The IRS consists of a two-
dimensional passive element array, where each element
can independently create some change to the incident
signal, e.g., the phase, amplitude, and frequency. IRS can

be placed between transmitters and receivers, e.g., on
a building wall, to create an intelligent communication
environment. It is a cost-effective solution to enhance
the performance of B5G and 6G wireless communication
networks; thus, it has attracted increasing interest as
a hot research topic [20–24]. For instance, the authors
in [24] investigate the RIS-assisted communication
downlink model for MIMO networks. Specifically, the
base station communicates with users via RIS panels
deployed in unmanned aerial vehicles (UAVs). The
system is proven to deliver outstanding performance
in terms of total network throughput and worst-case
throughput of the users.

To the best of our knowledge, a few works focused on
the combination of IRS and/or wireless power transfer
and NOMA in MEC networks [25–27]. In [25], the
NOMA and TDMA schemes of an IRS-aided two-
NOMA-user MEC system are investigated to clarify
the integration of IRS and NOMA in MEC networks.
The results showed that NOMA is better than TDMA
for the sum delay minimization when the users’ cloud-
computing time is sufficiently short. The integration
of RF EH, IRS, and NOMA into MEC networks was
studied in [26], where a hybrid access point provides
RF energy and computing services to multiple NOMA
users. Under the dynamic IRS beamforming framework
for NOMA and TDMA schemes, computation rate
maximization problems were formulated and solved by
jointly optimizing the IRS passive BF and the resource
allocation. A system model of a pair of near and far
NOMA users and an IRS to assist the far user in
offloading tasks is investigated in [27]. The performance
analysis of this IRS-aided MEC network was studied
by deriving the closed-form expression of successful
computation probability.

In this work, we extend the work of [27], where the
integration of RF EH, IRS, and NOMA is combined into
the MEC system. Specifically, we consider the scenario
where two users harvest energy from the hybrid access
point (HAP) and offload their tasks to the server located
at HAP with the assistance of an IRS. The main
contributions of our paper are as follows:

• A quadra-phase protocol for RF EH IRS-aided
mobile edge computing system based on the
NOMA scheme is proposed.

• The considered system’s closed-form expressions
of successful computation and energy transfer
efficiency probabilities are derived.

• The multi-objective optimization problem with two
objective functions, i.e., successful computation
probability and energy transfer efficiency proba-
bility, is formulated under the constraint of the
time switching ratio. Accordingly, an algorithm
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based on a genetic algorithm, namely SENSGA-
II, is proposed to find the optimal front to achieve
the best performance for this proposed system.

• The impact of network parameters, e.g., transmit
power, time switching ratio, bandwidth, and
task bit allocation, on the system performance
is examined by numerical results to verify the
efficiency and effectiveness of RF EH, IRS, and
NOMA deployment in the MEC network.

The rest of this paper is organized as follows. Section
II presents the proposed system model. The performance
analysis and optimization of this considered system
are provided in Section III. The numerical results and
discussion are shown in Section IV. Finally, we draw a
conclusion for our work in Section V.

2. System and Channel Model

We describe the notations used in the next part of this
paper in Table 1.

TABLE 1. Notations

Notation Meaning

mi,mH Fading severity factor of Nakagami-m
δ Path-loss exponent
h1 ∈ C1×1 The small-scale fading vector of U1 −

HAP link
h2 ∈
CN×1

The small-scale fading vector of U2 −
IRS links

H ∈ C1×N The small-scale fading vector of
HAP− IRS links

N Number of reflecting elements of IRS
P0 Transmit power of HAP
γ0 Average transmit SNR
η Energy conversion efficiency
f CPU-cycle frequency of HAP
ξ The number of required CPU cycles for

each bit of HAP
W Channel bandwidth
L The length of the task

We consider an RF EH IRS NOMA MEC system
depicted in Fig. 1 and the time flowchart of this
considered system is shown in Fig. 2.

Due to the real-time requirement and limited
computation resources, a pair of energy-constrained
users Ui, i ∈ {1, 2}, cannot implement their tasks
locally. Hence, they harvest RF energy from a hybrid
access point (HAP) to offload the tasks to a MEC
server located at HAP, which has outperformed
the computation resource. There are blocking objects
between users and HAP in many practical scenarios.
The signal of users cannot reach HAP and vice versa.

Figure 1. System Model for RF Energy Harvesting IRS-
assisted MEC Network

Figure 2. Time flowchart of the considered RF EH IRS-
assisted MEC system

In this work, we assume that U1 is near to HAP
without blocking objects. Meantime, U2 is far from
HAP and there are blocking objects between U2 and
U1 as well as U2 and HAP. Thus, an IRS consisting
of N reflecting elements is deployed in the cell to
assist U2’s transmission. Assuming that the element
spacing of the IRS is high enough so that the small-scale
fading associated with two different reflecting elements is
independent. Moreover, all devices are assumed to have a
single antenna and operate in the half-duplex mode. For
the sake of simplicity, Ui is assumed to have a number
of tasks with the same length of Li bits for offloading.

We denote H, h1, and h2 as the small-scale fading
vectors of HAP− IRS, HAP−U1, and U2 − IRS
links, respectively. More specifically, they are H =
[g11, g12, ..., g1N ], h1 = [h1] and h2 = [h21, h22, ..., h2N ]

T
,

respectively. d1, d21 and d22 denote the distances from
HAP to U1, HAP to IRS and from U2 to IRS,

respectively. α1
∆
= (d1)

−δ, α2
∆
= (d21d22)

−δ stand for
distance-based large-scale path loss where δ denotes the
path loss exponent.

The transmission protocol of this considered system,
namely an EH-IRS-MEC scheme, can be divided into
four phases.

- Phase 1 (energy harvesting): HAP transfers the
RF energy to Ui during the time of τ1 = αT , where
α denotes the time switching ratio, i.e., 0 < α < 1, and
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T stands for transmission block time. Note that, IRS
assists HAP in transferring RF energy to U2.

The harvested energy of U1 and U2 during the
duration of αT are respectively written as

E1 = ηP0|h1|2αT, (1)

E2 = ηP0|HΦh2|2αT, (2)

where 0 < η ≤ 1 stands for the energy conversion
efficiency of the receiver [28], and P0 denotes the transmit
power of HAP.
- Phase 2 (task offloading):U1 andU2 an apply uplink

NOMA scheme to offload their tasks to MEC server with
the help of IRS during the time of (τ2). The received
signal of offloading tasks at HAP is expressed as

y = h1
√
α1PU1s1 +HΦh2

√
α2PU2s2 + w, (3)

where PUi represents the transmit power of the ith

user, i ∈ {1, 2}; si denotes the offloading task of the ith

user, i ∈ {1, 2}; w ∼ CN (0, σ2) represents the AWGN at

HAP. Φ
∆
= diag

[
β1e

jθ1 , β2e
jθ2 , ..., βNe

jθN
]
, where j =√

−1, βn ∈ [0, 1] and θn ∈ [0, 2π), n ∈ {1, ..., N}, are the
amplitude-reflection and phase-shift variable of the nth

element of IRS. The duration of Phase 2 is calculated as:

τ2 = max
i

{
Li

W log2 (1 + γi)

}
, (4)

where Li and Wi stand for the task length and channel
bandwidth with respect to Ui, respectively. γi denotes
the signal-to-interference-plus-noise ratio (SINR) and
the signal-to-noise ratio (SNR) at HAP to decode si.
- Phase 3 (task executing): In this phase, the successive

interference cancellation (SIC) is applied at HAP
to mitigate the inter-user interference. At this time,
HAP detects the signal si separately and decodes and
computes the tasks of PUi during the time of τ3. The
duration of Phase 3 is given by:

τ3 =
ξL

f
. (5)

- Phase 4 (result downloading): At last, during the
time of τ4, HAP returns the computing results to users
by applying the downlink NOMA scheme. In this work,
we assume that τ4 is very small compared to τ1, τ2 as
well as τ3 and thus is omitted (τ4=0) [11, 15].
The transmit power of U1 and U2 are respectively

given by

PU1 =
ηP0|h1|2αT
(1− α)T

= aP0X, (6)

PU2
=
ηP0|HΦh2|2αT

(1− α)T
= aP0Y, (7)

where a
∆
= ηα

(1−α) , X
∆
= |h1|2, Y

∆
= |HΦh2|2.

By applying SIC, according to (3), the SINR and SNR
atHAP to decode si are respectively obtained as follows:

γ1 =
aγ0α1X

2

aγ0α2Y 2 + 1
, (8)

γ2 = aγ0α2Y
2, (9)

where γ0
∆
= P0

σ2 is the transmit SNR.
Note that, to improve the transmit environment,

the parameters of IRS are reconfigured to obtain
the best channel quality, i.e., to maximize Z =
|HΦh2| = |

∑N
n=1 βng1nh2ne

jθn |. It means that the
phase-shift variables can be adjusted to obtain Zmax =∑N

n=1 βn|g1n||h2n|. For the sake of simplicity, we assume
βn = 1,∀n. Thus, according to [Lemma.2, [23]], the
probability density function (PDF) and the cumulative

density function (CDF) of Zmax =
∑N

n=1 |g1n||h2n| are
expressed as
PDF:

fZ(x) =
mN

Γ (2msN)
x2msN−1e−2

√
msmlx, (10)

CDF:

FZ(x) =
mN (4msml)

−msN

Γ (2msN)
γ (2msN, 2

√
msmlx) ,

(11)

where ms = min{mH ,m2}, ml = max{mH ,m2},
m =

√
π4ms−ml+1(msml)

msΓ(2ms)Γ(2ml−2ms)

Γ(ms)Γ(ml)Γ(ml−ms+
1
2 )

, mH and m2

denote the Nakagami-m fading parameters; γ(., .) is the
lower incomplete gamma function.

3. Performance Analysis and Optimization

This section describes the performance analysis of this
proposed system in terms of the successful computation
and energy consumption probabilities. Furthermore, we
formulate the optimization problem and propose the
solution to solve this.

3.1. Performance analysis

We describe the performance analysis of this
proposed IRS-aided MEC system in terms of successful
computation probability and energy consumption
probability.
The successful computation probability (Φs) is an

important measure that is useful for system designers to
evaluate the latency performance of the MEC networks
[15]. Φs is defined as the probability that all tasks are
successfully executed within a required time Tth. For this
proposed system, Φs is expressed as

Φs = Pr (τ1 + τ2 + τ3 + τ4 ≤ Tth) . (12)
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Due to τ1 = αT = α(Tth − τ3), Φs can be rewritten as

Φs = Pr [τ2 ≤ (1− α)T ] , (13)

where T = Tth − ξL
f .

To evaluate the latency performance of this proposed
RF EH IRS-assisted MEC system with NOMA scheme,
the Lemma 1 is derived as follows:

Lemma 1. In this considered RF EH IRS-aided MEC
NOMA system, the closed-form expression of the
successful computation probability Φs is given by

Φs ≈ πa0m
N

2Q1Γ (2msN)

m1−1∑
k=0

Q1∑
q=1

mk
1

k!λk1
(− ln tq)

2msN−1

×
[
b1(− ln tq)

4 + b2
] k

2 e−
m1
λ1

√
b1(− ln tq)4+b2

×e
−2

√
msml(− ln tq)

tq

√
1− x2q, (14)

where a0 = e−
4√b0 , b0 =

γth2
a(1−ρ)α2γ0

, b1 =
γth1 (1−ρ)α2

ρα1
,

b2 =
γth1

aργ0α1
, γth1 = 2

L1
WT∗ − 1, γth2 = 2

L2
WT∗ − 1, T ∗ =

(1− α)
[
Tth − ξL

f

]
, L = L1 + L2, xq = cos

(
2q−1
2Q1

π
)
,

tq =
(xq+1)a0

2 , Q1 is the complexity-vs-accuracy trade-
off coefficient.

Proof. See in Appendix A.
Moreover, the energy transfer efficiency is also

an important performance metric that is used to
characterize how much energy is actually transferred to
offload in RF EH MEC networks.

Definition 1. The energy transfer efficiency (EFE) is
defined as the ratio of instantaneous transferred energy
to the corresponding instantaneous total offloading rate.

For this proposed system, EFE is given by

µe =
Etrans

Rtotal
, (15)

where Etrans = P0αT , Rtotal =
∑2

i=1(1− α)W log2(1 +
γi), i ∈ {1, 2}.

Remark 1. In contrast to common energy efficiency
defined in existing works [29, 30], we define the EFE from
the instantaneous perspective to show the transferred
energy and instantaneous data rate simultaneously.
Obviously, µe is a random value. Thus we consider its
statistical property.

Definition 2. The energy transfer efficiency probability
(EEP), denoted by Ψe, is defined as the probability that
the energy transfer efficiency falls below a predetermined
threshold ψth.

For this proposed system, Ψe is expressed as

Ψe = Pr (µe < ψth) . (16)

To evaluate the energy performance of this proposed
RF EH IRS-aided MEC system, we derive the following
Lemma 2 as follows:

Lemma 2. In this proposed RF EH IRS-aided MEC
NOMA system, the closed-form expression of the energy
transfer efficiency probability Ψe is expressed as

Ψe ≈ 1− FZ(a1) +
πa1m

N

2Q2Γ (2msN)

m1−1∑
k=0

Q2∑
q=1

mk
1

k!λk1

×u2msN−1
q

[
c1 − c2u4q

] k
2 e−

m1
λ1

√
c1−c2u4

q−2
√
msmluq

×
√
1− x2q, (17)

where γth = 2
αTP0

(1−α)Wψth , c1 = γth−1
aγ0α1

, c2 = α2

α1
, a1 = 4

√
c1
c2
,

xq = cos
(

2q−1
2Q2

π
)
, uq =

(xq+1)a1

2 , Q2 is the complexity-

vs-accuracy trade-off coefficient.

Proof. See in Appendix B.

3.2. Optimization: Problem formulation and
solution

We are interested in the design optimization problem
to jointly optimize the SCP and EEP for the RF EH
IRS-aided NOMA MEC system as follows:

(P1) : max
α

(Φs,Ψe) (18a)

subject to: 0 ≤ α ≤ 1 (18b)

where (P1) belongs to the class of multi-objective
optimization problems, here specifically, maximizing
SCP and EEP. Constraint (18b) describes the condition
of the time allocation factor of the users. From the
performance definitions of the proposed system, it is easy
to see that SCP and EEP are two correlated objective
functions; i.e., maximizing SCP could negatively result
in EEP maximization; and vice versa. Therefore, the
optimal outcome (P1) is not unique but a set of optimal
results, representing the best correlation between SCP
and EEP. For single-objective optimization, the fitness
values (FV) of objective function always have complete
order because when considering any two FVs; namely
Ω1 and Ω2, there always exist two cases are Ω1 < Ω2 or
Ω1 ≥ Ω2. However, for the problem (P1), we need to use
the dominant concept to compare the FVs, as follow

Definition 3. A feasible solution α1 dominates over the
solution α2 with α1 ̸= α2, denoted by α1 ⪯ α2, if and
only if,

Φs(α1) ≤ Φs(α2)

Ψe(α1) ≤ Ψe(α2)

Φs(α1) < Φs(α2)||Ψe(α1) > Ψe(α2)

, (19)
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In this study, we use the Pareto curve to represent
the optimal group of results (P1) [31]. A solution is
the Pareto optimal if any others do not outperform
it in the objective space. The set of possible solutions
that are not dominated is called the Pareto optimal set,
and their corresponding FVs are called Pareto Front
(PF). Accordingly, we transform the objective functions
so that (P1) can be expressed by PF. Specifically, the
compensation functions of SCP and EEP, i.e., Φs = 1−
Φs, Ψe = 1−Ψe, will be used as the objective function,
and the problem is transformed into determining the PF
of the minimum functions. Thus, the proposed multi-
objective optimization problem is rewritten as follows:

(P2) : min
α

(
Φs,Ψe

)
(20a)

subject to: 0 ≤ α ≤ 1 (20b)

We propose to use the Non-dominated Sorting
Genetic Algorithm II (NSGA-II) to determine the PF
[32] for (P2), namely SENSGA-II. The SENSGA-II
is a stochastic evolutionary multi-objective algorithm
constructed based on combining two algorithms: genetic
algorithm (GA) [33] to select and develop optimal
individuals and crowding distance algorithm to get
a reasonable distribution of optimal points on the
PF [34]. Basic GA genetics concepts and operations,
including crossover, mutation, and natural selection, are
also used. The difference between the multi-objective
and single-objective GA algorithms is in the fitness
assignment, and how to maintain the elite population.
The detailed presentation of SENSGA-II algorithm is
given in Algorithm 1, specifically as follows:

• Step 1: Randomly initialize nPop individuals
pi, (i = 1, ..., nPop) for the population P, where
each element contains a gene that is also a solution
of (P2) and satisfies (18b), i.e., α. Thus, in the
tth generation, the population is described by the
formula:

P(t) = (α1(t), α2(t), ..., αnPop(t)), (21)

• Step 2: Calculate the fitness value of the
objective functions that need to be optimized
simultaneously, i.e., SCP and EEP, for P(t).

• Step 3: Call the Non-dominated Sorting (NdS)
procedure, which uses (19) to determine the
ranking of the input P(t). NdS assigns a first
rank, namely F(1), to individuals that are not
dominant in the population and excludes them
from consideration. Then find a new set of non-
dominated individuals to assign a second rank and
so on until all individuals pi are checked, pi ∈ P(t).
Thus, the output of NdS is a set of individuals
sorted by ranking, namely F(k), where k is the

index of ranking. Details of NdS steps are given in
Algorithm 2.

• Step 4: Call the Crowding distance calculator
(CDC) procedure with the input F(k). This step
aims to find the sum of Euclidean distances
from each individual to two neighboring solutions
in each front based on two objective functions.
Thereby, CDC estimates the density of solutions
surrounding the solution under consideration, as
follows:

CDpi =
∑

Ω∈{Φs,Ψe}

Ω(pi+1)− Ω(pi−1)

Ωmax − Ωmin
, (22)

where CDpi is the crowding distance of pi, Ωmax

and Ωmin are the maximum and minimum of
the fitness values, respectively, when using the
objective function Ω, Ω ∈ {Φs,Ψe}. Details of CDC
steps are given in Algorithm 3.

• Step 5: The parent is selected based on their
rank and crowding distance as follows: randomly
select two solutions; if they have the same non-
domination rank F(k), the solution which has CDpi

higher will be chosen; otherwise, the solution with
the lower rank will be selected. All selected parents
are added to the matching pool to prepare for the
crossover process.

• Step 6: Arithmetical crossovers [35] were used
in this study to crossbreed the parent pi and pj .
Let ζc be the crossover percentage. Two offspring
individuals are given by the formula:

ph1(t+ 1)← δcpi + (1− δc)pj ,
ph2(t+ 1)← δcpj + (1− δc)pi,

(23)

where δc is an uniform arithmetical crossover
factor, that is randomly chosen from 0 to 1.

• Step 7: In this step, non-uniform mutation,
as (24), is applied such that the probability
approaches zero as the number of evolution rounds
increases. It makes the mutation operator efficient
in the early stages of the algorithm, having a more
negligible effect on the population as it evolves into
the late stages.{

pm(t)← pm(t) + (αmax − pm(t))∆, τ = 0

pm(t)← pm(t)− (pm(t)− αmin)∆, τ = 1

(24)

where ∆ = 1− r(1− t
MaxIt )

δb , r is randomly chosen
from 0 to 1, δb is selected following the level of
dependency on the maximum number of iterations,
τ is the random number that may have zero or one.
Let ζm be the crossover percentage. Let the set of
offspring based on the GA process be Q(t).
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• Step 8: The NdS and CDC procedures are
called to evaluate the elite-preservation population,
denoted O, which is the combination set of P(t− 1)
and Q(t), i.e., O(t) = P(t− 1) ∪Q(t).

• Step 9: Select nPop elite individuals based on F(k)
and CDpi which hold in Step 8. If the number of
individuals belong to F(1) is less than nPop, the
entire F(1) will be selected into P(t+ 1). The rest
will be taken from the F(k), until enough nPop

individuals. The set of pi belong to F(1) is stored
in PF . This process continues until the end of
evolution.

Algorithm 1 SCP and EEP maximization based on
NSGA-II (SENSGA-II)

Input: Φs,Ψe, nPop,MaxIt
Output: PF
1: Initialize: t← 0,P(0)
2: Evaluate P(0) using (14) and (17)
3: Call: Non-dominated Sorting procedure (NdS) with

P(0)
4: Call: Crowding distance calculator procedure (CDC)

with P(0)
5: while t ≤MaxIt do
6: t← t+ 1
7: Choose Q(t) following ranking F(k) and

crowding distance CDpi of pi ∈ P(t− 1)
8: Crossover for Q(t) using (23)
9: Mutation for Q(t) using (24)

10: O(t) = P(t− 1) ∪Q(t)
11: Call: NdS with O(t)
12: Call: CDC with O(t)
13: Updated P(t)
14: Store PF
15: end while
16: Return PF

We further investigate the algorithm complexity of
SENSGA-II as follows: In Algorithm 2, we perform
rankings for 2nPop instances belonging to O(t) with two
nested loops. In each loop, we evaluate two objective
functions Φs and Ψe with algorithmic complexity of
m1Q1 and m1Q2, respectively. Thus, the total number
of operations required for this procedure is:

Υ1 = m1(Q1 +Q2)(2nPop)
2. (25)

For Algorithm 3, the sorting and comparison algorithm
is applied to 2nPop instances with two objective
functions, so the total number of operations required for
this procedure is as follows:

Υ2 = m1(Q1 +Q2)(2nPop) log(2nPop). (26)

Algorithm 2 Non-dominated Sorting procedure (NdS)

Input: P(x)
Output: F(k)
1: Init k = 1 is the ranking index
2: F(k) = ∅
3: for pi ∈ P(x) \ F(k) do
4: Init nonDp = ∅ is the set containing all the

individuals that are not dominant than pi
5: Init Dp = 0 is the number of individuals that

dominated pi
6: for pj ∈ {P(x) \ F(k), pi} do
7: if pi ⪯ pj then
8: nonDp = nonDp ∪ pj
9: else

10: Dp = Dp + 1
11: end if
12: if Dp == 0 then
13: F(k) = F(k) ∪ pi
14: end if
15: k = k + 1
16: end for
17: end for
18: Return F(k)

Algorithm 3 Crowding distance calculator procedure
(CDC)

Input: F(k)
Output: CDpi

1: Assign n is the number of individuals in F(k)
2: for i = 2 : (n− 1) do
3: Init CDpi = 0
4: Init CDp1

= CDpn =∞
5: Calculate CDpi using (22)
6: end for
7: Return CDpi

Finally, the elite individual nPop natural selection
operation has a complexity of:

Υ3 = (2nPop) log(2nPop). (27)

The overall complexity of the SENSGA-II algorithm is:

O(Υ1 +Υ2 +Υ3) = O(m1(Q1 +Q2)(2nPop)
2). (28)

To evaluate the convergence of SENSGA-II, we use the
diversity metric [32], denoted by D, which measures the
extent of spread achieved among the obtained solutions.
The lower D, the better convergence of the algorithm.

D =
(De1 +De2 +

∑n
i=1 |Di −D|

De1 +De2 + (n− 1)D
(29)

where De1 and De2 are the Euclidean distances from
the extreme solutions to the neighboring solutions,
respectively, for the two objective functions, D is the
average Euclidean distance of PF.
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4. Numerical Results and Discussion

This section analyzes the system behaviors in terms
of SCP and EEP in the uplink RF EH IRS-aided
NOMA MEC system. Furthermore, the simulation
results are also provided to verify analytical results.
Unless otherwise defined, the investigation parameters
configuration is depicted in TABLE 2 [36].

TABLE 2. Simulation Parameters

Parameters Notation Typical
Values

Environment Nakagami-
m

Fading parameters mH1
,mh1

,
mH2 ,mh2

3.0, 2.5,
2.5, 1.5

Distances d1,d21,d22 10, 30,
20

Energy conversion coefficient η 0.75
Number of IRS elements N 1, 3, 10
Transmit SNR γ0 10-40 dB
Path-loss exponents δ 2, 2.5
CPU-cycle frequency of
HAP

f 1 GHz

The number of CPU
cycles/bit

ξ 2

Channel bandwidth W 1 MHz
The threshold of latency Tth 0.01 s
The threshold of energy con-
sumption

ψth 3 uJ

Number of points for
Gaussian-Chebyshev
quadrature method

P,Q 50

The maximum number of
iterations

MaxIt 300

The population size nPop 100
The crossover percentage ζc 0.9
The mutation percentage ζm 0.002

4.1. Impacts of average transmit SNR and the
number of IRS elements

The impact of average transmit SNR (γ0) and the
number of IRS elements (N) on the performance of
the plotted system is shown in Fig. 3. The solid lines
are curves describing the SCP, while the dashed lines
represent the EEP of the system. We find that the
analyzes of SCP and EEP are accurate as all simulation
results coincide with the corresponding analytical results
derived from (16) and (17). The first observation that can
be drawn is that all three curves describing the system’s
SCP have the same form as increasing as γ0 increases.
In other words, system performance improves when γ0
has an excellent value. It is evident that because γ0
increases, the user is supported more in terms of energy
and improves the efficiency of the offloading process.

Figure 3. Impacts of average transmit SNR and the
number of IRS elements

Nevertheless, when γ0 gets too high, i.e., γ0 exceeds 30
dB, the SCP tends to saturate.
Meanwhile, EEP tends to be the opposite of SCP,

i.e., as γ0 increases, EEP decreases. The reason is that
EEP represents energy efficiency used, smaller EEP
means high energy consumption, and conversely, large
EEP means good energy efficiency. It is explained as
follows: as γ0 increases, that is, the transmit power at
the HAP increases, and the energy used during offloading
also increases, resulting in reduced energy efficiency
gradually. Therefore, the trade-off between SCP and
EEP is a concern when designing the proposed system.
The transmit power parameters from the HAP need to be
considered to ensure optimal SCP while keeping the EEP
at an appropriate value. It also highlights the necessity
of deploying multi-objective optimization algorithms for
the proposed RF EH IRS-assisted NOMA MEC system.
Another observation mentioned is the significant

dependence of SCP and EEP on N . Furthermore,
as expected, as N increases, both SCP and EEP
improve. The reason arises from two aspects. First,
when increasing N , the different signal paths from HAP
towards U2 are added to the system, thus improving
channel rank and spatial multiplexing gain. Second, the
larger N is, the more energy can be collected by U2 in
the EH phase, resulting in enough power to use during
the offloading phase, contributing to the elevation of the
system’s SCP. Furthermore, IRS reflectors can support
U2 energy collection without any transmit RF chains, so
EEP will be significantly improved.

4.2. Impacts of the time switching ratio

The effect of the time switching ratio (α) on SCP
and EEP is depicted in Fig. 4. We focused on observing
the lines describing the SCP with the values γ0 being
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Figure 4. Impacts of the time switching ratio

20 dB, 30 dB, and 40 dB, respectively. The obtained
results show that SCP is a unimodal function according
to the parameter α, i.e., SCP has only one maximum
in the range α in [0, 1]. Thus, it is necessary to use the
optimal algorithm to find α∗ such that SCP reaches its
maximum value. The dependence on α is evident because
the SCP difference when α changes are substantial:
when α is slight, i.e., 0 < α < 0.2 or when α approaches
1, the system’s SCP is very low. It means that the
system has a high probability of not completing tasks
within the maximum allowable delay time. Equations
(1) and (2) explain this: when α is too low, the energy
collected by the user is not enough for them to perform
offloading, resulting in low SCP. Meanwhile, when α is
high, the time to offload and compute decreases, and the
system does not have enough time to reach the offloading
target, i.e., low SCP. In contrast, the system obtains high
SCP with an adequately designed α coefficient. Another
observation, the trend in EEP in Fig.4 shows low energy
efficiency as α increases. According to (6) and (7), an
increase in α leads to a rise in the user’s transmit power,
resulting in a decrease in EEP.

4.3. Impacts of the length of task and the
bandwidth

Fig. 5 describes the effect of task length (L1) on SCP
and EEP in three different bandwidth scenarios, W =
1 MHz, W = 2MHz, and W = 3 MHz. The system’s
SCP decreases as the task sequence length increases. It
is consistent with formula (4) because the task sequence
length is proportional to the offloading time tau2.
Furthermore, as L1 increases, the total number of bits
that the HAP needs to process also increases, resulting
in an increase in the computation time of tau3 in phase
3. In short, the larger the offload bit sequence, the more
budget time is required for offloading and processing,

Figure 5. Impacts of the task length and the bandwidth

resulting in SCP degradation. The impact is enormous
when the system’s bandwidth is low. Observing the curve
describing SCP when W = 1 MHz, we see its slope
is steep: L increases from 2 kB to 7 kB, then SCP
decreases up to 10 times. Continuing to compare with
the SCP signal in the other two cases, we conclude
that the larger the bandwidth, the better the SCP
of the system. Furthermore, increasing bandwidth also
positively affects EEP: i.e., as W increases, so does
EEP, meaning increased energy efficiency. Therefore,
bandwidth is a parameter that needs special attention
when designing the RF EH IRS NOMA MEC system in
practice.
More interestingly, the system EEP descriptor curve

does not change with the change of task sequence
length, and this trend is consistent for all three cases of
bandwidth change. It can be explained by formula (17)
when EEP is an independent function of the variable L1.
In terms of physical significance, we only consider EFE
in terms of energy dissipated during transmission and
investigate its statistical characteristics. Accordingly,
EEP is expressed independently of the constraint in
terms of maximum system latency, which depends on
task sequence length as observed in SCP lines. Thus,
in terms of the EEP perspective, the system is only
required to meet the given energy threshold, regardless
of the transmission rate. In simpler terms, the system
can operate in a way that transmits bits at a slow data
rate while holding the EFE condition, thereby allowing
the desired EEP to be achieved.

4.4. Optimal algorithm experiments

Fig. 6 shows the non-dominated solutions obtained
after 200 generations with SENSGA-II, with the average
transmit power being 30 dB. We extract three solutions,
A(0.8813, 0.521), B(0.9276, 0.3755), and C(0.9984,
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Figure 6. The Pareto front shows the optimal results for
the two goals of (P2).

0.323) in PF, to compare with the random one D(0.96,
0.4) taken in the feasible solution space. Obviously,
solution A has minimum Φs and maximum Ψe, while
solution C has maximum Φs and minimum Ψe. It
means that there is no superior solution between these
two solutions. Continuing, the solution pair B and also
belongs to PF because the compensation SCP is better
than C’s, while the compensation EEP of C is better.
Next, we compare solution D with C, and we observe
that the second goal of solution C is better than D, but
conversely, the first goal of solution D is better than
C. Thus, if we do not use the PF, D would belong to
the same ranking as solution C. However, our solution
demonstrates the fact that solutions C and B are not
dominant over each other, but solution D is dominated
by B. Therefore, D is not optimal and is a dominant
solution. The concept of the multi-objective optimal
solution is confirmed as shown in the formula (19).

Another comment is that compensation SCP increases
to 0.9984, then compensation EEP will decrease and
reach a limit (value is 0.323) and cannot be reduced
further. Meanwhile, when the compensation EEP
increases to 0.8813, the compensation SCP will decrease
and reach the limit value of 0.521. The results show
that if the design option favors SCP optimization, then
solution A should be chosen. If the option favors EEP
optimality, solution C should be selected, or if the
balance is between SCP and EEP, solution B should be
chosen.

Finally, we investigate the convergence of SENSGA-
II using the diversity metric in Fig. 7. Initially, a high
value of D indicates that the solutions are not asymptotic
to PF. Then the value D decreases if we continue
increasing the maximum number of iterations. We see
that the convergence trend slows down, showing that

Figure 7. The convergence of SENSGA-II based on
diversity metric.

the solutions are distributed more and more uniformly.
The subgraph depicting the diversity metric at loops 250
to 300 shows that over 50 evolutions, D only improved
by approximately 0.03. In the last loops, D converged
to 0.0621 and could not improve further. Although the
D value has dropped to a deficient and acceptable level
after the MaxIt loop, the optimal value of 0 has not
yet been reached. This also demonstrates in Fig. 6, when
multiple spaces on the PF are not covered. It shows that
the approaches to solving multi-objective optimization
problems based on meta-heuristic such as SENSGA-II
have high efficiency, but the obtained result is always
at a near-optimal level. Furthermore, the dependence on
initialization parameters based on a GA-based algorithm
must be done in the next studies.

Remark 2. From Figs. 3-6, we can observe that the
analysis and simulation results are matching very well.
It means that the correctness of our analysis has been
verified.

5. Conclusion

This paper has studied the system performance and
optimization of IRS-assisted RF EH MEC NOMA
networks under Nakagami-m fading. Specifically, we
investigate the NOMA-MEC model for two edge-users
who need to offload tasks to proximity HAP. An
IRS element is deployed to the system to support
the far-user operations. Accordingly, we propose a
protocol for the system consisting of 4 phases, namely
the energy harvesting phase, offloading phase, data
processing phase, and result downloading phase. We
evaluate system performance based on two parameters,
SCP and EEP, and detect their trade-offs. Therefore,
we state a multi-objective maximization problem for
SCP and EEP with the constraint of time switching
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ratio. We propose a low complexity algorithm, namely
SENSGA-II, to determine the PF of the optimization
problem. Next, we use the Monte-Carlo simulation to
confirm the correctness of the theoretical analysis. The
simulation results show that the system performance is
highly dependent on parameters such as transmit power,
time switching coefficient, task sequence length, and
bandwidth. Furthermore, the PF obtained SENSGA-
II indicates that extreme solutions and other optimal
solutions are better than the solution of randomly
choosing the α parameter.

In our future work, we will investigate the RF EH
MEC NOMA system with multiple IRS assisting two
users in energy harvesting and task offloading. We will
apply other multi-objective optimization algorithms such
as NSGA-III or MOPSO to reference the results obtained
in this study.

Appendix A. Proof of Lemma 1

This appendix provides the detailed proof for Lemma
1. According to (14), we have:

Φs = Pr

(
L1

W log2 (1 + γ1)
+ (1− α)ξL

f
< (1− α)Tth,

L2

W log2 (1 + γ2)
+ (1− α)ξL

f
< (1− α)Tth

)
= Pr

(
γ1 > 2

L1
WT∗ − 1, γ2 > 2

L2
WT∗ − 1

)
= Pr

(
aγ0α1X

2

aγ0α2Y 2 + 1
> γth1 , aγ0α2Y

2 > γth2

)
= Pr

(
X >

√
b1Y 2 + b2, Y >

√
b0

)
=

∫ ∞

4√b0

[
1− FX

(√
b1z4 + b2

)]
fZ(z)dz,

where L = L1 + L2, T ∗ = (1− α)
[
Tth − ξL

f

]
, γth1 =

2
L1
WT∗ − 1, γth2 = 2

L2
WT∗ − 1, b0 =

γth2
aα2γ0

, b1 =
γth1 α2

α1
, b2 =

γth1
aγ0α1

. Moreover, FX(x) is the CDF of X = |h1|2 follows
the Nakagami-m fading model with fading parameter
m1. Thus, it is given by

FX(x) = 1−
m1−1∑
k=0

mk
1x

k

k!λk1
e−

m1x
λ1 , (A.1)

where λ1 = E
[
|h1|2

]
, E [.] stands for the expectation

operator. Note that it is NLoS for m1 = 1 and is LoS
for m1 > 1.

Substituting (10) and (A.1) into Φs, we obtain

Φs =
mN

Γ (2msN)

m1−1∑
k=0

mk
1

k!λk1

∫ ∞

4√b0

z2msN−1

×
(
b1z

4 + b2
) k

2 e−
m1
λ1

√
b1z4+b2−2

√
msmlzdz

(1)
=

mN

Γ (2msN)

m1−1∑
k=0

mk
1

k!λk1

∫ a0

0

(− ln t)2msN−1

×
(
b1(− ln t)4 + b2

) k
2 e−

m1
λ1

√
b1(− ln t)4+b2

× e−2
√
msml(− ln t)

t
dt

(2)
≈ πa0m

N

2Q1Γ (2msN)

m1−1∑
k=0

Q1∑
q=1

mk
1

k!λk1
(− ln tq)

2msN−1

×
[
b1(− ln tq)

4 + b2
] k

2 e−
m1
λ1

√
b1(− ln tq)4+b2

× e−2
√
msml(− ln tq)

tq

√
1− x2q,

where Step (1) is obtained by replacing t = e−z

and a0 = e−
4√b0 . Step (2) is held by applying the

Gaussian-Chebyshev quadrature method with Q1 is
the complexity-vs-accuracy trade-off coefficient, xq =

cos
(

2q−1
2Q1

π
)
, tq =

(xq+1)a0

2 . This concludes our proof.

Appendix B. Proof of Theorem 2

This appendix provides the detailed proof for Theorem
2. Ψe is calculated as follows:

Ψe = Pr

(
P0αT∑2

i=1(1− α)W log2(1 + γi)
< ψth

)
= Pr [(1 + γ1)(1 + γ2) > γth]

= Pr
(
aγ0α1X

2 > γth − aγ0α2Y
2 − 1

)
=

∫ a1

0

[
1− FX

(√
c1 − c2z4

)]
fZ(z)dz +

∫ ∞

a1

fZ(z)dz

= 1− FZ(a1) +
mN

Γ (2msN)

m1−1∑
k=0

mk
1

k!λk1

∫ a1

0

z2msN−1

×
(
c1 − c2z4

) k
2 e−

m1
λ1

√
c1−c2z4−2

√
msmlzdz

(3)
≈ 1− FZ(a1) +

πa1m
N

2Q2Γ (2msN)

m1−1∑
k=0

Q2∑
q=1

mk
1

k!λk1

× u2msN−1
q

[
c1 − c2u4q

] k
2 e−

m1
λ1

√
c1−c2u4

q−2
√
msmluq

×
√
1− x2q,

where γth = 2
αTP0

(1−α)Wψth , c1 = γth−1
aγ0α1

, c2 = α2

α1
, a1 = 4

√
c1
c2
.

Step (3) is derived by applying the Gaussian-Chebyshev
quadrature method with Q2 is the complexity-vs-

accuracy trade-off coefficient, xq = cos
(

2q−1
2Q2

π
)
, uq =

(xq+1)a1

2 . This ends our proof.
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