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Abstract

This paper proposes a traffic-aware caching mechanism (TCM) for resource-constrained nodes in information-
centric WSNs. TCM pushes up popular upstream content objects to be cached nearby the sink. Less popular
content objects are cached farther from the sink compared to popular content objects. TCM also pushes down
popular downstream content objects to be cached inside the network. The objective of TCM is to reduce the
number of interest messages required forwarding in multiple hops inside WSNs to optimize stretch ratio,
energy efficiency, and content retrieval latency. We implement TCM on the top of existing popularity-based
caching schemes to improve their performance. Through analysis and experimental results, we show that TCM
achieves a significant improvement in terms of energy efficiency, content retrieval latency, cache hit ratio, and
stretch ratio compared to state-of-the-art popularity-based caching schemes.
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1. Introduction

Information-centric Networking (ICN) is considered
as one of the most promising network paradigms for
Internet of Things (IoT). The authors in [1–3] used
ICN to implement smart city applications. The authors
in [4] used ICN to implement applications for smart
homes based on hierarchical naming and multi-party
routing schemes to retrieve content from multiple
content producers. In [5, 6], the authors presented
benefits of ICN in industrial automation and intelligent
transportation systems. In ICN, in-network caching is
the key component that enables routers to cache content
objects at any intermediate node in the network and
make cached content objects accessible for requests
to enhance the network performance. Based on the
literature [7–9], we classify existing ICN caching studies
for IoT into four categories including graph-based
caching, label-based caching, probabilistic caching,
and popularity-based caching. Literature studies [7–
9] classified ICN caching mechanisms for IoT into
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popularity-based caching, probabilistic caching, label-
based caching, and graph-based caching. Popularity-
based caching stands out as one of the most efficient
approaches for in-network caching in IoT [9, 10]. In
Precache [11], the authors implemented an ICN caching
mechanism relying on content relevance. In [12], MPC
is proposed as a caching mechanism that counts the
number of incoming requests for a content object as
its popularity. MPC determines a threshold to classify
popular and less popular content objects. Based on the
content popularity, MPC makes recommendations for
nodes receiving popular content objects to cache them.
In [13], CPCCS utilizes a dynamic threshold for the
number of content requests to classify optimal popular
content (OPC) and least popular content (LPC). Based
on the classification, CPCCS suggests all routers on
routing paths to cache OPC objects and fewer routers
along a routing path to cache LPC objects.

Above ICN caching schemes motivate multiple
routers to make a caching decision to cache a popular
content object. As a result, the content diversity per a
storage unit of content store (CS) of nodes is limited.
This may be inefficient in resource-constrained WSNs
where nodes have limited storage capacity. However,
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above caching schemes may not be efficient for
resource-constrained IoT devices because the caching
schemes recommend multiple routers to cache a
popular content object. This reduces the number of
unique content objects to be cached and lowers the
content diversity in the content store (CS) of nodes.
In the previous work [14, 15], we proposed to address
the above issue by enabling CS information of nodes
in the data plane and coordinating content caching
with interest packet forwarding to increase the network
performance. Although above schemes enhance the
usage of popular content objects to improve the cache
hit ratio, the traffic pattern and node properties of
resource-constrained IoT networks are not considered.
In resource-constrained IoT such as wireless sensor
networks, there are two main types of traffic patterns.
The first one is upstream traffic of sensing data in
which content requests are normally forwarded to
IoT devices through the sink node. The second one
is downstream traffic sent to sensors and actuators
for network configuration or commands. Considering
characteristics of traffic patterns, although popular
content objects are cached inside the network, it would
be inefficient if they are cached at a router that is
far from their consumers. The reason is that resource-
constrained IoT devices are normally low power, many
nodes involved in forwarding an interest message and
content object consume a significant amount of energy
of the network. In addition, IoT nodes (i.e., sensors or
actuators) may sleep and wakeup following a wakeup
schedule, so interest messages that require forwarding
in multiple hops inside WSNs may experience long
delay and consume an additional significant energy
amount of resource-constrained IoT nodes. Consumers
in the first traffic type are normally sent requests
through the sink node. Consumers in the second traffic
type are nodes inside the network. We suggest that
popular content objects should be cached as closer
to consumers corresponding with each traffic type as
possible to increase their availability to consumers
anytime and to reduce the energy consumption of nodes
as well as the content retrieval latency.

This paper takes into account the traffic pattern
and node properties of wireless sensor networks in
optimizing ICN caching for WSNs. We propose a
traffic-aware caching mechanism (TCM) for resource-
constrained nodes in information-centric WSNs. TCM
can be implemented on the top of existing popularity-
based caching schemes to enhance their performance
[12, 13], with two strategies as follows. TCM pushes up
popular upstream content objects to be cached nearby
the sink. Less popular content objects are cached farther
from the sink compared to popular content objects.
TCM also pushes down popular downstream content
objects to be cached inside the network. In this way,
TCM helps not only improve the cache hit ratio but

also the average stretch ratio, the average hop count
required to forward an interest message inside a WSN.
The objective of TCM is to reduce the number of interest
messages required forwarding in multiple hops inside
WSNs to optimize stretch ratio, energy efficiency, and
content retrieval latency of the network. We implement
TCM on the top of state-of-the-art popularity-based
caching schemes including MPC [12] and CPCCS
[13], namely MPC-TCM and CPCCS-TCM, respectively.
Through analysis and experimental results, we show
that TCM achieves a significant improvement in terms
of energy efficiency, content retrieval latency, cache
hit ratio, and stretch ratio compared to state-of-the-art
popularity-based caching schemes.

The rest of this paper is organized as follows. In
section 2, we discuss related works. In section 3,
we provide the overview and the detailed design of
the proposed traffic-aware caching mechanism (TCM).
Section 4 describes our analysis, experiments and
obtained results. Finally, Section 5 concludes the paper.

2. Related Work
In-network caching is the key component in ICN that
enables routers to cache content objects around the
network and make them accessible for requests to
improve the content availability and content retrieval
latency [9, 10, 21]. Literature studies [7–9] classified
ICN caching mechanisms for IoT into popularity-based
caching, probabilistic caching, label-based caching, and
graph-based caching.

Probabilistic caching mechanisms are implemented
based on a probability p for making caching placement
decisions. IN LCE [16, 17], the authors introduced
simple and popular rules for probabilistic caching
where ICN routers in the network greedily cache new
content objects that are not existing in their content
store (CS). However, its tradeoff is a high rate of
redundancy. In [18–20], the authors enhanced LCE by
introducing various dynamic caching policies which
change caching probability dynamically. In HCP [19,
20], the authors optimize the network performance
by using CacheWeighty to reduce the number of
content redundancy and using CacheWeightM to
lower the stretch length between content consumers
and providers. Label-based caching mechanisms are
implemented based on policies to label content objects
with certain properties. Based on the labels, nodes
classify content objects with special policies. For
example, proposed mechanisms in [22, 23] consider
the network topology for labeling and recognizing
network context to enhance caching decisions. Graph-
based caching mechanisms take into account network
structure and routing paths to enhance caching
decisions. In [? ], the authors designed edge caching
policies for caching placement. In [? ], the authors
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proposed different ways to adapt caching positions and
centrality of network nodes. Popularity-based caching
stands out as one of the most efficient approach for
in-network caching in IoT [9, 10]. In Precache [11],
the authors implemented an ICN caching mechanism
relying on content relevance. In [12], MPC is proposed
as a caching mechanism that counts the number of
incoming requests for a content object as its popularity.
MPC determines a threshold to classify popular and
less popular content objects. Based on the content
popularity, MPC makes recommendations for nodes
receiving popular content objects to cache them. In [13],
CPCCS utilizes a dynamic threshold for the number
of content requests to classify optimal popular content
(OPC) and least popular content (LPC). Based on the
classification, CPCCS suggests all routers on routing
paths to cache OPC objects and less routers along a
routing path to cache LPC objects.

Above caching mechanisms may show limitations
when applying for resource-constrained IoT devices
because caching schemes recommend multiple routers
to cache a popular content object and don’t consider
the traffic pattern and node properties of resource-
constrained WSNs. In resource-constrained IoT such as
wireless sensor networks, content requests are normally
forwarded to IoT devices through the sink node.
Therefore, although popular content objects are cached
inside the network, it would be inefficient if they are
cached at a router that is far from the sink node. This
paper takes into account the traffic pattern and node
properties of wireless sensor networks in optimizing
ICN caching for WSNs. We propose a traffic-aware
caching mechanism (TCM) mechanism for resource-
constrained WSNs to push unique popular content
objects toward the sink node to improve the overall
performance of ICN popularity-based caching schemes
for WSNs.

3. Popularity-based Cache Placement Strategy
In popularity-based caching, nodes decide which
content objects should be cached based on content
frequency and interest message distribution. This
approach is to increase the usage of popular content
objects to increase the cache hit ratio. Popularity-based
caching mechanisms make caching decision based
on content request distribution and content access
frequency. Mechanisms belonging to this category
optimize the usage of popular content objects to
improve cache hit ratio. In existing popularity-based
caching schemes, there are several ways to determine
a popular content object. However, they share the same
mechanism to sample the popularity of content object.
In particular, each node counts locally the number of
requests for each content name c, namely content access
frequency (fc). When fc is higher than or equal to a

value, namely a threshold, c is classified as a popular
content object. Each popularity-based cache placement
strategy may have different rules to guide nodes to
cache content objects. In MPC [12], nodes counts the
number of incoming requests for a content object as
its popularity and determine a threshold to classify
popular and less popular content objects. Based on the
content popularity, MPC makes recommendations for
nodes receiving popular content objects to cache them.
In [13], CPCCS utilizes a dynamic threshold for the
number of content requests to classify optimal popular
content (OPC) and least popular content (LPC). Based
on the classification, CPCCS suggests all routers on
routing paths to cache OPC objects and less routers
along a routing path to cache LPC objects. CPCCS
recommends all routers along the routing path should
cache OPC content objects while fewer routers should
cache LPC content objects. We implement TCM on the
top of existing cache placement strategies such as MPC
and CPCCS to improve their performance in wireless
sensor networks.

3.1. Unique Popular Content Caching Policy
To improve the diversity of cached content in a
neighborhood, we reuse the idea of CS information
exchanging which is implemented in our previous work
[14, 15]. Our proposed idea makes CS information
available in the data plane to coordinate CS of
nodes within its neighborhood. We propose efficient
procedures for CS information exchanging using
counting bloom filter (CBF) [28].

A bloom filter (BF) is well known as a probabilistic
data structure designed to enable rapid checking of
whether an element is present in a set. A bloom filter is a
very space efficient structure consisting of only a m-bit
array. A counting bloom filter uses the same functions of
bloom filters with counters to enable deleting elements
from its data structure. Due to resource-constrained
storage, this property is necessary in IoT because
content objects can be deleted or added to a CS. We use
CBF as a data structure to summarize a compact name
set of content objects being cached in the content store
of a node [28]. As a result, we only need to use CBF
for storing as well as exchanging CS information among
nodes in the network. This helps reduce the amount of
CS information required to be exchanged and stored.

Each node in the network summarizes information
of its CS into a CBF, called a local CBF. The local
CBF of a node is updated when the node adds or
deletes content objects from its CS. For CS information
exchanging in the data plane, the node advertises
the compressed version of its local CBF [29] with its
neighbor nodes within a neighborhood size defined
by the mechanism, for example N hops distance from
the node. To save energy, the node only piggybacks
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the compressed version of its local CBF in existing
advertisement messages available in the signaling
channel at the lower layer protocol as described in our
previous study [30]. Specifically, the resulted data is
piggybacked and encapsulated into signaling messages
of the 802.15.4 MAC layer at the sender and then
decapsulated at the receivers. In this way, our design
for CS information exchange does not incur additional
packet transmission.

We create a new table structure for each node,
called neighbor content store (NCS) table containing
CS information received from its neighbor nodes.
NCS is a lightweight table structure which consists
of one or several CBFs. Each CBF is associated
with a communication interface of the node and
contains CS information of neighbors coming from the
corresponding interface by merging local CBFs received
from each neighbor node associated with the interface.
Other data structures such as pending interest table
(PIT), forwarding information base, and content store
follow the conventional design of ICN [16, 31].

The objective of our unique caching policy is to
maximize the number of popular content objects being
cached within a neighborhood. Based on top of above
popularity-based caching placement strategies, each
node contributes to the objective of its neighborhood
by optimizing the number of unique popular content
objects cached in its CS. For that objective, before
deciding to catch a popular content object following a
popularity-based caching strategy, a node first checks
whether or not the object has been cached by its
neighbor by validating the content object in its neighbor
CS table. If the content object is not cached by its
neighborhood, the node decides to catch the object in its
content store. If the content object is available in the CS
of its neighbors, the node decides not to catch it. When
the node has a full storage, the node replace the cache if
the new content object has a higher popularity and has
not been cached in its neighbors’ content store.

3.2. Traffic-aware caching mechanism
For the upstream data traffic, TCM performs push up
strategy to push popular content objects to be cached
nearby the sink node. Whenever the content access
frequency of content object c, fc, cached in the CS of
a node s achieves a certain popularity level threshold
f m, node s forwards c with its fc information to the
upper node r toward the sink through the interface
where the interest message for c was received. We call
s as the cached object sender (COS). If the upper node
r has available storage in its CS or r finds c more
popular than existing content objects cached in its CS,
the node caches c or replaces a content object in its
CS with c. We call r as the cached object receiver
(COR) and the operation of migrating c from s to r

as cache migration. COR r then replies COS s with
an acknowledge message. According to receiving the
acknowledge message, COS s deletes c from its CS. r
continues to push c to upper nodes toward the sink
following above procedures. The migration trial stops
when c doesn’t have a higher popularity fc than cached
content objects at the upper node, so the upper node
doesn’t cache c in its CS and there is no acknowledge
messages replied. In this case, the sender s keeps c in
its CS and stop pushing c toward the sink. For the
downstream traffic, TCM performs push down strategy
to push content objects to be cached by nodes inside the
network. This type of content is normally sent to nodes
inside the network for coordination, configuration or
command. In other words, consumers of this type of
information located inside the network. Each consumer
normally requests each object belonging to this type of
information once. For this type of traffic, whenever a
node s, which caches a content object c belonging to
the downstream traffic, receives an interest message for
c from a downstream node, s responds with c. After
receiving an acknowledgment from the downstream
node, s deletes c from its CS and the downstream node
caches c instead. In this way, c is pushed down to the
network so that consumers can retrieve c from a shorter
distance. In addition, nodes nearby the sink node have
more storage capacity to cache popular content objects
of upstream traffic.

4. Performance Evaluation
4.1. Implementation and configuration
We implement TCM in Contiki [31] on the top
of state-of-the-art popularity-based caching scheme,
MPC [12] and CPCCS [13], namely MPC-TCM and
CPCCS-TCM, respectively. We note that TCM is
proposed as a complementary component to improve
the performance of existing popularity-based caching
schemes, not to replace them. In this implementation
of TCM, a node migrates a content object c in its CS
to an upper node r toward the sink if the popularity
level of c, fc, is higher than or equal to fc1, the content
popularity level of c1 in the CS of r. We conduct
simulations using COOJA simulator [31] consisting
of 1050 nodes deployed in an area with the size of
1000 x 1000 meters. Sensing correlation among nodes
are generated randomly based on collected sensing
data from IntelLab[32]. Content requests are generated
randomly from nodes following Zipf-like distribution
with a coefficient parameter of α. We vary the CS size
of nodes from 5 to 25 content objects. For content
requests through the sink node, we use the HTTP-
CoAP converter for converting requests of consumers in
HTTP to CoAP, as presented in our previous study [30].
Consumers’ requests through the sink node are encoded
with templates using extensible markup language
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Table 1. Parameters.

Parameter Value

Number of nodes 1050

CCA check 400 times

α 0.2 - 1

cache size p 5 − 25 objects

Wakeup interval 0.5-2.5 s

MAC LPL

Neighborhood size 3

noise model CPM

(XML) and are decoded with SensorML interpreter
[33]. We use CTP and LPL [30] for data collection
protocol and 802.15.4 MAC (Media Access Control).
The radio noise model is configured using closest-
fit-pattern matching (CPM) and we set CCA (clear
channel assessment) [30] value up to 400 times for
check parameter. We present the detailed parameter
configurations for simulations in Table 1. For other
parameters, we use default configurations in Contiki
CC2420 radio model [30]. In default cases, we set
the cache size of 20 objects, neighborhood size of
3 hops and wakeup interval of 1s if they are not
specified in detail. Obtained results are reported with
96% confidence interval. We compare the performance
of TCM with state-of-the-art popularity-based caching
schemes incluing CPCCS [13] and MPC [12].

4.2. Performance Analysis
We evaluate TCM using the following metrics.
Average cache hit ratio (CHR): CHR is an important

metric to evaluate the performance of a caching scheme.
CHR measures the response rate by the in-network
caching storage where content objects are cached
locally. A cache hit occurs when an interest message is
satisfied by a network router’s cache. The router plays
the role of a content provider by responding with the
requested content object to the content requester. We
compute average cache hit ratio as follows.

CHRaverage =
∑m

i=1 ci
p

(1)

where m is the total number of nodes in the network,
ci is total number of cache hit by the CS of node i and
p =

∑m
i=1 pi is the total number of interest messages sent

by all consumers to the network.
Average stretch ratio (ST): stretch is known as the

hop distance to forward an interest packet from a
content consumer toward its provider. We compute
stretch ratio as follows.

STaverage =

∑I
i=1

H
f orwarded
i

H
c−p
i

I
(2)

where I is total number of interest packets trans-
mitted in the network, H

f orwarded
i is total hop count

required to forward an interest packet i until it is satis-
fied, Hc−p

i is total number of hop count from the content
consumer to the corresponding content producer of
interest packet i.
Average content retrieval latency: indicates average

time needed for interest packets to get satisfied with
a content object retrieved from a cache or from
its content publisher. We compute average content
retrieval latency as follows.

Laverage =
∑p

c=1 Lc
p

(3)

where Lc is the latency to retrieve content c.
Average radio duty cycle: indicates energy efficiency

of mechanisms [35]. To calculate radio duty cycle of
nodes, we use a counter to track and accumulate time
period in each radio state of nodes. Radio duty cycle of
a node is calculated as the ratio of radio active period
and the cycle time period. The overall duty cycle (DC)
of a node i is calculated using (4) by simply adding
duty cycles for each radio operation: listening (DClx),
transmitting (DCtx), receiving (DCrx), overhearing
(DCover ), and additional operations (DCadd) [35].

DCi = DClx
i + DCtx

i + DCrx
i + DCover

i + DCadd
i (4)

At the end of simulation, we compute average
radio duty cycle and report average results which are
calculated as follows.

DCaverage =
∑m

i=1 DCi

m
(5)

where m is the total number of IoT nodes.

4.3. Obtained Results
Average duty cycle. We first evaluate the energy
efficiency of TCM under various wakeup intervals. We
change the wakeup interval configuration for sensors
from 0.5 s to 2.5s and measure the average duty cycle
of nodes. Figure 1 depicts average duty cycle results
of MPC, MPC-TCM, CPCCS, and CPCCS-TCM. Average
duty cycle results of nodes decrease gradually when we
increase the wakeup interval. This is due to the fact that
at a long duty cycle, nodes can sleep more and wakeup
less frequent to save energy. We obtain that TCM
achieves a significant energy efficient improvement for
MPC and CPCCS. At the wakeup interval of 1 s, TCM
helps reduce the average duty cycle of nodes running
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Figure 1. Average duty cycle of nodes running MPC, MPC-TCM,
CPCCS, CPCCS-TCM under various wakeup intervals

MPC from 3.32 % to 2.48 %, and of nodes running
CPCCS from 3.04 % to 2.27 %. An interesting result is
that the longer the wakeup interval is set, the greater
the energy efficient improvement ratio TCM achieves.
In particular, the result of MPC-TCM is lower than
that of MPC 18 % at wakeup interval of 0.5 s while
the result of MPC-TCM is lower than that of MPC
29.5 % at wakeup interval of 2.5 s. The reason is that
energy consumption of a node to forward a message in
a long wakeup interval condition is higher than that
in a short wakeup interval condition, considered the
same forwarding distance. At a long wakeup interval
condition, the sender has to wait and be awake for a
longer time period to pass the message to the next hop.
By coordinating popular content objects to be cached
nearby the sink node, TCM helps increase the number
of interest messages that are satisfied by nodes nearby
the sink, thus shorten average forwarding distance for
interest messages.

Average content retrieval latency. Figure 2 presents
average content retrieval latency of MPC, MPC-
TCM, CPCCS, and CPCCS-TCM under various wakeup
intervals. The figure shows that TCM also helps reduce
average content retrieval latency of MPC and CPCCS
significantly. In particular, at the wakeup interval of
1 s, average content retrieval latency in the case of
MPC-TCM is 1.30 s compared to that of MPC is 1.84
s, and average content retrieval latency in the case of
CPCCS-TCM is 1.13 s compared to that of CPCCS is
1.65 s. We observe the similar pattern of average content
retrieval latency results compared to the previous figure
when the wakeup interval increases from 0.5 s to 2.5
s. The longer the wakeup interval is used, the greater
the content retrieval latency improvement ratio TCM
achieves. This is due to the fact that forwarding latency
of interest messages and data messages is much longer
when we increase the wakeup interval of nodes. By
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Figure 2. Average content retrieval latency of MPC, MPC-TCM,
CPCCS, and CPCCS-TCM under various wakeup intervals

reducing the number of forwarding hops of messages,
TCM helps reduce average content retrieval latency
significantly.

Average cache hit ratio. We now fix the wakeup interval
of 1 s and vary the number of cache size to investigate
average cache hit ratio. Figure 3 presents average
cache hit ratio results obtained with MPC, MPC-
TCM, CPCCS, and CPCCS-TCM. Cache hit ratio results
increase gradually when the cache size is increased.
For all cases, TCM achieves a significant improvement
of cache hit ratio compared to MPC and CPCCS. The
figure shows that CPCCS-TCM witnesses the highest
cache hit ratio while MPC experiences the lowest result.
The cache hit ratios of MPC, MPC-TCM, CPCCS, and
CPCCS-TCM at the cache size of 20 objects are 23.6 %,
31 %, 28.9 %, and 34 %, respectively. We observe that
the lower the cache size is used the higher the cache
hit ratio improvement TCM achieves. In particular, at
the cache size of 5 objects, MPC-TCM and CPCCS-
TCM achieve around 28.4 % in term of cache hit ratio
improvement compared to MPC and CPCCS while
the cache hit ratio improvement is just around 19 %
at the cache size of 20 objects. The reason is that
TCM effectively coordinates content stores of nodes
to increase their content diversity and pushes popular
content objects closer to consumers. Therefore, TCM
migrates more and more popular content objects to
nearby consumers within a limited storage capacity of
nodes. When storage capacity of nodes is higher, they
can store more content objects in their CS, so cache
hit ratio increases automatically, thus the improvement
ratio of TCM also decreases.

Average stretch ratio. The average stretch ratio is
measured as the ratio between (1) the actual hop
distance required for an interest packet to be forwarded
from a content consumer to provider and (2) the
hop count from a content consumer to corresponding
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Figure 3. Average cache hit ratio of MPC, MPC-TCM, CPCCS,
and CPCCS-TCM under various cache sizes
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Figure 4. Average stretch ratio of MPC, MPC-TCM, CPCCS,
and CPCCS-TCM under various cache sizes

content producer. We note that a content provider in
ICN can be any intermediate router. Figure 4 shows
the stretch ratios of MPC, MPC-TCM, CPCCS, and
CPCCS-TCM under various cache sizes. Comparing
figure 4 and figure 3, we find that stretch ratio
results increase gradually when we increase the cache
size, proportionally with cache hit ratio results. TCM
improves stretch ratio of MPC and CPCCS in all cases.
This indicates that TCM improves not only average
cache hit ratio but also average forwarding distance for
interest and data messages. An interesting observation
is that the improvement ratio of TCM in term of stretch
ratio is higher than the improvement ratio of TCM in
term of cache hit ratio. The reason is that TCM pushes
popular content objects to be cached nearby the sink, so
the forwarding distance of interest and data message is
optimized.

5. Discussion and Conclusions
This paper proposes to an efficient traffic-aware caching
mechanism (TCM) for ICN in wireless sensor networks.
The proposed caching mechanism pushes unique
popular upstream content objects to be cached nearby
the sink node. Less popular content are placed farther
from the sink compared to popular content. TCM also
pushes down popular downstream content objects to
be cached inside the network. Through experiments,
we find that these two strategies can be implemented
on the top of two existing state-of-the-art popularity-
based caching schemes such as MPC and CPCCS to
enhance their network performance and energy saving
significantly.
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