EAIl Endorsed Transactions

on Industrial Networks and Intelligent Systems

EAIL.EU Rrescarch Article

Efficiency Cost-Sensitive Loss of Transformer based
on Mamba Mechanism for Aircraft Detection in
Satellite Imagery

Manh-Tuan Do!, Manh-Hung Ha?*, Minh-Huy Le3, Oscal Tzyh-Chiang?*

Faculty of Sciences and Technology, UEVE, University of Paris Saclay, Evry-Courcouronnes 91000, France
2Faculty of Applied Sciences, International School, Vietnam National University, Hanoi 100000, Vietnam

3Faculty of Electrical and Electronic Engineering, Phenikaa University, Yen Nghia, Hanoi, 100000, Hanoi, Vietnam
“Department of Electrical Engineering, National Chung Cheng University, Chiayi, Chiayi, 62102, Chiayi, Taiwan

Abstract

Detecting aircraft in satellite images poses considerable challenges due to complex backgrounds and variable
conditions influenced by sensor geometry and atmospheric factors. Despite rapid advancements in deep
learning algorithms, their main focus has been on ground-based imagery. This study offers a thorough
evaluation and comparison of advanced object detection algorithms specifically designed for aircraft detection
in satellite imagery. By leveraging the extensive HRPlanesV2 dataset and a rigorous validation process
on the GDIT dataset, we trained a cutting-edge object detection model, YOLO-Mamba, published in June
2024. Additionally, we introduce YOLO-Mamba-TransGhost, which integrates a novel Transformer module
SC3T and Ghost Convolution into the YOLO model’s backbone architecture. Furthermore, substituting the
WIoU loss function with CloU in YOLO-Mamba results in significant improvements in accuracy and small
object detection. Experimental results on the GDIT dataset indicate that YOLO-Mamba-TransGhost improves
mAP@.5 by approximately 2% compared to the original YOLO-Mamba. Similarly, tests on the HRPlanev2 data
set reveal a notable reduction in model complexity and an impressive accuracy of 98.7% which is achieved
by leveraging a cost-sensitive loss function that dynamically focuses training on higher quality samples,
improving convergence and accuracy.Therefore, the proposed YOLO-Mamba-TransGhost model demonstrates
superior accuracy and reduced complexity in aircraft detection from satellite imagery, highlighting its
potential for practical applications in aerospace monitoring, disaster management, and surveillance systems
domain.
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focus on aircraft detection due to its crucial role
in airport monitoring, military reconnaissance, and
strategic decision-making. However, detecting aircraft
in satellite imagery remains challenging due to factors
such as the small size of targets, the high-altitude
acquisition of images, and various environmental

1. Introduction

In recent years, advancements in remote sensing
technology have significantly enhanced the quality
and richness of satellite imagery, making these
images an indispensable asset across a wide range

of applications, especially in military operations.
This has led to object detection in remote sensing
becoming a critical research area, with particular
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influences, including weather conditions, illumination,
and sensor-specific parameters. Moreover, the dense
arrangement of aircraft within scenes makes it difficult
to separate them from the background, complicating
feature extraction and reducing detection accuracy,
which hinders real-time detection performance.
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The advent of deep learning has revolutionized
object detection, offering major improvements over
traditional machine learning approaches. Current
object developers fall into two main categories: two-
stage models, such as R-CNN [1], Fast R-CNN [2], and
Faster R-CNN [3], which prioritize accuracy; and one-
stage models, like SSD [4] and the YOLO family [5],
which emphasize speed and real-time performance.

Despite considerable progress in detection accuracy
and speed for satellite imagery, significant challenges
remain. Initially, YOLO v1 [6] had a large positioning
error and a lower recall rate compared to region-based
proposal methods like Fast R-CNN. After that, various
studies have since proposed improvements to these
models. The main enhancements of YOLOv2 7] include
improving the recall rate, batch normalization, anchor
boxes, and multi-scale training.

Further developments, such as incorporating
DenseNet into YOLOv3, improved detection accuracy
at the expense of increased complexity and reduced
speed [8]. Other approaches include lightweight
modifications to YOLOv3 to balance accuracy and
speed [9], and the integration of advanced modules
and activation functions in YOLOv4, YOLOv5, and
YOLOv6 for performance improvements [10]-[12].
More recently, YOLOv7 incorporated the channel
attention mechanism from CBAM, refining its network
architecture. Additionally, it replaced complete
intersection over union (CloU) with Alpha-GIoU as
the coordinate loss function, leading to improved
generalization capabilities.

In 2023, YOLOv8 was enhanced with Transformer
blocks to boost accuracy, particularly for detecting
small objects [13]. Early in 2024, YOLOV9 was
developed and applied to detect aircraft in images from
Low Earth Orbit (LEO) satellites [14], demonstrating its
effectiveness in real-world scenarios.

In May 2024, YOLOv10 [15] was launched, featur-
ing innovations such as Consistent Dual Assignment
and Holistic Efficiency-Accuracy Driven Model Design,
which reduces the reliance on Non-Maximum Sup-
pression, thereby minimizing redundant information
and decreasing latency. These advancements also con-
tributed to a significant improvement in accuracy.

Nevertheless, challenges remain when detecting
aircraft in remote sensing imagery due to factors such
as low resolution, complex backgrounds, varying object
sizes and orientations, and imbalanced datasets.

In this study, we evaluate and compare several
cutting-edge object detection algorithms designed
specifically for aircraft detection in satellite imagery.
Moreover, we assess the performance of YOLO-Mamba
[16], a state-of-the-art object detection model intro-
duced in June 2024. We also propose an enhanced ver-
sion, YOLO-Mamba-TransGhost, which integrates the
SC3T Transformer and GhostConV into its backbone to

improve accuracy. Additionally, we recommend replac-
ing the WIoU loss function [17] with CIoU in YOLO-
Mamba, which offers an intelligent gradient gain allo-
cation strategy. This strategy reduces the competitive-
ness of high-quality anchor boxes while mitigating the
adverse gradient impact from low-quality samples. By
focusing on mid-quality anchor boxes, it improves the
overall performance of the detector.

The structure of this paper is as follows: Section
II introduces the YOLO-Mamba-TransGhost model
and details its design process; Section III outlines
the experimental data, environment, and comparative
results; and Section IV presents the conclusions and
future directions. With these advancements, we aim
to address the inherent challenges of remote sensing
image analysis, contributing to the broader field of
computer vision.

2. METHOD

2.1. Proposed YOLO-Mamba-TGW

In general, YOLO-Mamba, developed as an advanced
version of the YOLO series, represents a significant
leap in real-time object detection. This model integrates
several innovations aimed at overcoming the limitations
of earlier YOLO versions. The backbone architecture
incorporates State Space Models (SSMs), which signif-
icantly reduce the computational complexity associated
with attention mechanisms while preserving the ability
to model long-range dependencies. The ODSSBlock, a
core innovation, utilizes a multi-directional scan mech-
anism (SS2D) to enhance spatial information capture,
allowing for more accurate object detection in complex
environments. Additionally, the model includes the
LSBlock, which leverages depthwise separable convo-
lutions to balance computational efficiency with high
processing performance. The RGBlock uses a gating
mechanism to optimize information flow, ensuring the
effective capture of both global and local features, even
in challenging detection scenarios. These innovations
allow YOLO-Mamba to perform exceptionally well on
large-scale datasets such as COCO and VOC, achieving
higher accuracy (mAP) and better computational effi-
ciency (FLOPs) compared to previous YOLO versions,
while maintaining real-time detection capabilities.

We propose an advanced variant, YOLO-Mamba-
TGW where TGW refers to TransGhost with WloU, the
proposed YOLO-Mamba-TransGhost model integrating
the SC3T Transformer, Ghost Convolution, and WIoU
loss function, as illustrated in Figure 1. The diagram
illustrates the architecture of the proposed, starting
from the input image through a multi-stage process.
The model includes an ODMamba Backbone for feature
extraction, followed by the PAFPN Neck which merges
multi-scale features using upsampling and concatena-
tion. Notably, modules like GhostConv, ODSSBlock,
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Figure 1. The architecture of YOLO-Mamba-TGW.

and SC3T (with transformer blocks and multi-head
self-attention) are integrated to enhance performance
and reduce computation. The final Head performs
detection at three scales (small, medium, large) with
bounding-box regression and classification using R_IoU
+ DFLloss. This architecture balances accuracy and
efficiency, suitable for complex aerial image analysis.
This model extends the backbone architecture by incor-
porating the SC3T module, a Transformer-based com-
ponent that enhances the capture of global features and
increases the receptive field. This extension improves
the model’s capacity to process large-scale and complex
datasets by aggregating high-level contextual informa-
tion. Furthermore, we replace the traditional convo-
lution layers in the head section with Ghost convo-
lution, significantly reducing the computational cost.
Ghost convolution generates a subset of feature maps
and expands these through linear operations, thereby
reducing both the number of parameters and compu-
tational complexity, while maintaining the detection
accuracy.

In addition, we substitute the WIoU loss function
with CIoU in YOLO-Mamba, which results in notable
improvements in accuracy, particularly in detecting
small objects. CloU provides better optimization by
considering overlap area, distance, and aspect ratio
between predicted and ground truth boxes, thus
improving overall object localization.

The SC3T module [18] combines a Spatial Pyramid
Pooling (SPP) structure with a C3TR module to
handle varying input image sizes and multiscale
feature extraction. The SPP module utilizes kernels
of different sizes (5x5, 9x9, 13x13) to aggregate
multi-scale features, and the resulting feature maps
are concatenated across channels, enhancing the
model’s ability to process features from different
scales. The C3TR module incorporates a Transformer
block at the three outputs of the detection network,
which employs a Multi-Head Self-Attention (MSA)
mechanism. The MSA captures global contextual
information by updating and concatenating Query (Q),
Key (K), and Value (V) representations from different
spatial regions, ensuring the model effectively captures
global features. These representations are then passed
through a Multilayer Perceptron (MLP) to refine the
output and improve feature expression.

In order to further optimize the efficiency of the
proposed YOLO-Mamba-TGW, we integrate Ghost con-
volution into the head of the network. Traditional con-
volutional layers tend to produce redundant feature
maps, as many of them contain overlapping informa-
tion across different channels. This redundancy leads to
unnecessary computational overhead. Ghost convolu-
tion [19] addresses this issue by generating only a subset
of the feature maps through standard convolution oper-
ations. These initial feature maps are then expanded
using linear transformations, which produce additional
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feature maps without the need for full convolutions,
thereby significantly reducing the computational load
and the number of parameters required.
Mathematically, the process of generating feature
maps in a convolutional layer can be described as:

Y=X-f+b (1)

where X € R represents the input feature map,
with ¢ as the number of input channels, and h and w as
the height and width, respectively. The output feature
map Y € R"*¥*" has 5 channels, while f € RE¥*xkxn
denotes the convolutional filters with a kernel size k x k,
and b is the bias term. The computational complexity
for this operation is given by:

Cqa=n-h-w-c-k-k (2)

Ghost convolution improves efficiency by introduc-
ing a two-step process. First, a subset of feature maps
is created using the standard convolution operation.
Then, additional feature maps are generated through
lightweight linear operations. The total computational
cost can be expressed as

CghostZg'h"w"c-k.k+(s—1).§.h’.w’.r.r (3)

Here, s represents the redundancy ratio specified as
s is greater than one (typically 2 in our experiments),
and r x r is the kernel size for the linear operations. This
technique significantly reduces the overall computa-
tional cost when compared to traditional convolutions,
as the Ghost module requires only a fraction of the
operations needed in full convolutions. In fact, the total
computational cost using Ghost convolution is approx-
imately 1/s of the cost of a regular convolution, making
it a highly efficient method for reducing complexity
without sacrificing the quality of the features.

By applying this method, YOLO-Mamba-TGW
achieves a considerable reduction in the number of
operations and parameters required for convolutional
layers, which directly translates to improved processing
speed and efficiency. This is particularly beneficial for
real-time object detection tasks, where both accuracy
and computational efficiency are critical.

2.2. Improved Loss Function

The YOLO-Mamba model initially employed the
Complete IoU (CIoU) loss function, which was designed
to enhance detection accuracy by considering three
factors: the distance between the centers of the
predicted and ground-truth bounding boxes, the
difference in their aspect ratios, and the ratio of their
diagonal distances. This approach was particularly
effective for improving the detection of smaller objects

by providing better localization and bounding box
adjustments.

In this study, we propose replacing CloU with an
improved version of the Weighted IoU (WIoUv3) loss
function for bounding box regression that embodies a
cost-sensitive approach, a key concept for understand-
ing the title of this paper. Unlike standard loss functions
that treat all detection errors equally, a cost-sensitive
method applies different ‘costs’ or weights to differ-
ent training examples based on their quality. WIoUv3
achieves this through a dynamic, non-monotonic focus-
ing mechanism that adjusts the gradient gain for each
anchor box. By effectively reducing low quality sam-
ples that can produce harmful gradients and focusing
training on ‘ordinary quality’ ex amples that are most
beneficial for learning, ’sensitivity’ to sample quality
leads to more stable convergence and better detection
accuracy. This new version builds on the previous
WIoUv1l and WIoUv2, both of which focused on refin-
ing the model’s ability to balance simple and difficult
examples. WIoUv1 incorporated attention mechanisms
that prioritized distance metrics, while WIoUv2 intro-
duced a monotonic focus coefficient to further optimize
gradient distribution. WIoUv3 enhances this methodol-
ogy by dynamically scaling the gradient gain according
to the anchor box quality, allowing for more precise
adjustments during training.

The WIoUv3 loss function is defined as:

Lwrouvs =7 X Lwrouwt (4)

where r is the non-monotonic focus coefficient,
calculated as:

__ b
e dapo

In this formulation, § represents the outlier factor,
computed as:

(5)

B = Loy B € [0, +c0) (6)
LIoU

Here, Lyj,u,1 represents the original WIoUv1 loss,
which is calculated as:

Lwiouvt = Rwrou X Liou (7)
with Ry, being the weighting factor:

(x = Xg1)? + (¥ = V1)
w? + h?

and L;,y, the standard IoU-based loss, being defined
as:

(8)

Rwiou = exp

LIOU =1-1IoU (9)

The primary strength of WloUv3 lies in its ability
to dynamically focus on anchor boxes with ordinary
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or lower quality, scaling down the gradient gain for
higher-quality boxes. This prevents the model from
being influenced by potentially harmful gradients
that originate from low-quality samples. As a result,
the loss function promotes better convergence and
overall detection performance, particularly in scenarios
involving small objects or imbalanced datasets.

We chose to integrate WIoUv3 into the YOLO-
Mamba model due to its capacity to adapt to varying
qualities of sample data. This flexibility ensures more
accurate localization, faster convergence, and improved
robustness, especially in challenging detection tasks. By
dynamically adjusting its focus, WIoUv3 plays a critical
role in helping the model generalize effectively across a
wide range of object detection scenarios, making it an
essential component of our proposed improvements.

3. EXPERIMENTAL ENVIRONMENT AND
DATASETS

3.1. Experiment Environment

The proposed YOLO-Mamba-TGW model was trained
on the GDIT dataset and HRPlanev2 dataset using
Google Colab with a High RAM environment and
a Tesla V100 GPU. After the training process was
completed, the corresponding weight sets for each
model were generated. The models were then evaluated
on their respective test datasets. Finally, the results
were compared to assess the improvements brought by
YOLO-Mamba-TGW.

3.2. Datasets

GDIT Dataset

The GDIT Aerial Airport dataset [20] is a curated
collection of aerial images focused on parked aircraft
within airport settings. All types of aircraft in
this dataset are categorized under a single label,
‘airplane.” This dataset serves as a valuable resource
for researchers developing and evaluating aircraft
detection algorithms. It consists of 338 high-resolution
images, each measuring 600 x 600 pixels, which
are split into training, validation, and testing sets
containing 236, 68, and 34 images, respectively. The
dataset is further enhanced with augmented training
images that include variations in filters, zoom levels,
and rotations, expanding the total number of images
to 810. By providing a single classification label for
all aircraft types, the GDIT dataset streamlines the
detection process, aiding in the creation of effective
detection models. The GDIT dataset was chosen as a
curated benchmark for evaluating the core accuracy
of aircraft detection models in a controlled airport
environment. Its high-resolution images and single-
class focus allow for a precise assessment of localization
performance.

HRPlanesv2 Dataset

HRPlanev?2 dataset [21], which is designed for high-
resolution airplane detection tasks. The HRPlanev2
dataset comprises imagery sourced from prominent
global airports and aircraft boneyards, offering a
diverse range of conditions in terms of landscape,
seasonal variations, and data acquisition geometry. The
images were obtained from Google Earth and cover
significant locations including Paris-Charles de Gaulle,
John FE. Kennedy, Frankfurt, Istanbul, Madrid, Dallas,
Las Vegas, Amsterdam Airports, and Davis-Monthan
Air Force Base.

The dataset includes 3092 RGB images, each
with a resolution of 4800 x 2703 pixels. These
images have been manually annotated with bounding
boxes around each aircraft, utilizing HyperLabel
software for the annotation process. A rigorous quality
control procedure was implemented, involving visual
inspections by independent analysts not involved in the
initial annotation, ensuring the accuracy of the labels.
In total, the dataset includes 18,477 annotated aircraft.
which are very large images, diverse geographical
locations, varied seasonal conditions, and a sheer
number of annotations provide a comprehensive test of
the model’s generalization capacities.

The HRPlanev2 dataset is divided into three subsets
for experimental purposes: 70% (2166 images) for
training, 20% (615 images) for validation, and 10% (311
images) for testing. This distribution facilitates robust
model training and evaluation, enabling a thorough
assessment of detection performance across a range of
conditions and scenarios.

4. EXPERIMENTAL RESULTS AND
DISCUSSION

4.1. Model Performance Evaluation

In this section, we thoroughly evaluate the per-
formance of several state-of-the-art object detection
models, including RT-DETR, YOLOv3s-tiny, YOLOV5s,
YOLOv6, YOLOv8-World, YOLOv10s, YOLO-Mamba,
and the advanced YOLO-Mamba-TransGhost. The mod-
els were benchmarked on two distinct datasets, GDIT
and HRPlanev2, using key performance metrics such
as Precision, Recall, mean Average Precision at IoU
thresholds of 0.5 and 0.95 (mAP@.5, mAP@.95), model
complexity (in terms of Parameters), and GFLOPS. The
experimental results are summarized in Table 1.

On the GDIT dataset, YOLO-Mamba-TransGhost
performed best in terms of Precision (92.20%),
Recall (87.70%), and mAP@.5 (94.30%). While RT-
DETR had a slightly higher Recall (89.90%), it
came with a lower Precision (91.40%), indicating
more false positives. YOLO-Mamba-TransGhost also
led in mAP@.95 with 51.20%, demonstrating superior
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localization accuracy. Although YOLO-Mamba and
YOLOvV10s followed closely, the improvements brought
by the TransGhost module are evident, particularly in
challenging detection tasks.

However, this increase in performance comes with
higher computational costs. YOLO-Mamba-TransGhost
requires 33.7M parameters and 102.2 GFLOPS, making
it more resource-intensive compared to YOLO-Mamba
and YOLOv10s. This may present challenges in
resource-limited environments.

To further substantiate the effectiveness of the pro-
posed YOLO-Mamba-TransGhost model, we tested it on
the HRPlanev2 dataset. Similar to the GDIT dataset,
the results on HRPlanev2 reaffirm the model’s superior
performance. YOLO-Mamba-TransGhost again showed
the best performance with 98.70% Precision, 96.00%
Recall, and 99.20% mAP@.5. It also achieved the high-
est mAP@.95 of 80.50%, highlighting its effectiveness in
precise detection, especially in aerial imagery. Despite
the higher complexity, the improvements in accu-
racy and detection make YOLO-Mamba-TransGhost an
excellent choice for scenarios where accuracy is critical.

In summary, the proposed YOLO-Mamba-TransGhost
model consistently demonstrates superior perfor-
mance on both the GDIT and HRPlanev2 datasets.
Its notable improvements in Precision, Recall, and
mAP@.5/mAP@.95 metrics highlight the effectiveness
of the TransGhost module in enhancing both object
classification and localization tasks. Although the
model’s computational complexity is higher, the signif-
icant gains in accuracy, particularly for high-precision
applications like satellite imagery analysis, make it a
compelling solution for scenarios where accuracy is
prioritized over computational efficiency.

4.2. Loss Function Comparison

To further improve the detection accuracy of the
YOLO-Mamba-TransGhost model, we experimented
with various loss functions, including CloU, DIoU,
EloU, GloU, SIoU, and WIoU. The comparative results
for these loss functions, including their respective
mAP@.5 and number of parameters, are presented in
Table 2.

The WIoU loss function demonstrated the best
performance with a mAP@.5 score of 94.30%, clearly
outperforming the other variants. The second highest
result came from CloU, with a mAP@.5 of 93.90%,
followed closely by EloU, which achieved 93.50%.
These results show that while CloU and EloU are
quite effective, WIoU offers superior object detection
accuracy.

Interestingly, the DIoU loss function yielded a
comparatively lower mAP@.5 of 92.90%, and GIoU had
the lowest score of 91.80%. These scores suggest that
DIoU and GloU, though popular for their efficiency in

bounding box regression, may not be as suitable for this
particular task compared to the other functions.

It’s also worth noting that all these models have
identical numbers of parameters (33.7M), ensuring that
the variations in detection performance are purely
attributable to the different loss functions rather than
architectural changes.

By comparing these results with earlier experiments,
it is clear that the adoption of the WIoU loss
function provides a noticeable advantage in object
detection for the YOLO-Mamba-TransGhost model,
achieving the highest detection accuracy with 94.30%.
This result reinforces the importance of selecting
an appropriate loss function to enhance model
performance, particularly for challenging tasks such as
object detection in complex datasets like GDIT.

4.3. Ablation

Our ablation study provides valuable insights into the
enhancements of YOLO-Mamba-TransGhost as shown
in Tabel 3. The baseline YOLO-Mamba B, using
Convolution (ConV) with the CloU loss function,
achieved an mAP of 92.50% with 21.7M parameters.
Introducing Transformer modules improved the mAP
to 92.70%, although this increase also raised the
parameter count to 34M. Switching to Depthwise
Convolution (DWConv) further improved mAP to
93.00% while keeping the parameter count at 33.5M.
The most significant accuracy gain was observed with
Ghost Convolution (GhostConV), which achieved a
high mAP of 93.90% with 33.7M parameters.

Additionally, replacing the CloU loss function with
WIoU resulted in the highest mAP of 94.30%.
These results confirm that combining GhostConV with
WIoU provides the most substantial improvements in
detection accuracy, demonstrating the effectiveness of
YOLO-Mamba-TransGhost with WIoU Loss Function in
satellite imagery analysis.

4.4. Compared to other studies

Based on the comparison of parameters and GFLOPS
in Table 1, models of YOLOv6 and YOLOv8-World
show strong potential for deployment on devices with
limited hardware because of using less memory and
faster inference time (only 4.2M and 4M parameters
and low GFLOPS). On the other hand, YOLO-Mamba-
TGW has a larger size (33.7M parameters) and
higher computational cost (102.2 GFLOPS), but it
delivers the best performance, reaching the highest
mAP@0.5 (99.2%) and mAP@0.95 (80.5%) on the
HRPlanev2 dataset. This means YOLO-Mamba-TGW
is a suitable option when high accuracy is needed
and hardware resources are available. Therefore,
choosing the right model depends on carefully
balancing speed, memory efficiency, and accuracy
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Table 1. Performance Comparison of Object Detection Models

Datasets Model Precision | Recall | mAP@.5 | mAP@.95 | Parameters | GFLOPS
GDIT RT-DETR 91.40% 89.90% | 93.90% 51.00% 32M 103.4
YOLOv3s-tiny 89.90% 80.00% | 87.40% 46.00% 12.1M 18.9
YOLOv5s 93.60% 86.20% | 91.80% 50.50% 9.1M 22.8
YOLOvV6 91.00% 85.50% | 91.80% 49.30% 4.2M 11.8
YOLOv8-World 91.60% 85.20% | 91.90% 49.20% 4M 12.8
YOLOv10s 89.10% 85.20% | 92.20% 49.90% 8M 24.4
YOLO-Mamba 91.90% 85.70% | 92.50% 50.10% 21.8M 49.6
YOLO-Mamba-TGW | 92.20% 87.70% | 94.30% 51.20% 33.7M 102.2
HRPlanev2 | YOLOv10s 95.90% 93.40% | 97.30% 76.40% 8M 24.4
YOLO-Mamba 97.10% 95.30% | 98.10% 77.10% 21.7M 49.7
YOLO-Mamba-TGW | 98.70% 96.00% | 99.20% 80.50% 33.7M 102.2
Table 2. Comparison of different loss functions on the YOLO-Mamba-TransGhost model.
Model Loss Function | mAP@.5 | Parameters
YOLO-Mamba-TransGhost | CloU 93.90% 33.7M
YOLO-Mamba-TransGhost | DIoU 92.90% 33.7M
YOLO-Mamba-TransGhost | EIoU 93.50% 33.7M
YOLO-Mamba-TransGhost | GIloU 91.80% 33.7M
YOLO-Mamba-TransGhost | SIoU 93.20% 33.7M
YOLO-Mamba-TransGhost | WIoU 94.30% 33.7M
Table 3. Performance comparison of YOLO-Mamba B with different settings.
Base line Transformer | ConV type | Loss Function | mAP@.5 | Parameters
YOLO-Mamba B | No ConV CloU 92.50% 21.7M
YOLO-Mamba B | Yes ConV CloU 92.70% 34M
YOLO-Mamba B | Yes DWConv CloU 93.00% 33.5M
YOLO-Mamba B | Yes GhostConV | CloU 93.90% 33.7M
YOLO-Mamba B | Yes GhostConV | WIoU 94.30% 33.7M
Table 4. Comparison with Other Studies
References Models mAP@.5
Safouane EL GHAZOUALI [22] | RetinaNet 81.90%
SSD 59.40%
Faster RCNN 57.30%
RTMDet 86.30%
YOLOvS 91.90%
Joel Bhaskar Nadar [23] YOLO-NAS S 81.50%
YOLO-NAS M 81.80%
Our experiments YOLO-Mamba 92.50%
YOLO-Mamba-TGW | 94.30%

based on the deployment needs In the context of the
GDIT dataset, our experiments with YOLO-Mamba-
TransGhost demonstrate a notable advancement over
previously established object detection models as
shown in Table 4. For comparison, Safouane EL
GHAZOUALT’s study [22] assessed several leading
models for aircraft detection in satellite imagery,
including RetinaNet, SSD, Faster RCNN, RTMDet,

and YOLOvS. Among these, YOLOv8 achieved an
impressive mAP@.5 of 91.90%, whereas SSD and Faster
RCNN performed less effectively, with mAP@.5 scores
of 59.40% and 57.30%, respectively. The RTMDet
model reached an mAP@.5 of 86.30%, highlighting its
capability in handling intricate detection tasks.

Our YOLO-Mamba-TransGhost model outperforms
these benchmarks with a remarkable mAP@.5 of
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airplane

Figure 3. Detection results of the proposed model on the HRPlanev2 dataset.

94.30%, surpassing the highest-performing model from  YOLO-NAS variants reported by [23], which achieved
[22], YOLOVS, by 2.4%. Additionally, compared to the = mAP@.5 scores of 81.50% and 81.80%, our model
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demonstrates a substantial improvement in detection
accuracy.

In summary, the YOLO-Mamba-TransGhost model
not only exceeds the accuracy of existing models but
also sets a new standard in detection performance for
satellite imagery analysis. This progress underscores
the model’s superior capability and relevance in real-
time aircraft detection. Despite these advancements,
challenges such as weather-related distortions and
the need for larger, more diverse datasets remain.
Future work will focus on further enhancing the
model through advanced backbone networks and loss
functions, and exploring real-time deployment and
optimization strategies.

4.5. Visualization

The quantitative results provided earlier highlight
the effectiveness of the YOLO-Mamba-TransGhost
model. To visually demonstrate this, Figure 2 shows
a comparison of detection results using the GDIT
test dataset. The enhanced YOLO-Mamba-TransGhost
model excels at detecting small-sized objects across
a range of distances, addressing the detection gaps
observed with the original YOLO-Mamba model and
achieving notably improved accuracy.

Additionally, Figure 3 presents the visual results of
the YOLO-Mamba-TransGhost model applied to the
HRPlanev2 dataset. These images illustrate the model’s
capability to detect aircraft in various scenarios, includ-
ing distant and close-up views, as well as in cases where
aircraft colors are similar to their surroundings. This
demonstrates the model’s robustness and adaptability
in diverse detection contexts.

5. CONCLUSIONS

In this study, we introduced and evaluated the YOLO-
Mamba-TransGhost model for aircraft detection in
satellite imagery, addressing challenges related to
resolution, background complexity, and diverse object
sizes and orientations. By refining the YOLO-Mamba
architecture and incorporating the SC3T Transformer
module along with the Ghost Convolution and WIoU
loss function, we achieved notable advancements in
detection performance and accuracy.

Our experiments on the HRPlanesV2 and GDIT
datasets demonstrated significant improvements. The
YOLO-Mamba-TransGhost model exhibited superior
performance, with an mAP@.5 score of 94.30% on
the GDIT dataset and 99.20% on the HRPlanesV2
dataset, reflecting its enhanced ability to detect and
localize aircraft accurately under varying conditions.
This advancement is achieved despite an increase in
model complexity, highlighting the trade-off between
accuracy and computational demands.

In comparison with other established models, our
YOLO-Mamba-TransGhost model shows a clear advan-
tage in detection accuracy, setting a new benchmark
for aircraft detection in satellite imagery. Although
challenges remain, such as handling weather-related
distortions and the need for more diverse datasets, our
findings underscore the model’s potential in advancing
remote sensing technologies.

Future work will focus on further optimizing the
model through the integration of more advanced
feature extraction networks and exploring real-time
deployment scenarios. We aim to contribute to the
broader field of computer vision by addressing current
limitations and pushing the boundaries of satellite
image analysis.
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