
EAI Endorsed Transactions 
on Industrial Networks and Intelligent Systems Research Article

Deep Reinforcement Learning Approaches Against
Jammers with Unequal Sweeping Probability Attacks
Lan K. Nguyen1, Duy H. N. Nguyen2, Nghi H. Tran3, and David Brunnenmeyer1

1KBR, Los Angeles, CA, USA
2Department of Electrical Engineering, San Diego State University, San Diego, CA, USA
3Department of Electrical and Computer Engineering, University of Akron, Akron, OH, USA

Abstract

This paper investigates deep reinforcement learning (DRL) approaches designed to counter jammers that maximize
disruption by employing unequal sweeping probabilities. We first propose a model and defense action based on a
Markov Decision Process (MDP) under non-uniform attacks. A key drawback of the standard MDP model, however,
is its assumption that the defending agent can acquire sufficient information about the jamming patterns to determine the
transition probability matrix. In a dynamic environment, the attacker’s patterns and models are often unknown or difficult
to obtain. To overcome this limitation, RL techniques such as Q-learning, deep Q-network (DQN), and double deep Q-
network (DDQN) have been considered effective defense strategies that operate without an explicit jamming model. With
Q-learning, defense strategies can still be computationally expensive and require long time to learn the optimal policy. This
limitation arises because a large state space or a substantial number of actions causes the Q-table to grow exponentially.
Leveraging the flexibility, adaptability, and scalability of RL, we first propose a DQN framework designed to handle
large-scale action spaces across expanded channels and jammers. Furthermore, to overcome the inherent overestimation
bias present in Q-learning and DQN algorithms, we investigate a DDQN framework. Assuming the estimation error of the
action value in DQN follows a zero-mean Gaussian distribution, we then analytically derive the expected loss. Numerical
examples are finally presented to characterize the performances of the proposed algorithms and the superiority of DDQN
over DQN and Q-learning approaches.

Received on 03 October 2025; accepted on 30 October 2025; published on 4 November 2025

Keywords: Jamming Attacks; Data Rate Game; Markov Decision Process; Reinforcement Learning; Q-learning; Deep Q-Networks;
Double Deep Q-Networks.

Copyright © 2025 Lan K. Nguyen et al., licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and
reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eetinis.v12i4.10461

1. Introduction

Over the last decade, there have been significant contributions
on anti-jamming technologies, and the literature is vast.
Among different innovative anti-jamming approaches, game
theory has been widely considered as an effective tool to
address the interaction between users and jammers for best
defense actions against smart jammers in both wireless
communications and SATCOM (please see [1–11] and
references therein). For instance, reference [12] appears to
be one of the first studies that used game theory to exploit
the flexible access to multiple channels as an effective anti-
jamming solution. Specifically, a channel hopping strategy
based on Markov decision process (MDP) was proposed
in [12] to deal with smart sweeping attacks in cognitive
radio (CR) networks. As an extension of [12], the works in
[13, 14] further considered optimal defense strategies against

sweeping attacks under joint dynamic frequency hopping
and rate adaptation. While the hopping strategies in [12–
14] were developed under the assumption that an attacker
can randomize the sweeping order, the jamming probabilities
were chosen uniformly across multiple channels. In practice,
an intelligent jammer can choose communication links
to attack with non-equal probabilities for more damaging
effects. Under this consideration, developing an optimal
defense strategy requires a revised MDP-based hopping that
relies on non-equal probability assignments, which is a
challenging task.

While the above game theory-based approaches provide
important insights into anti-jamming access strategies, they
rely on a key assumption that the user is able to obtain certain
information of the attacker’s jamming patterns and models.
In a more dynamic environment, acquiring such information

1
EAI Endorsed Transactions on 

Industrial Networks and Intelligent Systems 
| Volume 12 | Issue 4 | 2025 | 

http://creativecommons.org/licenses/by/3.0/


Lan K. Nguyen et al.

is a very difficult, if not impossible, task. To overcome this
drawback, reinforcement learning (RL) such as Q-learning
and multi-agent RL techniques have been considered as
an attractive alternative in developing an efficient defense
strategy without the need of explicit jamming models [2,
15–24]. Interestingly, it has been demonstrated that RL-
based strategies can achieve near optimal access strategies in
dynamic anti-jamming games [21, 22]. In [25], a novel Q-
learning-based defense strategy for a multi-channel system
under a smart non-equal probability sweeping attack was
proposed. With this defense strategy, the user can learn the
optimal countermeasure strategy without needing to know the
attacking strategy nor the non-equal probability assignment
from the attacker. The main idea was to initiate a Q-
table to approximate an action-value function. As a result,
we can achieve close to the performance of the MDP-
based defense strategy without the explicit knowledge of
the jammer’s attacking model or probability distribution of
attacks. This approach is further extended to a multi-agent
system in which multi users compete for the same physical
resources, i.e., channel and time slots, while evading jamming
attacks. The proposed coordinated multi-agent Q-learning
methods in [26] allow the agents to cooperate with each other
through information exchange. While the agents execute
the Q-learning method independently, an agent manager
is designated to collect all the agents’ intended actions,
resolve potential conflicts among the actions, and assign
the channels for the agents accordingly. It was shown in
[26] that the multi-agent Q-learning coordinated approaches
significantly improve the total system payoff compared to the
uncoordinated Q-learning approach.

With Q-learning, when the decision space or the number
of actions is large, the Q-table of the Q-learning becomes too
large, and the update becomes a computational burden and
costly to obtain the optimal policy. Subsequently, deep Q-
network (DQN) was proposed to solve such high dimensional
problems. DeepMind initially introduced DQN to play Atari
games with several innovations were made to stabilize and
improve the training [27]. DQN combines Q-learning and
a deep neural network. Unlike Q-learning, the Q-value of
DQN is not calculated directly from the state-action pair
function but learned from a deep neural net-work. DQN
expedites learning and enhances the efficacy of anti-jamming
communications [28–30].

In this work, we exploit deep Q-network to enhance the
learning speed for more effective anti-jamming communi-
cations under non-uniform attacks. The new deep-learning
schemes are efficient, and can be effectively used in a multi-
channel system under the presence of multiple adversarial
smart jammers. It can also address the scalability issue in
the conventional Q-learning approach. Our results show that
we can effectively learn the optimal countermeasure strategy
without needing to know the attacking strategy. In particular,
under the presence of a single jammer and when there is
a small number of channels, the proposed deep Q-learning

scheme achieves close to the performance of the Q-learning-
based defense strategy. In the case of having a large number of
channels with multiple jammers, the deep Q-learning-based
strategy outperforms to the Q-learning counterpart. To further
overcome the overestimation with upward biased errors in
stochastic environments in DQN, which are resulted from
either measurements or non-stationary, function approxima-
tors [31], we will also investigate double deep Q-network
(DDQN) [32] as an overestimation solution in the considered
framework. Through numerical examples, we show that the
DDQN approach can remove the overestimation, and it out-
performs both Q-learning and DQN algorithms. Furthermore,
In addition, the expected loss due to the overestimation
experienced in DQN is analyzed under the assumption that
the estimate error of the action value follows a zero-mean
Gaussian distribution.

The remaining of the paper is organized as follows. In
Section 2, we introduce the system model under different
jamming attacks, including non-uniform sweeping attacks.
An anti-jamming strategy based on DQN is presented in
Section 3. Following that, in Section 4, we introduce a
DDQN-based anti-jamming approach and demonstrate its
benefits. Numerical examples are provided in Section 5 to
show the superiority of the proposed deep reinforcement
learning methods. Finally, conclusions are drawn in Section
6.

2. System Model

We consider a communication system serving one user using
N orthogonal communication channels, either in frequencies,
beams, or transponders. At the same time, there exist multiple
jammers trying to attack the communication. When the user
accesses a channel n, 1 ≤ n ≤ N, its signal-to-noise ratio
(SNR) is given by γn,1, if there is no jammer on that very
channel. In contrast, the user’s SNR is γn,0 if there is a
jammer on the channel. Clearly, γn,1 > γn,0. The jammed
channel is likely unusable when the jammer sends a high-
power jamming signal. We assume that the user can access
one channel, while a jammer can only attack one channel at
any time. Using Shannon capacity, the achievable rate of the
user in the absence of the jammer is given by

Rn = log2(1 + γn,1). (1)

When the communication is jammed, the achievable rate is
reduced to

Ln = log2(1 + γn,0). (2)

For the system under consideration, at a given time slot t, the
user receives a payoff defined as follows:

Ut = Rn · 1(Successful transmission on channel n)
+Ln · 1(Jammed on channel n)
−C · 1(Choosing the action “hop”), (3)

2
EAI Endorsed Transactions on 

Industrial Networks and Intelligent Systems 
| Volume 12 | Issue 4 | 2025 | 



Deep Reinforcement Learning Approaches Against Jammers with Unequal Sweeping Probability Attacks

where Rn and Ln are defined by (1) and (2), respectively, and
C is the cost associated with hopping. Furthermore, 1 is the
indicator function that takes a value of 1 when the statement
holds and a value of 0 otherwise.

2.1. Agent’s Hopping Models

We consider two types of user: a smart agent or a random
hopper, depending on the user’s hopping strategies.

A smart agent (or smart hopper) can learn to optimize its
hopping policy. As in [25], we assume a smart hopper learns
its hopping policy through Q-learning. Specifically, a smart
hopper initiates a Q-table to approximate an action-value
function. The smart hopper can observe its payoff function by
accessing each possible channel and updating its Q-function
accordingly.

A random hopper does not actively learn its hopping
policy. Instead, it randomly hops around its accessible
channels using a pre-determined hopping policy. In order to
reduce the hopping cost, the random hopper must not hop at
every time slot. We assume that the random hopper will stay
at a particular channel with the probability of Pa = ρ

k, where
k is the number of time slots that the random hopper has
not been jammed on that channel and ρ < 1. Otherwise, the
random hopper would choose to hop to another channel with
the probability of (1 − Pa)/(N − 1). Indeed, if the random
hopper is jammed, resulting in k = 0, the random hopper will
hop to another channel with a probability of 1.

2.2. Attacker’s Jamming Models

Extending from the work of [25], we assume that there exist
multiple types of smart jammers; each can perform one of the
following jamming strategies:

• Sweeping attacker: A sweeping jammer uses a
sweeping attack [12] to jam the user sequentially,
one channel in each time slot, using a set of non-
equal probabilities q = [q1, . . . , qN] at the beginning
of a sweeping sequence where qm is the attacking
probability at channel-m in the first round and∑N

m=1 qm = 1. The jammer will attack by sweeping all
the channels until the user is jammed. It is assumed
that the jammer knows the outcome of its attack. If the
user were jammed on a particular channel, the jammer
would continue jamming the same channel until the
user hops to another channel. The sweeping jammer
then initiates a new sweeping sequence. A sweeping
attacker will force the agent to hop frequently instead
of staying at the best available channel at all times [25].

Suppose the jammer unsuccessfully attacks channel-
m in the first round. In that case, the user does
not use channel m, and the jammer will revise the
attacking probability at channel n , m in the second
round. We proposed two different rules for updating the
probability vector in [25]:

– Rule R1:

q(2)
n = qn +

qnqm

1 − qm
. (4)

– Rule R2: The splitting of qm is equal such that

q(2)
n = qn +

qm

N − 1
. (5)

Following these rules, we can generalize the channels’
attacking probability in the A + 1 round. In particular,
for a given set of attacked channels in the first A rounds
NA, the next channel n < NA attacked has the following
probability:

– Rule R1:

q(A+1)
n = qn +

qn
∑

m∈NA qm

1 −∑m∈NA qm
. (6)

– Rule R2:

q(A+1)
n = qn +

∑
m∈NA qm

N − A
. (7)

• Random attacker: The attacker jammer continues
jamming a channel with a probability Pa = ρ

k, where
k is the number of time slots the jammer has been
jamming on that channel and ρ < 1. Otherwise, the
jammer would choose to jam another channel with
probability (1 − Pa)/(N − 1).

3. Anti-Jaming with Deep Q-Network (DQN)
Approach

3.1. Deep Reinforcement Learning Algorithm

When the jamming strategy is unknown to the user, it may not
be feasible to implement an MDP-based learning algorithm
because of the difficulty in calculating the transition model
T (·|·, a). On the other hand, when the number of channels N
and the number of attackers increases, the evaluation of the Q-
table in Q-learning, while being possible, requires prohibitive
computational complexity. In practice, the update of action-
value functions in [25] may not be feasible because the action-
value function is estimated separately for each sequence
at a new episode. Instead, it is possible to use a function
approximator Q(s, a; θ) to estimate the action-value function
Q(s, a), where the weights in θ are trainable to parameterize
the Q-values.

The idea behind the breakthrough work in deep
reinforcement learning [27] is to use a neural network with
weights θ a nonlinear function approximator. The neural
network is trained to minimize a sequence of loss function
Li(θi) at iteration i where

Li(θi) = Es,a∼p(·)
[
(yi − Q(s, a; θi))2

]
(8)

3
EAI Endorsed Transactions on 

Industrial Networks and Intelligent Systems 
| Volume 12 | Issue 4 | 2025 | 



Lan K. Nguyen et al.
Deep Reinforcement Learning Approaches Against Jammers with Unequal Sweeping Probability Attacks

Input layer

2N

Hidden layers

2N4N

Output layer

N

Choose at with ϵ-greedyNext state st+1 = (xt+1, at)ϕt+1 = ϕ(st+1)Reward Ut

[ϕ1, a1,U1, ϕ2]

[ϕ2, a2,U2, ϕ3]

[ϕt, at,Ut, ϕt+1]

Memory
pool

Mini-batch
{ϕt}

Random
sample

[{at}, {Ut}, {ϕt+1}
]

DQN loss and gradient

User Update θ

Environment: Jammers

Figure 1. DQN-based anti-jamming strategy.

where N is the cardinal of the action set, ϕ (x) = 1√
2π

exp(−x2

2 )
is the standard normal probability density function (PDF)
and Φ (x) =

∫ t
∞ ϕ(t)dt is the standard normal cumulative

distribution function (CDF).

Proof. Define the error as:

ϵa = Q (s, a) − V∗ (s) . (15)

Since ϵa is a zero mean Gaussian random variable, the
probability that (maxa Q (s, a) − V∗ (s)) ≥ x for some x is
equal to the probability that ϵa ≥ x for all a simultaneously.
That is:

P
[
max

a
Q (s, a) − V∗ (s) ≥ x

]

= P (X1 ≥ x ∩ X2 ≥ x · · · XN ≥ x) . (16)

For a single error, the PDF of the distribution (X ≥ b) is given
by:

fT (x) =
1
σϕ
(

x
σ

)

1 − Φ
(

b
σ

) , x ≥ b, and
∫ ∞

b
fT (x) dx = 1. (17)

The expected value is given by:

E [X|X ≥ b] =

∫ ∞
b x fT (x) dx =
∫ ∞

b fT (x) dx
=
σϕ
(

b
σ

)

1 − Φ
(

b
σ

) . (18)

Since all errors are independent, the joint PDF of the
distribution is given by:

fT (X1, X2, · · · , XN) =
N∏

i=1

fT (Xi) =
N∏

i=1

1
σϕ
(

Xi
σ

)

1 − Φ
(

b
σ

) . (19)

Using (18) and (19), the conditional expected value of the join
distribution is:

E [X1X2 · · · XN |X1 ≥ b, X2 ≥ b, · · · , XN ≥ b]

=

∫ ∞

b
· · ·
∫ ∞

b
x1 · · · xN fT (x1, · · · , xN) dx1 · · · dxN

=

∫ ∞

b
x1 fT (x1) dx1 · · ·

∫ ∞

b
xN fT (xN) dxN

=


σϕ
(

b
σ

)

1 − Φ
(

b
σ

)


N

. (20)

□

Finally, the expected loss can be established in the
following lemma.

5
EAI Endorsed Transactions Preprint

Figure 1. DQN-based anti-jamming strategy.

where
yi = Es

[
U + γmax

a′
Q(s′, a′; θi−1)

]
, (9)

is the target for iteration i and p(·) is a probability distribution
over states s and actions a. Furthermore, 0 < γ < 1 is the
discount factor and the parameters from the previous iteration
θi−1 are held fixed. The loss function can be optimized by
stochastic gradient descent to update θ:

θi+1 = θi + µi∇θLi(θi), (10)

where µi is the step size at iteration i.
The step-by-step implementation of the deep reinforcement

learning algorithm, as proposed in [27], is given in Algorithm
1. The state input s is first preprocessed by a function ϕ(·).
The detailed operation of ϕ(·) is given in Section 3.2. At
a given time slot t, the action at at state st is determined
by the output of the function approximator Q(ϕ(st), a; θ))
in conjunction with an ϵ-greedy algorithm. This greedy
algorithm ensures adequate exploration of the state space.
The user then executes the action at, receives the reward
Ut, and observe the next state st+1. The user then uses
the function approximator Q(ϕ(st+1), a; θ)) to approximate
the expected discounted reward from state st+1, which is
combined with the immediate reward Ut to determine the
target for iteration i. The tuple of user experience at time slot t,
et = (ϕt, at,Ut, ϕt+1) is pooled over many episodes into a data
set of replay memory M. A mini-batch of random samples
of experiences are drawn from the memory and then used

for updating the neural network parameters θ to minimize
the loss function for the whole mini-batch. The stochastic
gradient descent update in (10) with random samples allows
the algorithm to break the correlations between consecutive
samples [27].

3.2. Neural Network Architecture for
DQN-based Anti-jamming Strategy
In Fig. 1, we illustrate the overall framework of the
DQN-based anti-jamming strategy. In the figure, the
implementation of a neural network at the user as a nonlinear
function approximator Q(s, a; θ) is given as follows:

• The input layer accepts a length-2N for the prepro-
cessed input of the current state ϕt = ϕ(st). Since the
current state st = (xt, nt) is comprised of two parame-
ters xt, nt ∈ [1,N], we encode xt and nt into length-N
one-hot vectors, xt and nt, respectively. Here, the ith
element of xt is set to 1 and all other elements are
set to 0 if xt = i. The one-hot vector nt is formatted
similar using the value of nt. Stacking xt and nt makes
ϕt = [xt, nt]T a length-2N vector. Note that N is the
number of channels described in Section 2.

• The network is comprised of two fully connected
hidden layers: the first hidden layer has 4N nodes and
the second one has 2N nodes. The configuration of the
layers was chosen to maintain a good tradeoff between
overfitting and underfitting in training the agent.

4
EAI Endorsed Transactions on 

Industrial Networks and Intelligent Systems 
| Volume 12 | Issue 4 | 2025 | 



Deep Reinforcement Learning Approaches Against Jammers with Unequal Sweeping Probability Attacks

Algorithm 1 DQN with Experience Play

1: Initiate the discount factor γ.
2: Initiate replay memoryM with length L.
3: Initiate action-value function Q with random weights.
4: for Episode i do
5: for t = 1, 2, . . . , T do
6: Initialize state s1 and preprocessed state ϕ1 =

ϕ(s1).
7: Use ϵ-greedy algorithm to choose action at:

at =

{
arg maxa Q(ϕ(st), a; θ), with probability 1 − ϵ
random channel ∈ [1,N], with probability ϵ.

(11)
8: Execute action at and observe reward Ut.
9: Observe the next state st+1 and preprocessed state
ϕt+1 = ϕ(st+1).

10: Store transition (ϕt, at,Ut, ϕt+1) inM.
11: Sample random minibatch of transition

(ϕ j, a j,U j, ϕ j+1) fromM
12: Set the target Q value

y j =

{
U j, for terminal ϕ j+1
U j + γmaxa′ Q(ϕ j+1, a′; θ), for non-terminal ϕ j+1

13: Perform a gradient descent step on (y j −
Q(ϕ j, a j; θ))2 to update the parameters θ.

14: end for
15: end for

• The output layer comprised of N nodes provides the
approximated action-value function Q(s, a) for all N
actions a.

Using the neural network output and the ϵ-greedy strategy,
the user takes action at and interacts with environment.
Depending on the jamming strategy by the jammers at time
slot t and the user’s own action, the user will receive the
reward Ut and move to the next state st+1. After a mini-
batch of random samples are drawn from the memory pool,
the user evaluate the loss function and the gradient, which
then enables the training of the neural networks parameters
θ. To improve the efficiency in training the DQN, we set the
parameters ϵ decaying over time. This setting allows the user
to do more exploration at the beginning of the training process
and more exploitation toward the end. The step size used in
the stochastic gradient descent is also set to be decaying over
time to improve the stability in training the DQN.

4. Anti-Jamming with Double Deep
Q-Network (DDQN)

The DQN implementation of the target value shown in (9) can
be expressed as:

yDQN
t = Ut+1 + γmax

a
Q(st+1, a; θt−1 ). (12)

The maximum operator occurs in (12) and tends to be
biased on overestimated values of the Q-function in the next
state for both the action selection and evaluation. The idea
behind DDQN is to reduce the overestimation by decoupling
the maximum operation of the target into the action selection
and action evaluation from two neural networks. The target
update for DDQN is given as [32]

yDDQN
t = Ut+1 + γQ

(
st+1, arg max

a
Q(st+1, a; θt), θt−1

)
,

(13)
where θt denotes the weights of the action selection and θt−1
denotes the weights for action evaluation. The above update
was shown to reduce the overestimations present in DQN and
improve the performance. There are two models: the primary
model is for action selection using weights θt, and the target
model for action evaluation with weights θt−1. The weights of
the target model are periodically updated to match the primary
model. Detailed implementation of the DDQN is summarized
in Algorithm 2 below.

Algorithm 2 DDQN with Experience Play

1: Initiate the discount factor γ.
2: Initiate replay memoryM with length L.
3: Initiate primary network Qθt and target network Qθt−1

with random weights.
4: for Episode i do
5: for t = 1, 2, . . . , T do
6: Observe state st.
7: Use ϵ-greedy algorithm to choose action at:

at =

{
arg maxa Q(ϕ(st), a; θ), with probability 1 − ϵ
random channel ∈ [1,N], with probability ϵ.

(14)
8: Execute action at and observe reward Ut.
9: Observe the next state st+1 and preprocessed state
ϕt+1 = ϕ(st+1).

10: Store transition (ϕt, at,Ut, ϕt+1) inM.
11: for each update step do
12: Sample random minibatch of transition

(ϕ j, a j,U j, ϕ j+1) fromM
13: Compute target Q value

Q∗j =



U j, for terminal ϕ j+1

U j + γQθt−1

(
ϕ j+1, arg maxa′ Qθt

(
ϕ j+1, a′; θt

)
, θt−1
)
,

for other terminals

14: Perform a gradient descent step on(
Q∗j − Qθt (ϕ j, a j; θt)

)2
to update premary weight θt.

15: end for
16: Update target network weights θt−1 ← θt.
17: end for
18: end for

Given the above DDQN approach, it is also of interest
to evaluate the performance difference of DDQN and DQN

5
EAI Endorsed Transactions on 

Industrial Networks and Intelligent Systems 
| Volume 12 | Issue 4 | 2025 | 



Lan K. Nguyen et al.

at convergence. Toward this end, we have the following
theorem:

Theorem 1. Consider a state s in which a true optimal action
value Q∗ (s, a) = V∗ (s). Suppose the estimation error ϵa =
Q (s, a) − Q∗ (s, a) is a zero mean Gaussian random variable
with variance σ2, i.e., ϵa ∼ N(0, σ2). We then have:

E
[
max

a
Q (s, a) − V∗ (s) |max

a
Q (s, a) − V∗ (s) ≥ b

]

=


σϕ
(

b
σ

)

1 − Φ
(

b
σ

)


N

, b ≥ 0, (15)

where N is the number of channels, ϕ (x) = 1√
2π

exp(−x2

2 )
is the standard normal probability density function (PDF)
and Φ (x) =

∫ t
∞ ϕ(t)dt is the standard normal cumulative

distribution function (CDF).

Proof. Define the error as:

ϵa = Q (s, a) − V∗ (s) . (16)

Since ϵa is a zero mean Gaussian random variable, the
probability that (maxa Q (s, a) − V∗ (s)) ≥ x for some x is
equal to the probability that ϵa ≥ x for all a simultaneously.
That is:

P
[
max

a
Q (s, a) − V∗ (s) ≥ x

]

= P (X1 ≥ x ∩ X2 ≥ x · · · XN ≥ x) . (17)

For a single error, the PDF of the distribution (X ≥ b) is given
by:

fT (x) =
1
σϕ
(

x
σ

)

1 − Φ
(

b
σ

) , x ≥ b, and
∫ ∞

b
fT (x) dx = 1. (18)

The expected value is given by:

E [X|X ≥ b] =

∫ ∞
b x fT (x) dx
∫ ∞

b fT (x) dx
=
σϕ
(

b
σ

)

1 − Φ
(

b
σ

) . (19)

Since all errors are independent, the joint PDF of the
distribution is given by:

fT (X1, X2, · · · , XN) =
N∏

i=1

fT (Xi) =
N∏

i=1

1
σϕ
(

Xi
σ

)

1 − Φ
(

b
σ

) . (20)

Using (19) and (20), the conditional expected value of the join
distribution is:

E [X1X2 · · · XN |X1 ≥ b, X2 ≥ b, · · · , XN ≥ b]

=

∫ ∞

b
· · ·
∫ ∞

b
x1 · · · xN fT (x1, · · · , xN) dx1 · · · dxN

=

∫ ∞

b
x1 fT (x1) dx1 · · ·

∫ ∞

b
xN fT (xN) dxN

=


σϕ
(

b
σ

)

1 − Φ
(

b
σ

)


N

. (21)

□

Finally, the expected loss can be established in the
following lemma.

Lemma 1. Given the error is positively biased, the expected
loss is given by:

EL = E
[
max

a
Q (s, a) − V∗ (s) |max

a
Q (s, a)−V∗ (s) ≥ 0

]

=


√

2
π
σ


N

. (22)

Proof. Let b = 0 then, ϕ (0) = 1√
2π

and Φ (0) = 1
2 and

substitute these parameters into (21), we have:

EL = E
[
max

a
Q (s, a) − V∗ (s) |max

a
Q (s, a)−V∗ (s) ≥ 0

]

=


√

2
π
σ


N

. (23)

□

The result in from Lemma 1 indicates that EL is the
performance difference of DDQN and DQN at convergence.
Using empirical data, we can estimate the standard deviation
of the estimate error, which is

σ̂ =

√
π

2
· E

1
N
L . (24)

As N goes to infinity, we have:

σ̂→
√
π

2
= 1.253. (25)

5. Numerical Examples
In this section, numerical results are provided to illustrate
the effectiveness of the proposed deep Q-learning solutions.
The DQN is implemented and trained using the Tensorflow
package [33]. For each N-channel system, SNRs are set
within the interval [10 dB, 30 dB] with a uniform spacing
between each SNR and the step size of 20 dB/N.
Furthermore, if a channel is hit by jamming, the SNR is
reduced by 20 dB. Unless otherwise stated, the sweeping
attack is assumed to be non-uniform, with the attacking
probabilities being proportional to the SNRs. For the Q-
learning algorithm, the initial learning rate is always set
at 10−2. In addition, when Q-learning is implemented, the
discount rate is γ = 0.95. The performance of each scheme
shall be compared using the achievable rate achieved over
time as the reward.

Figure 2 first compares the results achieved by Q-learning
in [25] and the proposed deep Q-network (Algorithm 1)
as well as double deep Q-network (Algorithm 2) for a
scenario consisting of 32 channels under jamming attack
from a random jammer and a sweeping jammer. The cost
associated with hopping is set at C = 2. The DQN and
DDQN methods are implemented and trained utilizing the

6
EAI Endorsed Transactions on 

Industrial Networks and Intelligent Systems 
| Volume 12 | Issue 4 | 2025 | 



Deep Reinforcement Learning Approaches Against Jammers with Unequal Sweeping Probability Attacks

Number	of	Time	Slots
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Tr
an
sm
iss
io
n	
Ra
te
	(b
its
/c
ha
nn
el
	u
se
)

2

3

4

5

6

7

8

9

10

Q-learning
DQN
DDQN

Figure 2. Achievable rates of a 32-channel communication
system with hopping cost C = 2 achieved by Q-learning,
DQN, and DDQN under jamming attacks by a random
jammer and a non-uniform sweeping jammer.

TensorFlow package [24]. The step size µ in updating the
policy of the DQN and DDQN is initialized at 0.01 and
set to decay after 150 iterations with a decaying factor of
0.9. As shown in Fig. 2, all three algorithms converge at
about the same rate. However, the DQN performs better than
the Q-learning, and the DDQN removes the positive bias
inherently in the Q-learning and DQN and performs the best.
Specifically, as shown in Fig. 2, Q-learning converges at 7
bits/channel use, DQN converges at 7.2 bits/channel use, and
DDQN converges at 8.5 bits/channel use. The results also
indicate that DDQN removes the overestimations in the DQN
and Q-learning algorithms.

Number	of	Time	Slots
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Tr
an
sm
iss
io
n	
Ra
te
	(b
its
/c
ha
nn
el
	u
se
)

0

1

2

3

4

5

6

7

8

9

10

Q-learning
DQN
DDQN

Figure 3. Achievable rates of a 64-channel communication
system with hopping cost C = 2 achieved by Q-learning,
DQN, and DDQN under jamming attacks by four random
jammers and four non-uniform sweeping jammer.

Fig. 3 displays the Q-learning, DQN, and DDQN results
for an agent with access to 64 channels. The agent
communicates in an environment with four random jammers
and four sweeping jammers. As shown in Fig. 3, Q-learning
converges at 5.6 bits/channel use, DQN converges at 7.3

Number	of	Time	Slots
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Tr
an
sm
iss
io
n	
Ra
te
	(b
its
/c
ha
nn
el
	u
se
)

0

1

2

3

4

5

6

7

8

9

10

Q-learning
DQN
DDQN

Figure 4. Achievable rates of a 128-channel communi-
cation system with hopping cost C = 2 achieved by Q-
learning, DQN, and DDQN under jamming attacks by four
random jammers and four non-uniform sweeping jammer.

bits/channel use, and DDQN converges at 7.8 bits/channel
use. The performance gain of DDQN over DQN is about 0.5
bits/channel use.

The advantages of deep learning-based approaches can also
be achieved in a larger action/state space. In particular, Fig.
4 presents the results when we have N = 128 channels; we
keep all other parameters the same as before, using four
random jammers and four non-uniform sweeping jammers.
As expected, when N increases from 64 to 128, we see
improvement in the transmission rate. With N = 128, Q-
learning converges at 5.7 bits/channel use, DQN converges at
7.8 bits/channel use, and DDQN converges at 8.4 bits/channel
use. Again, Q-learning is under-performing, and DDQN
consistently outperforms DQN.

Number	of	Time	Slots
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Tr
an
sm
iss
io
n	
Ra
te
	(b
its
/c
ha
nn
el
	u
se
)

0

1

2

3

4

5

6

7

8

9

10

Q-learning
DQN
DDQN

Figure 5. Achievable rates of a 256-channel communi-
cation system with hopping cost C = 2 achieved by Q-
learning, DQN, and DDQN under jamming attacks by four
random jammers and four non-uniform sweeping jammer.

Finally, Fig. 5 shows the achievable rates achieved by
three learning methods in a very large space with N =
256 channels under jamming attacks from four random

7
EAI Endorsed Transactions on 

Industrial Networks and Intelligent Systems 
| Volume 12 | Issue 4 | 2025 | 



Lan K. Nguyen et al.

jammers and four non-uniform sweeping jammers. While
the performance of DQN is almost identical to the case of
N = 128 channels, DDQN provides further gains, achieving
a rate of 9.3 bits/channel use at convergence. The advantage
of DDQN over both DQN and Q-learning is clearly observed
under this very large-action space scenario.

6. Conclusion
In this paper, we have proposed two deep reinforcement
learning defense strategies against smart jammers that can
attack channels with unequal probabilities. These algorithms
offer effective solutions against the smart jammers without
knowing their attacking models. The proposed DQN and
DDQN approaches can overcome the main drawback of Q-
learning-based methods and work well in a large decision
or action space. Furthermore, it was shown that the DDQN
method not only performs better than the Q-learning and
DQN ones but also can eliminate the overestimation bias in
scenarios with many channels under random and sweeping
attacks. The expected loss of DQN was also derived
under the assumption that the estimate error of the action
value follows a zero-mean Gaussian distribution. Through
numerical examples, the estimate of the standard deviation
for the Gaussian distribution was provided, and in the limit,

as N increases, the standard deviation approaches
√
π
2 . The

DDQN method appears to be the best anti-jamming defense
strategy to counter smart jammers when the decision space
is large without the need of explicitly knowing the jammers’
attacking models.

References
[1] L. Jia, N. Qi, Z. Su, F. Chu, S. Fang, K.-K. Wong, and

C.-B. Chae, “Game theory and reinforcement learning for
anti-jamming defense in wireless communications: Current
research, challenges, and solutions,” IEEE Communications
Surveys & Tutorials, 2024.

[2] Y. Liu, B. Zhang, D. Guo, H. Wang, G. Ding, N. Yang,
and J. Gu, “A game theoretical anti-jamming beamforming
approach for integrated sensing and communications systems,”
IEEE Transactions on Vehicular Technology, vol. 73, no. 10,
pp. 15780–15785, 2024.

[3] X. Guan, Y. Hu, and K. Peng, “Bayesian-Stackelberg-game-
based finite-time sliding mode fault-tolerant secure control for
cyber–physical systems under jamming attacks and multiple
physical faults,” IEEE Transactions on Cybernetics, 2025.

[4] Y. Li, W. Miao, Z. Gao, and G. Lv, “Intelligent jamming
strategy for wireless communications based on game theory,”
IEEE Access, 2024.

[5] D. Yang, G. Xue, J. Zhang, A. Richa, and X. Fang, “Coping
with a smart jammer in wireless networks: A Stackelberg game
approach,” IEEE Transactions on Wireless Communications,
vol. 12, pp. 4038–4047, Aug. 2013.

[6] A. Garnaev, Y. Liu, and W. Trappe, “Anti-jamming strategy
versus a low-power jamming attack when intelligence of
adversary’s attack type is unknown,” IEEE Transactions on
Signal and Information Processing over Networks, vol. 2,
pp. 49–56, Mar. 2016.

[7] L. Jia, F. Yao, Y. Sun, Y. Niu, and Y. Zhu, “Bayesian
Stackelberg game for antijamming transmission with incom-
plete information,” IEEE Communications Letters, vol. 20,
pp. 1991–1994, Oct. 2016.

[8] L. Jia, Y. Xu, Y. Sun, S. Feng, and A. Anpalagan, “Stackelberg
game approaches for anti-jamming defence in wireless
networks,” IEEE Wireless Communications, vol. 25, pp. 120–
128, Dec. 2018.

[9] L. Jia, Y. Xu, Y. Sun, S. Feng, L. Yu, and A. Anpalagan,
“A game-theoretic learning approach for anti-jamming
dynamic spectrum access in dense wireless networks,” IEEE
Transactions on Vehicular Technology, vol. 68, pp. 1646–1656,
Feb. 2019.

[10] C. Han, A. Liu, H. Wang, L. Huo, and X. Liang, “Dynamic
anti-jamming coalition for satellite-enabled Army IoT: A
distributed game approach,” to appear in IEEE Internet of
Things Journal, 2020.

[11] Q. Wang, T. Nguyen, K. Pham, and H. Kwon, “Mitigating
jamming attack: A game-theoretic perspective,” IEEE Trans-
actions on Vehicular Technology, vol. 67, pp. 6063–6074, July
2018.

[12] Y. Wu, B. Wang, K. J. R. Liu, and T. C. Clancy, “Anti-
jamming games in multi-channel cognitive radio networks,”
IEEE Journal on Selected Areas in Communications, vol. 30,
pp. 4–15, Jan. 2012.

[13] M. K. Hanawal, M. J. Abdel-Rahman, and M. Krunz, “Joint
adaptation of frequency hopping and transmission rate for
anti-jamming wireless systems,” IEEE Transactions on Mobile
Computing, vol. 15, no. 9, pp. 2247–2259, 2016.

[14] M. K. Hanawal, M. J. Abdel-Rahman, and M. Krunz, “Game
theoretic anti-jamming dynamic frequency hopping and rate
adaptation in wireless systems,” in 2014 12th International
Symposium on Modeling and Optimization in Mobile, Ad Hoc,
and Wireless Networks (WiOpt), pp. 247–254, 2014.

[15] Z. Yin, J. Li, Z. Wang, Y. Qian, Y. Lin, F. Shu, and
W. Chen, “UAV communication against intelligent jamming:
A Stackelberg game approach with federated reinforcement
learning,” IEEE Transactions on Green Communications and
Networking, vol. 8, no. 4, pp. 1796–1808, 2024.

[16] Y. Qin, J. Tang, F. Tang, M. Zhao, and N. Kato, “Multi-agent
reinforcement learning in adversarial game environments:
Personalized anti-interference strategies for heterogeneous uav
communication,” IEEE Transactions on Mobile Computing,
2025.

[17] Z. Lin, L. Xiao, H. Chen, and Z. Lv, “Reinforcement learning
based environment-aware v2i anti-jamming communications,”
IEEE Transactions on Vehicular Technology, 2024.

[18] B. He, N. Yang, X. Zhang, and W. Wang, “Game theory and
reinforcement learning in cognitive radar game modeling and
algorithm research: A review,” IEEE Sensors Journal, 2024.

[19] M. Chen, F. Shu, M. Zhu, D. Wu, Y. Yao, and Q. Zhang,
“Reinforcement-learning-based uav 3-d target tracking and
digital-twin-assisted collision avoidance with integrated sens-
ing and communication,” IEEE Internet of Things Journal,
2025.

[20] Y. Ma, K. Liu, Y. Liu, X. Wang, and Z. Zhao, “An
intelligent game-based anti-jamming solution using adversarial
populations for aerial communication networks,” IEEE
Transactions on Cognitive Communications and Networking,
vol. 11, no. 3, pp. 1981–1995, 2025.

8
EAI Endorsed Transactions on 

Industrial Networks and Intelligent Systems 
| Volume 12 | Issue 4 | 2025 | 



Deep Reinforcement Learning Approaches Against Jammers with Unequal Sweeping Probability Attacks

[21] Y. Gwon, S. Dastangoo, C. Fossa, and H. T. Kung, “Competing
mobile network game: Embracing antijamming and jamming
strategies with reinforcement learning,” in IEEE Conference
on Communications and Network Security (CNS), pp. 28–36,
2013.

[22] N. Adem and B. Hamdaoui, “Jamming resiliency and mobility
management in cognitive communication networks,” in IEEE
International Conference on Communications (ICC), pp. 1–6,
2017.

[23] M. A. Aref, S. K. Jayaweera, and S. Machuzak, “Multi-agent
reinforcement learning based cognitive anti-jamming,” in 2017
IEEE Wireless Communications and Networking Conference
(WCNC), pp. 1–6, 2017.

[24] X. He, H. Dai, and P. Ning, “Faster learning and adaptation
in security games by exploiting information asymmetry,” IEEE
Transactions on Signal Processing, vol. 64, no. 13, pp. 3429–
3443, 2016.

[25] L. K. Nguyen, D. H. N. Nguyen, N. H. Tran, C. Bosler,
and D. Brunnenmeyer, “SATCOM jamming resiliency under
non-uniform probability of attacks,” in IEEE Military
Communications Conference (MILCOM), pp. 85–90, 2021.

[26] L. K. Nguyen, D. H. N. Nguyen, N. H. Tran, C. Bosler, and
D. Brunnenmeyer, “Coordinated multi-agent q-learning for
resilient SATCOM against smart jammers,” in IEEE Military
Communications Conference (MILCOM) (Restricted Access),
pp. 1–6, 2022.

[27] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller, “Playing atari with deep
reinforcement learning,” CoRR, vol. abs/1312.5602, 2013.

[28] L. Xiao, D. Jiang, D. Xu, H. Zhu, Y. Zhang, and H. V. Poor,
“Two-dimensional antijamming mobile communication based
on reinforcement learning,” IEEE Transactions on Vehicular
Technology, vol. 67, pp. 9499–9512, Oct. 2018.

[29] X. Liu, Y. Xu, L. Jia, Q. Wu, and A. Anpalagan, “Anti-
jamming communications using spectrum waterfall: A deep
reinforcement learning approach,” IEEE Communications
Letters, vol. 22, pp. 998–1001, May 2018.

[30] N. Gao, Z. Qin, X. Jing, Q. Ni, and S. Jin, “Anti-
intelligent UAV jamming strategy via deep Q-networks,” IEEE
Transactions on Communications, vol. 68, pp. 569–581, Jan.
2020.

[31] S. Thrun and A. Schwartz, “Issues in using function
approximation for reinforcement learning,” 10 1993.

[32] H. v. Hasselt, A. Guez, and D. Silver, “Deep reinforcement
learning with double Q-Learning,” in Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, pp. 2094–
–2100, AAAI Press, 2016.

[33] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015. Software available from tensorflow.org.

9
EAI Endorsed Transactions on 

Industrial Networks and Intelligent Systems 
| Volume 12 | Issue 4 | 2025 | 


	1 Introduction
	2 System Model
	2.1 Agent's Hopping Models
	2.2 Attacker's Jamming Models

	3 Anti-Jaming with Deep Q-Network (DQN) Approach
	3.1 Deep Reinforcement Learning Algorithm
	3.2 Neural Network Architecture for DQN-based Anti-jamming Strategy

	4 Anti-Jamming with Double Deep Q-Network (DDQN)
	5 Numerical Examples
	6 Conclusion



