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Abstract

scurity (PLS) is ial for ensuring that the data collected by Internet of Things (IoT)

de\ ices is accurate, reliable, and protected against various security thre It helps maintain the overall integrity
of the IoT ecosystem and builds trust in its applications. Our work explores the integration of network and PLS
in a UAV-enabled mobile edge computing (MEC) system for IoT. This system supports multiple users with a
combined non-orthogonal and time-division multiple access (NOTDMA) scheme and is based on backscatter
communication (BC). In this system, the UAV-mounted server functions as a hybrid access point (HAP) and
hovers over a cluster of energy 1strained IoT devices to transmit RF energy and assist them in performing
tasks by employing BC. The IoT devices apply the combined NOTDMA scheme to offload their tasks to the HAP.
A mobile p' e ea f r atten 0 intercept information from IoT devices without ly launching
vith various encryption algorithms is proposed to improve the system’s

w thh dd ‘ptb to the users’ non- hnea,r harvested energy levels. In addition, considering the network and

physical security, we derive a approximation expression for the secrecy st ful computation probability
(SSCP). This expression incorporates factors such as harvested energy, local computing and encryption latency,
edge offloading latency, processing, decryption, and the associated secrecy costs. The optimization problem
for maximizing SSCP is formulated and solved using an Immune algorithm to find the optimal set of device
parameters and UAV altitude. Key parameters affecting secrecy and latency performance are analyzed to better
understand the system’s behavior. Numerical simulations are provided to validate the accuracy of our analysis.
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1. Introduction without direct human intervention [1]. Rapidly deploying
real-time IoT applications has created a growing demand
for significant mobile data transmission and computing
capabilities. However, three important challenges must
be addressed: efficient real-time data processing, energy
charging, and security [2].

The Internet of Things (IoT) refers to a network
of interconnected devices, objects, sensors, and vehicles
communicating over the Internet. This connectivity
enables them to collect, share, and exchange data

*Corresponding author. Email: haduyhung@tdtu.edu.vn To tackle the first Challenge’ a mobile edge computing

This article was presented in part at the International Conference (MEC) solution is proposed, which involves relocating
on Industrial Networks and Intelligent Systems (INISCOM), 2025. servers to the network’s edge to support users better
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[3]. Unmanned aerial vehicles (UAVs) are utilized in
this context due to their mobility, Internet access,
computing resources, and energy services, particularly in
disaster-stricken areas or emergencies [4, 5]. Additionally,
backscatter communication (BC) technology is a suitable
method for IoT applications, enabling the transfer of RF
energy to users and allowing devices to reflect signals to a
reader to transmit data [6]. Furthermore, radio frequency
(RF) energy harvesting (EH) technology captures and
converts ambient RF signals, such as those emitted by
communication systems, into usable electrical energy.
This process is particularly beneficial for powering low-
energy devices, such as sensors and IoT devices, without
relying on batteries or wired power sources [7]. Unlike
traditional orthogonal multiple access (OMA) schemes,
such as FDMA, TDMA, and CDMA, where different
users are assigned distinct frequency bands, time slots,
or codes to prevent interference, NOMA enables multiple
users to share the same OMA resources by exploiting
variations in their power levels [8]. The study in [9]
explored the simultaneous transmitting and reflecting
reconfigurable intelligent surface-assisted uplink NOMA
MEC systems. The integration of NOMA with BC in IoT
networks has been examined in [10].

IoT security is a crucial aspect of the overall
security landscape, requiring a comprehensive strategy
encompassing device security, data protection, network
defenses, and wuser privacy. As the number of IoT
devices continues to rise, there is an urgent need for
robust security measures to protect against potential
threats and vulnerabilities, ensuring the safe and reliable
operation of IoT systems [11]. Perception layer security
refers to the security measures implemented at the
perception layer of the IoT architecture [12]. The
perception layer is the lowest in the IoT framework
and is responsible for data collection through various
sensors and devices. As these devices collect and transmit
data, ensuring the security and integrity of that data is
crucial. In this context, network security means ensuring
data is encrypted when transmitted over a network to
protect it from eavesdropping or interception. Another
emerging approach is physical secrecy, which enhances
the security of IoT systems by leveraging the inherent
fading characteristics of wireless channels in wireless
communication systems [13].

Several studies have focused on security issues
in BC-based UAV-enabled MEC networks [14-19].
For instance, the work in [14] introduced a two-
way ambient BC (TW-AmBC) network that includes
an eavesdropper. This study derived analytical and
asymptotic expressions to assess the physical layer
security, focusing on outage and intercept probability. In
[15], researchers examined physical-layer authentication
to identify users and prevent unauthorized access
and malicious activities within AmBC-based NOMA
symbiotic networks. They developed three physical layer

authentication (PLA) schemes based on the multiplexing
methods used for authentication tags to enhance secrecy
performance. In [18], the authors examined secure
data transmissions within a UAV-aided communication
system, where the UAV functions as a flying base station
that transmits confidential information to a ground
user. Simultaneously, an eavesdropper moves nearby,
trying to intercept the legitimate data transmission.
The UAV’s trajectory is optimized in response to
the unpredictable movements of the eavesdropper to
maximize secrecy throughput in this fast-changing
environment. The authors propose a deep reinforcement
learning framework by reformulating the problem as a
Markov decision process. The work [19] designed secure
multi-task multi-step computing offloading mechanisms
in ultradense multi-task NOMA-enabled IoT networks.
The joint overall energy consumption optimization,
such as device association, channel selection, security
service assignment, power control, and computation
offloading, are carried out, considering proportional
resource allocation and constraints on latency and
security costs.

Unlike previous studies, our work examines secrecy
performance and optimization in a multi-user UAV-
assisted MEC IoT system, focusing on integrating
network and physical security. This system utilizes
BC and a combined NOTDMA scheme. The main
contributions of our paper are as follows:

e We propose a novel model for a multi-user UAV-
assisted MEC IoT network, where the UAV-
mounted server acts as a high-altitude platform,
providing RF energy and computing services to
support IoT devices.

e In the context of perception layer security, the
considered system’s approximation expressions of
secrecy successful computation probability (SSCP)
is derived.

e The multi-objective optimization problem in terms
of SSCP is formulated under the constraint of
security cost. Accordingly, an advanced Immune
algorithm is proposed to find the optimal front
to achieve the best performance for this proposed
system.

e The impact of network parameters, e.g., transmit
power, bandwidth, and task allocation, on the
system secrecy performance is examined by
numerical results to verify the efficiency and
effectiveness of UAV, partial offloading scheme,
and encryption algorithm deployment in the MEC
network.

The remainder of this paper is organized as follows:
Section 2 introduces the proposed system model. Section
3 provides performance analysis and optimization of
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the system. Section 4 presents numerical results and
discussion. Finally, Section 5 concludes the paper.

2. System Model

We consider a secure UAV-enabled mobile edge
computing (MEC) system for IoT applications, where
a UAV equipped with an edge server provides energy
and computing services to pairs of ground IoT devices.
These IoDs communicate with the UAV via backscatter
communication (BC), using NOMA for intra-pair access
and TDMA across pairs. Each IoD partially offloads
computation tasks while facing the threat of a mobile
eavesdropper attempting to intercept their data. This
work emphasizes the security of the IoT perception
layer, where data acquisition and communication occur,
by jointly applying physical-layer secrecy and stream-
cipher-based encryption at the network level.

2.1. System and Channel Model

Figure 1 illustrates a UAV-enabled MEC IoT system
that utilizes BC. In this system, a UAV hybrid access
point (HAP), denoted as U, is deployed to serve K pairs
of energy-constrained ground IoT devices, denoted as
{D1, Dai}, k € {1,2,..., K}, in the presence a passive
eavesdropper, denoted as E. Specifically, the U, which
is equipped with an edge server, hovers in the sky over
the IoT devices (IoDs) to provide them with energy
and computing services. The IoDs apply a BC scheme
to harvest RF energy, enabling them to perform some
subtasks locally while offloading the remaining tasks
to the MEC server. The ground IoDs are divided into
near and far users, which are paired to implement
the NOMA scheme. Meanwhile, K user pairs employ
TDMA to access the server at U. These users modulate
their data bits based on incident RF signals and reflect
this information on U. Meanwhile, the eavesdropper
E attempts to intercept the information transmitted
by these ToDs without engaging in malicious attacks.
All transceivers, including the HAP, are assumed to be
single-antenna devices operating in half-duplex mode.
The IoDs are assumed to be on the ground and randomly
distributed within two circular areas centered at O =
(0,0,0) following the same uniform distribution. In which
the near users are located in a circular area with a radius
of r, while the far users are distributed between two
circular areas with a radius of r and R, where r < R.
The U hovers at the position as (0,0, zy), while the E
roams through the coverage of U as in Figure 1.

We assume that the wireless channels for ground-to-
UAV (G2U) and UAV-to-ground (U2G) communications
are modeled using two types of fading: large-scale fading
and small-scale fading [20]. According to [5], the mean
path loss considering the probability of both LoS and
NLoS links between the U and the user Dy, (i € {1,2})

Backcatter channels
e

hannels
...... BRI

Figure 1. System model for UAV-enabled MEC loT BC
network with an eavesdropper

is given as:

Dros — Pnros o (1)

Lix, (dik, Oir;) = [(PNLoS + L bt 2010) ik

where d;; denotes the distance between U and Dy,
01 2 arcsin (;7)
a stands for the path-loss exponent, a and b denote
the constant parameters according to the ambient
environment (rural, urban, dense urban, etc.). The
parameter ®a, which depends on the environment, is

defined as:

represents the incident angle of Dy,

A f, 0
o, & Al Yx

T, 2
where Uy, X € {LoS,NLoS}, denotes the excessive path
loss of the LoS and NLoS propagation (as also used in
[20]), f. stands for the carrier frequency, ¢ represents the
speed of light.

The channel coefficients of D;;, — U and D;, — E
links are denoted as h;g, hirp, respectively. Assume
that the channel coefficients of the D;; — U links
are independent and identically distributed (i.i.d.) and
follow a Nakagami-m distribution. Thus, the cumulative
distribution function (CDF) and the probability density
function (PDF) of the channel power gains V = |h;|?
are given as follows [9]:

my —1 l
_my 1 /m
Fre) = 1= L ()L
=0 N7V
1 my v v—1 —5Vg
= _— _— m 4
fv(@) (my —1)! (M/) v e

where Ay = E[V], my >1/2 is the fading severity
factor. For simplicity, we assume that mj,,, 2 = my,
A2 = Au, Ve € {1,..., K} and 7 € {1,2}. E[.] stands
for expectation operator.

Meanwhile, we assume that the ground channels
of the D;; — E links undergo i.d.d. Rayleigh fading.
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Table 1. Summary of Key Notations and Parameters

] Description \ Notation
Number of IoT device pairs K
IoT device i in pair k (near/far) Dk
UAV hybrid access point U
Mobile passive eavesdropper E
Radii for near and far zones r, R
UAYV hovering altitude U
Carrier frequency fe
Speed of light c
Path-loss exponent «
Environmental parameters for LoS | a, b
probability
Excessive path loss coefficients U8,

YNLoS

Nakagami-m fading severity my, Mo
Channel coefficients (UAV, Eavesdrop- | hi, hikg
per)
Channel power gains Xir, Z;
Backscattering reflection coefficient Eik
Energy conversion efficiency n

Harvested RF power (input to non- PL-’Z
linear model)

Actual harvested power
output)

Task length of IoT device Lk
Task dividing ratio (local/offloaded) Bik
CPU-cycle frequency (IoT/MEC) firs
CPU cycles per bit (IoeT/MEC) Kiky K
Effective capacitance coefficient Pik

(non-linear | Py

Encryption/decryption CPU cycles UV, Y,
Number of cryptographic algorithms M
Security level / Expected level dm> g
Security risk coefficient v
Maximal security cost per device Dik
Average transmit SNR YU
Instantaneous SNR (UAV / Eavesdrop- | ik, VikE
per)
Instantaneous secrecy capacity C3.
System bandwidth W
Subchannel bandwidth per user B
Local / offloading latency 2 7
Total latency per user pair Tk
Latency threshold T

This assumption is based on typical ground-to-

ground communication environments, where there is no
guaranteed line-of-sight (LoS) path due to environmental
obstacles. As such, Rayleigh fading serves as an
appropriate channel model to capture the rapid
multipath variation in scenarios such as urban or indoor
eavesdropping attacks. Thus, the CDF and PDF of

2 EA

corresponding power gains are given by [21]:

F]hikE\z(x) = 1_6_96’ (5)

fihup2(@) = e (6)

2.2. Signal Model

For the sake of simplicity, in our work, we consider
a representative pair, {Diy, Do}, Vk € {1,...,K}. For
equity, the entire flight duration of UAV is divided into
N equal time slots T, and each is divided again into K
equal sub-time slots 7 = %, Vk € {1,..., K}. During the
7 duration, U serves each pair of IoDs by employing BC
and NOMA schemes, where they transmit their data e;
to U by modulating the U’s signal via an air modulation
technique. Accordingly, the signal received at U can be
given by

h2 h2
Yk = <\/ fucPUTlUiEuc + ngPU»CZZEQk) s+w, (7)

where Py denotes the transmit power of U, &
(i € {1,2}) stands for the backscattering reflection
coefficient of D;; (0 < & < 1), €1 € {0,1} denotes the
binary data (0,1) transmitted by IoD D;; to U via
backscatter communication, E[s*] = E[¢?] =1, and w
denotes the additive white Gaussian noise (AWGN)
with zero mean and variance o2, w ~ CN(0,0?). U first
decodes s, followed by e1; and finally e5, using the
successive interference cancellation (SIC) technique. The
instantaneous signal-to-noise ratios (SNRs) for decoding
g;x at U are written as

- palhalt e XE (8)
poklhok|* + 1 por X3 +1°
Yor = prok|hor|* = por X3y, 9)

where p; 2 5”2‘%", YU 2 %, X 2 |hir|?, Vi € {1,2}.

In our WOI‘k,l we consider the scenario in which the
eavesdropper tries to intercept the information offloaded
by IoT users to U without interference or attacks. Similar
to (8), the signal received at eavesdropper E is expressed
as

v Pu kPu
YEE = fThlkhlkEglkS + fTththESQkS
1k LB 2kUokE

+ wEg,
(10)

where d;pg represents the Euclidean distances from
Dy to E, and wg ~CN(0,0%). Accordingly, the
instantaneous SNRs received at E are expressed as

- pake|haPlhe? kX Zik
pore|hok)?lhovel®? + 1 pokpXonZop +17

(11)
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Yorr = pokr|hok|?|hore|® = porr Xok Zok, (12)

SikVE é |hikE|27 Vi c

A A p,
where wikp = zge s VB = o2y Zi

(1,2,
2.3. Security Model

In this work, we focus on the security of the perception
layer, which encompasses both network security and
physical secrecy.

Network Security Model. Similar to the work of [19],
in this system, we consider the varying security service
requirements for different computational tasks of IoT
devices. To ensure secure communication, we employ
a variety of encryption algorithms, each with different
types and levels of security. Thus, the IoT devices must
encrypt computational tasks before offloading them,
and the U must decrypt them afterward. Let M =
{1,2,..., M} represent the set of encryption algorithms,
with each algorithm m having a security protection level
denoted by ¢,,, Vm € M. We assume that algorithm m
is constructed upon stream cipher principles, a form
of symmetric encryption that operates by encrypting
individual bits or bytes of data in a continuous stream,
distinct from block ciphers, which process data in fixed-
size blocks [22]. Consequently, algorithm m generates
a pseudorandom keystream of equivalent length to
the plaintext, constituting the offloaded task. This
keystream is combined with the plaintext via an
XOR operation, yielding the ciphertext. Decryption is
achieved by reversing the process and reapplying the
XOR operation with the identical keystream. Algorithms
based on stream cipher paradigms offer the advantage of
high processing speeds, rendering them suitable for IoT
applications necessitating continuous data transmission
[23].

When wusing encryption algorithm m for data
protection, the CPU cycles required to encrypt and
decrypt one bit of data are 1),,, and v, , respectively. It is
important to highlight that users do not get the expected
protection, making offloaded tasks vulnerable to attacks
and eavesdropping. It means that if the actual security
level of certain IoT devices is lower than anticipated,
there will be costs related to security vulnerabilities.
The probability of failure when D;j; selects encryption
algorithm m to protect subtask ¢ is [19]:

* +
Promj =1 — e Vki [q,w-—qm] , (13)
where v ; stands for the security risk coefficient of
subtask j of device Dy, qi.; denotes the expected
protection level for subtask j of device Dy, [z]*T =
max{0,z}. The failure probability function Py, ; is
designed to reflect a smooth and monotonic increase

in failure risk when the selected encryption algorithm
m does not meet the required protection level gy ;.

This formulation captures two key assumptions: (i)
if the selected algorithm provides adequate protection
(gm > g5 ;), the failure probability is zero; and (ii) if
the protection is insufficient (g, < . j), the failure
probability increases exponentially with the gap.

The use of the exponential function is common in
risk modeling to represent compounding effects and
sensitivity to unmet constraints. The risk coefficient vy, ;
adjusts the steepness of this increase, allowing the model
to express diverse security sensitivities among subtasks.
This approach is consistent with probabilistic risk-based
formulations used in secure computation and IoT system
design.

If the encryption algorithm chosen for an D;;’s subtask
fails to meet the expected security level,, it will lead to
financial loss. The security cost for all subtasks of Dy is
given by [19]:

M
Pik = Z Zajzi,k,m,jpi,k,m,jv (14)

m=1 j=1

where o denotes the financial loss when protection for
subtask j fails, z; .m,; stands for the security service
assignment indicator, where z; ., ; = 1 represents that
subtask j of D;; employs the encryption algorithm m,
otherwise z; i m,; = 0.

Physical Security Model. Instantaneous secrecy capac-
ity, a concept in information theory, relates to secure
communication over a noisy channel. It denotes the
maximum rate at which information can be securely
transmitted at any given moment without interception
by an eavesdropper. Mathematically, it can be repre-
sented as:

Cs = [Cn —Cg]™", (15)

where C)j; denotes the instantaneous capacity of the
legitimate channel while C'g stands for the instantaneous
capacity of illegitimate channel, [z]T = max{0, z}.

In this considered system, the instantaneous secrecy
capacity of user D;j, is defined as follows [24]:

s A ) Blog, (%) » Vik > YVikE (16)
1 )

0, Vik < VikE
where B = % with W signifies the system channel
bandwidth.

2.4. Energy Model

This study uses the non-linear EH model from [25] to
represent the power harvested. Assuming that the IoT
device can harvest RF energy during its BC phase 7
and in all the remaining subtime-slots (7" — 7). Thus,
the harvested power at device Dy, @ € {1,2}, can be
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obtained by

1
P, (W—Q)
Pik: 1-Q ’ (17)

where P, stands for the maximum output DC power,

A . .
Q= Hﬁ in which w and v represent the constant

values depending on the specific EH circuit employed
at device D;i. For simplicity, we assume that w and v
are the same for all IoT devices. Pilz denotes the linear
harvested RF power of device Dy. It is given by

|hi|? (1 — &)+ (T — 1)
»Cik T

Pjl = niPy

; = 0 Xir, (18)
where §;; = W, 0 < mr <1 stands for the
energy conversion ‘coefficient of Dyj,. To keep things
simple, we do not consider the energy consumed by the
devices for circuit operations.

We assume that the tasks are independent and can be
divided into subtasks of any size, enabling them to be
computed in parallel on the IoD and the edge server of
U. In our work, each device divides its L;g-bit task into
BirLik-bit non-offloaded subtask and (1 — f;x)Lix-bit
offloaded subtask, where (;; represents the task dividing
ratio, 0 < B;x < 1. The energy consumption model for
local computing and encrypting is given by [3]:

ES. = pir(fir)? [kikBik + ¥m(1 — Bix)] Lik, (19)

where p;i represents the effective capacitance coefficient
of the CPU about its architecture in device Djg,
ki stands for the number of CPU cycles needed to
accomplish the work per bit, f;; signifies the CPU-cycle
frequency at Djy.

2.5. Offloading and Computation Model

In our work, we use a partial offloading scheme,
allowing each IoD to execute part of the task locally
while offloading the remaining portion to the UAV MEC
server. Accordingly, the latency 7'1% for local computing
at D;, ¢ € {1,2} includes the computational delay of
the non-offloaded subtask and the encryption delay of
the offloaded subtask, which is expressed as

[KikBir + Ym (1 — Bir)] Lik
fik ’

Ti[k) = (20)

Meanwhile, the latency 77 at U includes the uplink
transmission delay and the computational delay at U
that is expressed as

(kU +45) Si_ (1= Bi) Lk

fu ’
(21)

7 =max{t9;, 3.} +

(1—-Bir) Lik
Blog, (147ik)
Dk, ky represents the number of CPU cycles needed to

accomplish the work per bit, fiy stand for the CPU-cycle
frequency of U, B denotes the subchannel bandwidth for
each user k (B = %) In our study, we ignore the task
result’s return delay because each IoD’s computation
result has a small data volume [26].

Due to the subtasks of each IoD can be computed in
parallel on the local CPU and the edge server of U, the
latency for completing all subtasks of each IoD pair is
given by

where t7, = signifies the offloading time of

7, = max{r{), 7, 7V 1. (22)

2.6. Eavesdropper’'s Mobility Model

To reflect more realistic attack strategies, we consider
a scenario where the eavesdropper traverses along the x-
axis from (—R, 0, 0) to (R, 0, 0) over a time duration
T with an average velocity vy = % This simplified
linear mobility captures essential characteristics of
practical eavesdropping threats in environments such as
smart factories, logistics hubs, or military zones, where
malicious ground vehicles or autonomous robots may
attempt to approach sensitive regions while avoiding
detection [27]. Although the motion is modeled with
constant average speed for tractability, the scenario is
representative of controlled mobile attacks in real-world
deployments.

Furthermore, the assumption of a constant velocity for
the eavesdropper allows us to investigate the impact of
its movement on the SSCP. Studying more complex and
practical mobility patterns of IoT adversaries is also part
of our future research plans.

3. Performance Analysis and Optimization

This section presents the performance analysis of
the proposed system, focusing on the secrecy successful
computation probability. Additionally, we formulate an
optimization problem and propose a solution to solve it.

3.1. Secrecy Successful Computation Probability

The secrecy successful computation probability
(SSCP), denoted as T, is defined as the probability that
its subtasks execution are completed within allocated
sub-time slot 7 and the corresponding instantaneous
secrecy capacity is greater than the required offloading
data rate R'". In addition, it is noted that the harvested
energy must be sufficient for local execution and
encryption. Therefore, in the context of this proposed
system, the secrecy successful computation probability
of each pair can be written as

YW 2 Pr(r, < 7,05 > R, PHT > ES),  (23)

where R} = %7 ie{1,2}.
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For K pairs of users of this system, the SSCP Y, is
obtained as follows:

K
T = [ (24)
k=1

Notably, according to (20), if 75 >7 or 75 >,
Vk € {1,..., K}, then Tgﬁ) = 0. In this case, the IoDs
have not enough resource to execute locally. Here after,
we consider the scenarios that the condition of 7 < 7
and 7} < 7 is satisfied. Thus, the equation (21) can be
rewritten as

YH 2 pr(r¥ < 7,05 > R PHT > ES) . (25)

To evaluate the secrecy and latency performance of
this proposed system, we derive the following Theorem
1 as follows:

Theorem 1. In this proposed multi-user UAV-assisted
mobile edge computing IoT system, the approximation
expression of the secrecy successful computation
probability is obtained as follows:

2

P Q A _ 1 mu—l 2mU
v _ T 2 (—ygInwuy) mu
= 2PQ 2. (my —1)12 Ao

p=1gqg=1
Yq \/(1

my Inup myr

— w1 = w2 _ _H2kYq

X e AU U M 1—e #2rEDB2r
1+w),
_ mplup
e#1kEBlk(“2kyg+l) =_H2kYq
. _ [e“uzkEsz — 1} ,

(26)

* 2 1—-Bik)L; Rf;:
where Ay =7 — (HUJF%L)Z}?( P, By =2
A 1 ___PnTr ik =
Cip = Tk, N =v ” In (Efk(liﬂ)JerTQ 1), Air, =

(A=Bi) L
2 A —1, ie{l,2}, B =max{Cyy, /‘j”z b
Ak (p2rpBi+1 -

Boj, — max {Cm, % , Ay = e B2k,

_ [ ) A = nr
= — _Mkpzksyglnu, g u, = et Yqg =

/lekEBlk(p’Qkngrl) ) P 2 ) q
(wg+1)As> = 2n_1

gt )z 4 By wn—COS( ;LN 7T); n € {p,q},

N € {P,Q} is the complexity-vs-accuracy trade-off
coeflicient.

Proof. See in Appendix A. O

3.2. Optimization: Problem formulation and
solution

We are interested in the design optimization problem
to jointly optimize the SSCP for the multi-user UAV-
assisted mobile edge computing IoT system as follows:

(P1): max (Tss) (27a)
zu,Bik ik
St Zmin < 20 < Zmax (27b)
0< B <1 (27¢)
0<&kr<1 (27d)
bir < drn (27e)
where Vke {1,..,K}, i€{1,2}, (P1) Dbelongs to

the class of single objective optimization problems,
specifically, maximizing SSCP. The constraints of (27b),
(27c), and (27d) in the optimization problem describe
the optimal parameter set of the system, including
the altitude of the UAV, the backscattering reflection
coefficient, and the task dividing ratio. Additionally,
constraint (27e) is used to describe the security cost
limit, which is suitable for the IoT-MEC architecture-
based model.

As shown in [28], the Immune algorithm (IA) has
stronger local search capabilities than the Genetic
algorithm (GA), effectively preventing population
degradation. To solve the (P1) problem, we propose the
advanced immune algorithm, namely ATA, described in
as Algorithm 1.

Specifically, ATA begins with the initialization phase,
randomly generating an initial population of N potential
solutions (antibodies). Each antibody represents a
system parameter vector defined as P = (zy, Bik, &ik)-
During this phase, the main parameters of the
optimization algorithm, including clone number (C),
mutation rate (w,,), suppression rate (ws), number of
generations(Z), and the search range, are predefined.
Thereafter, in the main loop, the SSCP objective
function is used to evaluate the quality of each antibody
in terms of affinity (A) according to the formula:

1

A= +Tss(P) (28)
Next, AIA employs a roulette wheel strategy to
probabilistically select the best antibody for cloning,
ensuring its likelihood is proportional to its affinity.
According to the formula, the Gaussian mutation is then
utilized to randomly alter the antibodies’ components

randomly, thereby fostering population diversity.

Pm =P +mg, (29)

where mg ~ CN(0,0?).

The suppression process is further applied to the
post-mutation population, which plays a pivotal role
in maintaining antibody population diversity and
preventing premature convergence. By reducing the
affinity of similar antibodies, this process counteracts
the over-dominance of high-fitness antibodies and
encourages the emergence of diverse antibodies, thereby

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems
| Volume 12 | Issue 4 | 2025 |

2 EA 7



Van-Long Nguyen et al.

expanding the search space and increasing the likelihood
of finding a globally optimal solution. The formula
describing the suppression of an individual ¢ when its
similarity with individual j exceeds a threshold is given
by

A = A _ws~S(Pi7Pj)v (30)

where S(P;,P;) is the similarity ratio, S(P;,P;) =

PP 77
IR the operator ’. denote the scalar product,

and ||u|| is the norm of vector w.

Finally, after Z iterations, AIA returns the best
solution found, which is the optimal parameter set for
the system (z};, 5};,&/). Another note is that we use
a security cost constraint to ensure that the allowable
security level of the data encryption algorithm does not

exceed a given threshold.

Algorithm 1 The maximal secrecy successful computa-
tion probability based on Advanced Immune Algorithm

(AIA)

1: procedure ATA(T,;)

2 Input: YT,,, N,C,wpm,ws, T

3 Output: Optimization set (277, 85, &%)
4: Initialization:

5: Initialize antibodies P

6

7

8

: Main Loop:
Evaluate affinity A for each antibody using (28).
Select the best antibodies using roulette wheel
strategy.
9: Clone the best antibodies.
10: Mutate each clone using (29).

11: Suppress each antibodies using (30).
12: Output the Final Optimized Solution:
13: Return zj7, 85, &5}

14: end procedure

4. Numerical Results and Discussion

This section presents the Monte Carlo simulation
results for secrecy successful computation probability,
Tss, as a function of key parameters, including the
number of IoT devices, UAV altitude, transmit power,
backscatter reflection coefficient, task length, and task
dividing ratio.

4.1. System Setting

Similar to the work of [29], we provide the typical
values of simulation parameters utilized in our work as
Table 1. Specifically, for the nonlinear EH model, we
set ar = 150, by = 0.014 and P,, = 0.024 W [30]. The
location of U is set as (0, 0, zy), the locations of 4 IoT
devices are set as ([1,2,3,4],[2,2,2,2], 0). The distances

between U and Dy, k € {1,2,3,4}, are calculated by

duy, 2 \/(CUU —a1)? + (yu — )’ + 2 = 1]+ 2
(31)
To keep things simple, all ToT devices are assumed to
have identical energy conversion efficiency, backscatter-
ing reflection coefficient, task length, task division ratio,
and computing resources. Simulations are conducted by
105 samples.

4.2. Simulation Results

Fig. 2 illustrates the impact of UAV altitude (zy) and
the number of IoT devices (K) on the Secrecy Successful
Computation Probability (SSCP). The results show that
SSCP follows a typical “rise—peak—fall” trend as the UAV
altitude increases, confirming the existence of an optimal
altitude that maximizes secure offloading performance.
In addition, SSCP tends to decrease as the number of
IoT devices K increases, due to increased competition
for transmission resources and reduced time allocation
per user pair.

The optimal altitude is influenced by multiple
interrelated factors. At very low altitudes, SSCP
is degraded due to severe multipath fading and
signal blockage from surrounding ground-level obstacles.
As the UAV ascends, line-of-sight (LoS) conditions
improve, enhancing both wireless energy transfer and
communication reliability. However, when the UAV
altitude becomes too high, the increased path loss
outweighs the benefits of improved LoS, resulting in
weaker received signals and degraded SSCP.

Another key factor is the UAV transmit power.
When the UAV operates at a higher transmit power,
the emitted signal remains sufficiently strong even
over longer distances. This helps to compensate for
the increased path loss at higher altitudes, thereby
maintaining a strong backscattered signal received from
the IoT devices.

Moreover, since the system adopts backscatter
communication, where IoT devices passively reflect the
UAV’s incident signal, the secrecy performance is also
closely related to the strength of backscattered signals
and the spatial position of potential eavesdroppers.
Specifically, a lower UAV altitude improves energy
harvesting at the IoT devices and leads to stronger
backscattered signals, which, in turn, may increase the
risk of interception if an eavesdropper is located nearby.

Furthermore, when the number of IoT devices
increases, the fixed total transmission time must
be divided among more user pairs, resulting in
significantly shorter time slots allocated to each pair.
This leads to a considerable reduction in the effective
transmission rate per pair, which directly decreases
the SSCP. Additionally, the MEC server experiences
higher computational load, and the per-user bandwidth
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Table 2. Simulation Parameters

Parameters Notation| Typical
Values

Nakagami-m severity fac- | mq,mo 2, 2

tor

Average transmit SNR YU 0-40dB

Number of IoT devices K 2,4, 6

Energy conversion n 0.75

efficiency

Backscattering reflection Eik 0.1, 0.5,

coefficient 0.9

Task dividing ratio Bik 0-1

Carrier frequency fe 1 MHz

Speed of light c 3 x 108
m/s

Path-loss exponent « 2

Excessive path loss coeffi- W8, 1, 20

cients UNLoS

Constant parameters of a, b 9.6177,

environment 0.1581

Constant values of EH ag, by 150,

circuit 0.014

Maximum output DC P, 0.024W

power

The CPU-cycle frequency f 1 GHz

of MEC server

The number of CPU cycles K 2

for computing each bit

Channel bandwidth W 0.1, 1, 10
MHz

Task length Lk 0-20kb

Threshold of latency T 04, 0.7,
1s

Number of cryptography M 6

algorithm

The CPU cycles required | m, ¥k, | 20, 80

for encrypting and

decrypting one bit

Maximal security breach ik 5K §

cost

Security risk coefficient v 1

Expected protection level m )

also decreases, further contributing to performance

degradation.

As shown in the figure 2, the SSCP reaches its
peak in the altitude range of approximately 8-10
meters, depending on the number of IoT devices.
This range represents a balance point where LoS
conditions are favorable, energy harvesting remains
efficient, and the risk of passive eavesdropping is

2 EA

mitigated. These results highlight the importance of
altitude-aware UAV positioning in secure and energy-
constrained IoT environments.
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Figure 2. SSCP vs. UAV altitude with different values of
user number

In Fig. 3, we investigate the system performance
as a function of the average transmit SNR (yy) of
UAV user U, under varying bandwidth (W) conditions.
A distinct upward trend is observed, where system
performance significantly improves with increasing ~y
across all three bandwidth scenarios. This demonstrates
a positive correlation between signal strength and
system operational efficiency. Enhanced transmit power
leads to improved data decoding capabilities at the
receiver, consequently minimizing errors and boosting
transmission rates. This performance enhancement is
attributed to the increased resilience of a stronger
signal against noise and propagation losses in the
transmission environment, thus enhancing connection
quality. Notably, that the SSCP tends to saturate
beyond a ~y threshold of 25 dB, suggesting that
further increments in SNR yield diminishing returns.
Additionally, a clear enhancement in performance is
evident with increased bandwidth. The improvement
is particularly pronounced when transitioning from 0.1
MHz to 1 MHz. However, the gains in performance when
increasing bandwidth from 1 MHz to 10 MHz are more
significant at lower y values, converging towards similar
saturation levels at higher ~;;. These numerical results
emphasize the critical role of optimizing transmit SNR
and operational bandwidth in designing and deploying
efficient IoT systems.

In Fig. 4, we examine the system performance based
on variations in task length (L;;) and block time (T').
The results demonstrate a clear trend of declining system
performance as task length increases. This increase in
task length corresponds to a proportional rise in the
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Figure 3. SSCP vs. average transmit SNR with different
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workload that needs to be processed, encompassing both
local computation and offloading. Once L;; surpasses a
critical threshold, the system enters an outage statestate
due to overload, making it unable to meet the required
demands. This phenomenon is entirely consistent with
the system’s offloading model, where an extensive
workload places a substantial burden on meeting
processing time constraints. Conversely, as block time
extends, a notable improvement in system performance
is observed. This can be attributed to the fact that a
longer block time allows the system more time to process
and allocate resources efficiently, thereby mitigating
overload conditions and enhancing task completion rates.
Increasing the block time gives the system additional
budget, enabling optimized processing and reducing the
outages. However, excessively increasing the block time
may lead to increased latency, which could impact real-
time applications.

In Fig. 5, we investigate the system performance
as a function of the task dividing ratio (B;;) and
the backscattering reflection coefficient (). The
simulation results show that when (3;; has low values,
specifically f;r < 0.4 in this simulation, the system
ceases to function. Beyond this threshold, a significant
improvement in system performance is observed. This
indicates that an inappropriate task division leads
to an imbalance in local computation and offloading
workloads, thereby hindering the intended system
functionality. Furthermore, Fig. 5 explores the impact of
three distinct &1, levels, representing the signal reflection
capability of IoT devices utilizing BC technology. A
decrease in this coefficient is associated with improved
system performance.
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4.3. Optimization Results

In this section, we examine the convergence of the
ATA optimization algorithm under various transmission
power levels. We configure the algorithm with the
following initialization parameters: a population size of
100, a clone number of 20, a mutation rate of 0.01,
and a suppression coefficient of 0.3. Across all three
simulation results, with vy equals 10, 15, and 20 dB,
the results demonstrate that the algorithm converges
well within 100 iterations. It indicates that AIA is
highly effective, as it can find near-optimal solutions
quickly. Furthermore, fewer iterations imply lower
computational resource consumption, which benefits
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resource-constrained devices like those in the proposed
TIoT MEC environment.
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Figure 6. AIA convergence with different power levels

After employing AIA, we obtained the optimal param-
eter set {27, B}, &%, } and applied it for performance com-
parison. Accordingly, we investigated the effectiveness of
the optimization algorithm in the following scenarios: (i)
Using the proposed optimization algorithm, (ii) Using
an exhaustive search algorithm with a precision of 0.001
as a benchmark, (iii) Using random parameters, and
(iv) Using fixed parameters. For the random parameter
set, we randomly initialized 1000 solutions and selected
the best set for comparison. The results show that
ATA delivers performance comparable to the exhaustive
search algorithm, providing encouraging evidence of its
ability to find near-optimal solutions. Notably, ATA has
a significantly lower computational cost than exhaustive
search, offering a considerable advantage in applicability
to the proposed model. Another observation is that ATA
significantly improves system performance compared to
scenarios without optimization, i.e., (iii) and (iv). There-
fore, the application of ATA is of great significance in
realizing future IoT MEC-based applications.

The secrecy capacity expressions in the theoretical
analysis are approximated under the assumption of very
low noise power at each receiver. This assumption simpli-
fies the formulation and makes the theoretical derivation
tractable with lower computational complexity. However,
it may introduce additional deviations when compared
to practical simulation settings, thereby contributing to
the slight gaps observed between the theoretical and
simulation curves.

In addition, the theoretical expression of SSCP
is derived using approximation techniques, and still
exhibits a slight deviation compared to Monte Carlo
simulation results. This is primarily due to the
use of the Gaussian-Chebyshev quadrature method,
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Figure 7. Comparation of AlA performance with a bench-
mark optimization algorithm and without optimization
scenario

which is a widely adopted approach for approximating
multi-dimensional integrals in wireless communication
analysis. While this method enables closed-form
evaluation and significantly reduces computational
complexity, it inherently introduces approximation error,
particularly when capturing higher-order statistical
behaviors of random channels.

Nevertheless, the theoretical results remain sufficiently
accurate for performance evaluation and offer valuable
analytical insights for system design and optimization.

5. Conclusion

In conclusion, this paper has addressed the critical
challenge of perception layer security within a UAV-
enabled MEC system for a BC IoT network, emphasizing
safeguarding data integrity and reliability. Accordingly,
we integrated PLS, TDMA, NOMA, and BC techniques
to construct a system protocol to enhance system secrecy
against moving passive eavesdropping. A approximation
expression for the SSCP was derived, encapsulating the
complex interplay of harvested energy, computational
latency, and encryption costs. Leveraging an Advanced
Immune algorithm, we optimized the system parame-
ters, including UAV altitude, backscattering reflection
coefficient, and task dividing ratio to maximize SSCP.
Through comprehensive numerical simulations, we val-
idated the accuracy of our analytical framework and
demonstrated the significant impact of key parameters
on secrecy and latency performance. This work provides
valuable insights into designing and optimizing secure
and efficient UAV-assisted IoT systems, paving the way
for future research into more robust and resilient PLS
mechanisms in dynamic MEC environments.
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In our future work, we will investigate an extended
system model to incorporate multi-user, multi-antenna,
and emerging technologies while optimizing algorithms
and enhancing security analysis to address the challenges
in complex IoT environments.
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Proof of Theorem 1
Substituting (18), (16) and (21) into (25), the equation (23) can be rewritten as (A-1),

14+ v B 14+ yop

T = Pr{t(fk < Ag, gy, < Ag, [ L g > Bop, X1k > Chg, Xog > C2k}

(A-1)

k k
~ Pr {“mc > Ak, yor > Ask, QLLESS By, SELEES By, X1k > Cig, Xog > CQk}-
VkE V2kE

Y 2 (1—=Bik)Lik R”L .
where A =7 — (kU %)Z};l( Bik) B Ci = ?iz:, Ajp = v — %1 (E° T 1?2)+P7,LTQ 1>7 Aix =
A—=Bip)Lik
2 BAg —1,71€ {1,2}.

Then, substituting (8), (9), (11), and (12) into (A-1), we can obtain as (A-2), where By = max{Cay, / 22},

K2k
Avg (porpB2,+1) A Loky
By = max { Cig, \| —— ——= ¢, Ag = 12—

Pk porE Bk *
X2 M1k X1k t1kEBirZ1k
1) = pr {X k> Cig, Xop > Co, STt LI Atk por X3, > Aag, )
5 ! ! por X3, +1 Hak 2k pok X3y +1 7 pokp Xox Zog + 1

pok Xog > M%EB%Z%}

pe X%, — Ak Zin < e X1k (HorEXokwZor + 1) - ok Xok }
’ pakEBak (A-2)

=Pr {Xlk > Bag, Bk < Xop <

By’
/ / H2kA1k /MzkEB%
sz B

porAip pakeBik (por X3, + 1)

ik (Hokpyz + 1)
F dxdyd
me )fXQk(y)fZ2k(Z) Z1k [MlkEBlk (N2ky2 +1) rayaz

pip(nu)2—Ayy

A A
' fx (= Inw) / Han A ? [ulk(—lnu) (pokEyz + 1)}
= : Fz,, . (2)dzdydu.
/0 51, [xa (y) o Z1k, fine B (fany® + 1) [22,,(2) Y

I

By the help of (5) and (6), the integral I can be calculated as (A-3).

Az pap(muw)(poppyz+l)
1= () [ R
0

ok Bak
, ppinu 1 (A-3)
1B " [ 1 nu
e MQ’;ZE’“;;% _ HikEDBik (/szy + 1) e#1kE Bk (ragpy?+1) e(;q:;%ﬁ?f;m:72+l) 71>A3 4l
pkpekey Inu — pigs Bik (p2ry? + 1)
Substituting the result of (A-3) into (A-2), we can have the equation (A-4),
2 P Q A 2my myrlnu m ]. — C{)2)
’rg’;) 0 7 Z e <mU> (=g lnup)mUile v Y LT St 22 Sl 24
2PQ =1 g=1 (mU — 1)'2 )\U 1 + Wp
g In wp (A-4)
2 B 2 High yglnu o HoRy
1-— 67 Hél-zgiézk — MlkEBlk (,LLQkyq + 1) e”lkE lk(MZky(IJrl) €<H1kl};Bfll:?H2qkygfl) 1) u2k2§3(12k -1

fikbokEYq Ity — pare Bk (pory? + 1)

— (=1 2—Aqg A A
where A; = e B2 Ay = \/W — Big, Ag = Hf:};“?;%, up = (w”gl) Loy, = (w‘ﬁ;) 2 1 Bir. Notably, the
Step (*) is held by employing the Gaussian-Chebyshev quadrature method, we obtain the final result as (26), and

the proof ends.
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