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Abstract

Federated Learning is a novel decentralized methodology that enables multiple clients to collaboratively train
a global model while preserving the privacy of their local data. Although federated learning enhances data
privacy, it faces challenges related to data quality and client behavior. A fundamental issue is the presence
of noisy labels in certain clients, which damages the global model’s performance. To address this problem,
this paper introduces a Federated learning framework with Noisy client Detection and robust Aggregation,
FedNDA. In the first stage, FedNDA detects noisy clients by analyzing the distribution of their local losses.
A noisy client exhibits a loss distribution distinct from that of clean clients. To handle the class imbalance
issue in local data, we utilize per-class losses instead of the total loss. We then assign each client a noisiness
score, calculated as the Earth Mover’s Distance between the per-class loss distribution of the client and the
average distribution of all clean clients. This noisiness metric is more sensitive for detecting noisy clients
compared to conventional metrics such as Euclidean distance or L1 norm. The noisiness score is subsequently
transferred to and used in the server-side aggregation function to prioritize clean clients while reducing the
influence of noisy clients. Experimental results demonstrate that FedNDA consistently outperforms state-
of-the-art methods such as FedAvg, FedNoRo, FedCorr, and FedELC on two benchmark datasets, CIFAR-
10 and ICH. Notably, FedNDA achieves the highest accuracy in both clean and noisy client scenarios,
maintaining robust performance regardless of optimizer or preprocessing strategy. Our code is available at:
https://github.com/ktzung/FedNDA.
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1. INTRODUCTION
Federated Learning (FL) is a decentralized approach
for training machine learning models in which data
remain on local devices, and only model updates are
shared with a central server [1], [2], [3]. This ensures
data privacy, making FL suitable for applications in
sensitive domains such as healthcare and finance. It
also enables collaboration across diverse data sources

∗Corresponding author. Email: hai.tranthithanh1@hust.edu.vn

while reducing communication and storage costs.
However, it faces challenges such as data heterogeneity,
communication overhead, and client reliability issues.
Additionally, ensuring security and robustness against
adversarial attacks remains critical. Despite these
challenges, FL offers a promising framework for large-
scale privacy-preserving machine learning.

One of the most challenging issues in FL is the
presence of noisy clients, particularly those with label
noise in their local datasets [4]. Label noise can arise
from incorrect annotations, varying expertise levels,
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or inherent ambiguities in data labeling, mostly in
the medical field [5], [6], leading to degraded model
performance. In FL, this problem is amplified due
to the decentralized nature of training, where the
server has no direct access to the raw data to verify
its quality. Consequently, noisy clients can introduce
biased or misleading updates, disrupting the learning
process and harming the global model’s accuracy.
Addressing this issue requires robust methods to detect
and mitigate label noise at both the client and server
levels, such as noise filtering, re-labeling strategies, or
weighting client contributions. Tackling noisy clients is
essential for ensuring the reliability and scalability of
FL in real-world scenarios.

Existing approaches to deal with noisy clients in
FL often focus on two main strategies. The first
category aims to identify noisy clients and assign them
less importance during the aggregation process [7–
9]. Reducing these clients’s influence helps minimize
noise and improve model performance. The second
category attempts to correct the noisy labels provided
by these clients [10], [11], [12]. This dual strategy
not only mitigates the negative effects of noisy data,
but also enhances the robustness of the learning
process. By combining client identification with label
correction, federated learning systems can maintain
higher accuracy and stability, even in the presence
of substantial noise. The second category generally
requires an additional stage of processing as well
as a clean benchmark dataset on the server for
validation, which may not be available in practical use.
For instance, techniques like co-teaching or confident
learning rely on server-side validation datasets to
identify mislabeled samples

In this paper, we propose a framework, namely
FedNDA (Federated Noisy Client Detection and
Robust Aggregation), which belongs to the first
category of federated noise label learning. It aims
to detect abnormal clients based on their different
loss distributions. To address class imbalance in the
data, per-class losses are utilized. Noisy clients with
significant variations in their per-class losses may be
candidates for having a data distribution that differs
from clean clients. FedNDA consists of two main
stages: noisy client detection and robust aggregation
with training. Detection is based on analyzing the
distribution of clients in the per-class loss space.
We then assign a weight indicating the importance
of clients based on their noisiness. This noisiness
is computed as the Earth Mover’s Distance (EMD)
between the current per-class loss and the mean per-
class loss of all clean clients.

Unlike FedNoRo [13], which measures the distance
based on the minimum distance from a client to the
closest clean client, FedNDA uses EMD which provides
several advantages. EMD measures the minimum

cost of transforming one probability distribution into
another, making it highly sensitive to class distribution
differences. It can better detect noisy clients whose
class distribution deviates significantly from the
global or expected distribution. Additionally, EMD
inherently considers label relationships when used in
classification problems, particularly in scenarios with
ordinal labels or correlated classes. This makes it more
robust to label noise, as it penalizes misclassifications
proportionally to the severity of the error. In summary,
our contributions are three-fold:

• We propose a framework, FedNDA, for robust
federated learning with noisy labels;

• We introduce a new metric to measure the
noisiness of clients based on EMD of per-class
losses;

• We validate our proposed methods on two
benchmark datasets, CIFAR-10 and ICH, demon-
strating the significant improvements of Fed-
NDA compared to other state-of-the-art methods
such as FedAvg [1], FedNoRo[13], FedELC[14],
FedCorr[10].

The remainder of this paper is structured as
follows. In Section II, we provide an overview of
the fundamentals of federated learning, the challenges
associated with noisy labels, and algorithms used for
generating noisy labels in simulations. In Section III,
we describe our framework in detail, focusing on its
two main stages: noisy client detection and robust
aggregation and training. Section IV presents the
experimental datasets and results. Finally, we conclude
the paper and propose ideas for future work.

2. BACKGROUND AND RELATED WORKS
2.1. Background
Problem definition. Federated Learning is a distributed
machine learning paradigm where models are trained
collaboratively across multiple decentralized devices or
servers holding local data, without transferring the data
to a central server. This approach enhances data privacy,
reduces communication costs, and allows diverse data
distributions while leveraging collective knowledge for
improved model performance.

In an FL framework, there is a set of clients S =
{C1, C2, .., CN } participating in the training process.
Each client Ck holds the local data Dk which may
contain samples belonging to M classes. Each local
datasetDk = {(xik , y

i
k)}Nk

i=1 has Nk samples. It is noted that
in an IID setting, the probabilities of a class s in the
datasets of clients Ck and Cl are similar. This condition
does not hold true in the non-IID setting. The overall
objective of FL is solving the optimization problem for
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N clients over their own local datasets, which can be
formulated as eq. (1):

min
w

f (w) :=
∑

k∈[1,N ]

Nk

N
Fk(w). (1)

where Fk(w) is the loss of the prediction for samples in
Dk of the client Ck with model parameters w.

In training process, each client Ck trains a local model
wk using its local dataset Dk , then sends to the server
for weight aggregation. In a conventional federated
learning, averge aggregation is widely used as a simple
yet efffective method [1]. At the communication round
t, the global model wt

G is computed as eq. (2):

wt
G ←

∑
Ck∈St

|Dk |∑
Ci∈St |Di |

wt
k (2)

with St ⊆ S is a subset of the selected clients in round
t according to a fraction γ . When γ = 1, all clients
participate in the training process.

2.2. Noisy labels and label noise generation for
simulation
Noisy labels are errors, inconsistencies, or inaccuracies
in the labels of a training dataset used in artificial
intelligence and machine learning. Noisy labels can be
caused by human error, sensor errors, or inaccurate
search engines. To simulate noisy labels, the true
label yj of a certain sample xj is replaced with
the corresponding noisy label ŷj . Zhang et al.
[15] demonstrated that deep learning models are
susceptible to overfitting. In [16], [17], [18], label
noise was characterized as noise completely at random
(symmetric or uniform label noise), noise at random
(asymmetric, pair-flipping, label-dependent noise, or
instance-independent noise), noise not at random
(instance-dependent noise or semantic label noise).
Both noise at random and noise not at random happen
when either the labeler is not reliable or when there is
intrinsic variability among labelers.

Simulation of label noise, which is commonly
encountered in real-world datasets, is crucial for
validating FL models before their deployment in
practical applications. Xu et al. introduced instance-
independant label noise. Their noise model is defined
as a function of two parameters, ρ and ηl [10]. Here, ρ
denotes the system-wide noise level (noisy client rate),
while ηl represents the lower bound for the noise level
of a noisy client. The local noise level for each client
is randomly sampled from the uniform distribution
U (ηl , 1). Specifically, the noise level associated with a
client is defined as eq.(3):

η =

u ∼ U (ηl , 1) ,with probability ρ

0 ,with probability 1 − ρ.
(3)

To take into account the heterogeneity of label
noises in the client’s data, Wu et al. constructed a
heterogeneous label noise model [13]. The main idea
is to consider a sample having noise label when it has
a high probability to be misclassified by a classication
model than clean labels. Let us define the noisy client
rate ρ as the proportion of noisy clients and assume
local noise rate ηk for the client Ck . The algorithm to
generate the label noise from clients of Wu et al. [13]
starts by training a neural network gk on each client
Ck with its original clean data Dk . Then, the trained
neural network gk is used to produce the classification
probabilities of all samples belonging to the client.
Given each instance xjk in the k-th noisy client Ck and

the corresponding classification probability p(Y |xjk) ∈
[0, 1]M , its misclassification probability is determined
by:

p̃(xjk) = 1 − p(Y = y
j
k |x

j
k) (4)

and totally ηkNk samples would be chosen as noisy
samples based on the normalized misclassification
probability p̃(xjk) ∈ [0, 1]Nk . A hard sample, which has a
high misclassification probability, is considered a noisy
sample. As samples are processed on each client among
ρN clients by different neural networks gk , the samples
are ensured to be heterogeneous.

2.3. Related works on FL with label noise
The challenge of noisy clients in FL has garnered
significant attention in recent research, focusing on
both detection and aggregation strategies. We divide
the existing methods on FL with label noise into two
categories: Noisy label learning without correction and
Noisy label learning with correction.

Noisy label learning without correction. In [7], Chen et
al. introduced FOCUS, a model that assigns each local
model a credibility measure reflecting the quality of
sample labels provided by the clients. The credibility
is computed as the sum of cross-entropies when the
local and global models are validated on a clean, small
benchmark dataset on the server. A higher credibility
value indicates that the client may have noisier data.
This credibility measure is then used as a weight in
the model aggregation process. Similarly, Yang et al.
[19] assumed the availability of a small clean dataset on
the server and measured the noise ratio of each client
based on this clean validation dataset. These methods
focus on identifying or assigning a metric to measure
the quality of a client without directly correcting the
noisy labels. RHFL [20] addresses the complexities of
model heterogeneity among clients while managing
noise. It aligns the logits output distributions across
heterogeneous models and employs a noise-tolerant
loss function during local training. This approach helps
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mitigate the adverse effects of label noise, allowing for
more reliable aggregation of client updates.

One notable approach is the FedNoRo method [13],
which employs a two-component Gaussian Mixture
Model to identify noisy clients based on per-class loss
vectors produced by each client. They then define a
distance from the noisy client to the closest clean
model in the per-class loss space as weight for global
model aggregation. Another prominent framework is
FedNed framework [9]. It introduces a technique
called negative distillation, which encourages the
global model’s predictions to diverge from those of
identified noisy clients. By identifying extremely noisy
clients in each communication round, FedNed excludes
their contributions from model updates, leading to
improved performance. This method incorporates a
local optimization strategy for these clients, enhancing
overall model accuracy significantly compared to
traditional methods. FedNed also utilized a clean
benchmark dataset on server to evaluate the noiseness
of clients.

Noisy label learning with correction. In the context
of machine learning with noisy labels, label noise
correction aims to improve the quality of training
data by actively modifying potentially incorrect labels.
Instead of treating noisy labels as fixed, label correction
techniques attempt to replace them with more accurate
ones, often leveraging the model’s own predictions or
other information sources.

Xu et al. proposed FedCorr [10], which uses the Local
Intrinsic Dimensionality (LID) score to evaluate client
quality during a pre-processing stage. Noisy clients
and labels are identified and corrected in a subsequent
correction stage, followed by standard FL training in
the final stage. Tsouvalas et al. proposed FedLN to deal
with noise label [8]. FedLN estimates each client’s noise
level in a single federated round and enhances model
performance by correcting noisy samples or reducing
their impact. Li et al. proposed FedDiv an one-stage
framework for federated learning with noisy labels [11].
FedDiv leverages complementary knowledge from all
clients to train a global noise filter while simultaneously
conducting label noise filtering locally on each
client. By leveraging knowledge across clients, FedDiv
effectively filters label noise and improves training
stability. Jiang et al. proposed FedELC framework
[14], an end-to-end label correction mechanism that
detects high-noisy clients and corrects their labels via
backpropagation, improving data quality and model
performance. Giap et al. [12] introduced FedDC, a
three-stage framework for noisy detection, correction,
and standard training, accommodating scenarios where
the number of clients participating in the training
process is dynamic.

3. PROPOSED METHOD
In this paper, we propose a method, namely FedNDA to
deal with noise label without label correction due to its
simple design and lower computational complexity. The
idea is to identify the noise clients which may negatively
impact the performance of the overall system, then
reduce its importance in the aggregation step at the
server side. FedNDA consists of two main stages:

• Stage 1: Noisy client detection aims at iden-
tifying noisy clients and also identifying clean
clients based on analyzing the distribution of the
per-class losses by each client model on its local
dataset.

• Stage 2: Robust aggregation and training quan-
tify the noisiness of each client using the EMD
between its per-class loss vector and the mean per-
class loss vector of all clean clients. The server-
side aggregation process is then guided by this
noisiness score.

Figure 1 illustrates the two stages of FedNDA. We
will describe in detail each stage in the following
subsections.

3.1. Stage 1: Noisy Client Detection
Step 1: In our framework, all N clients participate in
the training process. Firstly, FedNDA begins with a
T1-round warm-up training phase using the FedAvg
algorithm. During this phase, each client Ck trains
a local model wk using its own data Dk and sends
the updated model parameters back to the server for
average aggregation. It is noted that Dk may contain
noisy samples. The global model wG is then sent back
to clients for the next round of training. It is computed
as eq. (5):

wG =
N∑
k=1

Nk∑N
j=1 Nj

wk (5)

where wG and wk denote the weights of the global
model and the k-th local model respectively, and N is
the number of clients for aggregation.
Step 2: After the warm-up phase, each client Ck

calculates the per-class loss vector for its local dataset
Lk = [lk1, lk2, . . . , lkM ]T , where M is the number of
classes to be recognized. Here, lkj represents the Cross-
Entropy loss for the jth class at client Ck . These per-
class loss values reflect the model’s performance on
each class. The per-class loss values from all clients are
sent to the server (Step 2 in Fig. 1).
Step 3: On the server side, all N per-class loss vectors

from N clients, L1,L2, . . . ,LN , are fed into a Gaussian
Mixture Model (GMM). GMMs have been widely
used in various studies for unsupervised clustering of
data points with similar attributes. In the context of
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Stage 1. Noisy Client Detection

Gaussian Mixture Model (GMM)

Noisy Clients

Rk

Clean Clients

Server side

Client side

wk
wG

Per-Class loss① ② ④

Global model

Mix of Noisy and Clean Clients

a noisy client a clean client

③

σn> σc
μn, σn μc, σc

G(μn, σn) G(μc, σc)

Stage 2. Robust aggregation and training

(Ri, wi)
(1.0, wj)

wG

Noisy Clients Clean Clients

Global model

Rk 

wG

Figure 1. Overview of the FedNDA two stages framework: Stage 1: 1⃝ Warm-up training with FedAvg though T1 rounds; 2⃝
Computation of per-class losses for all clients and send to the server; 3⃝ Estimation of Gaussian Mixture Model to cluster clean and
noisy clients; 4⃝ Estimation of noisiness for each client based on EMD; Stage 2: training of noisy and clean clients with EMD based
noisiness-aware aggregation.

identifying clean and noisy clients, some prior works
have also employed GMMs to separate the two groups,
for example, FedNoRo [13], FedRN [21], and FedELC
[14]. Inspired by this idea, we also follow this approach
to classify clients into two categories.

The GMM aims to analyze clients by grouping them
into two Gaussian distributions G(µc, σc) and G(µn, σn)
where (µc, σc) and (µn, σn) are the mean and deviation
of clean Gaussian and noise Gaussian respectively.
Clients without noisy labels have similar loss values,
resulting in a small deviation for their Gaussian
distribution. In contrast, the loss values of noisy clients
are different, leading to a larger deviation in their
Gaussian distribution (σc < σn). In this way, the clients
can be clustered into two groups: clean and noisy.
Step 4: Each noisy client Ck , once is identified as

noisy will be assigned a noisiness score Rk . This value
correlates with the noise rate of the client. The higher
the noisiness score Rk , the more samples have label
noise, resulting in a higher noisy sample rate ηk .
In our work, noisiness of a client Ck is defined the
EMD between its per-class loss distribution Lk and the
average per-class loss distribution of the clean clients µc
(eq. (6)).

Rk = EMD(Lk , µc) = min
F

M∑
i=1

M∑
j=1

fijdij (6)

subject to
M∑
j=1

fij = Lki ,
M∑
i=1

fij = µcj , fij ≥ 0 (7)

where F = {fij } is the flow matrix, determined by the
optimization function (eq.(6)) and dij is the ground
distance between ith and jth elements.

The µc is estimated as the centroid of the clean cluster
as follows :

µc =
1
Nc

Nc∑
i=1

Li (8)

where Nc is the number of noisy clients.

3.2. Stage 2: Robust aggregation and training
Specific training for groups of clean / noise clients. In the
second stage, we process the training clean and noisy
clients as follows:

• Clean clients Cc: We utilize the Cross-Entropy
loss function to train the clean clients.

Lc = LCE(yp, ŷ) (9)

where yp and ŷ are the predicted and ground
truth labels respectively. It is to note that Logit
Adjustment (LA) is applied to the output of
the network (yp) to reduce the effect from class
imbalance and heterogenity of data among clients.
This is a technique used to modify the output
of a classification model, typically a logistic
regression model, to correct for imbalanced
class distributions or to optimize for a specific
performance metric.

• Noisy clients Cn: Beside the Cross-Entropy loss
combined with LA technique, we adjust the
Kullback-Leibler (KL) divergence (eq. (10)) loss
into the total loss to train the noisy clients:

Ln = λLKL(yp, yG) + (1 − λ)LCE(yp, ŷ) (10)

where yp represents the prediction results of the local
model, LKL is the Kullback-Leibler divergence, and λ is
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a trade-off coefficient. In our experiment, λ is set to 0.8.
For noisy client, with a given sample x, the global model
fG(x) produces a targeted probability distribution yG
calculated as

yG = softmax
(
fG(x)
T

)
(11)

T is the temperature to control and is set as 0.8 by
default.

Algorithm 1 FedNDA algorithm
Input: Number of clients N ; set of local data D =
{D1,D2, ...,DN }; number of classes M; rate of noisy
clients ρ; the communication rounds for the first and
second stages T1 and T2
Output: global model wG

1: Stage 1: Noisy client detetection
2: Randomly select a fraction ρ of from the total

number of clients N .
3: for each selected client Ck do
4: Perform the training for T1 rounds with FedAvg

(eq. (5)).
5: Calculate the per-class loss values lkj of client Ck

for the class j ∈ [1,M]
6: Send Lk = [lk1, lk2, . . . , lkM ]T to the server
7: end for
8: At the server: fed {L1,L2, . . . ,LK } to the GMM

module to estimate two Gaussian distributions:
G(µc, σc) and G(µn, σn)

9: Identify the noisy clients in the noisy distribution
G(µn, σn) with σn > σc.

10: Estimate the noisiness value Rk for each client
according to eq. (6).

11: Stage 2: Robust aggregation and training
12: for round t ∈ [1, T2] do
13: Train clean clients with Cross-Entropy loss

function and Logit Adjustment eq. (8).
14: Train noisy clients with Cross-Entropy loss

function, Logit Adjustment and Kullback-Leibler
divergence (eq. (9)).

15: Update the global model wt
G with noisiness

aware aggregation (eq. (12))
16: end for

Robust aggregation. To further reduce the negative
impact of noisy clients, a distance-aware model
aggregation function is used. Differ from other
approaches such as FedNoRo [13] that weights
clients based on the distance of their models from
the nearest clean client’s model, in our FedNDA,
noisiness is integrated into an aggregation process. As
mentioned previously, EMD quantifies the minimum
cost required to transform one probability distribution
into another, making it highly sensitive to differences
in class distributions. This sensitivity allows it to

more effectively identify noisy clients whose class
distributions differ significantly from the global or
expected distribution. This is done by combining
the EMD-based weight for each client, ensuring that
both data quality (as reflected by EMD) and model
convergence influence the client’s contribution to the
global model. To ensure the boundness of Rk , it is
further normalized to [0, 1] as

Rk =
Rk

maxj Rj
(12)

Then, local models are aggregated to update the global
model by

wG =
N∑
k=1

δi∑N
j=1 δj

·wk (13)

where

δk =

1.0, if Ck is a clean client

e−Rk if Ck is a noisy client
(14)

The steps of the first and the second stage are
summarized in Algorithm 1. Totally, we train FedNDA
for T1 + T2 rounds, T1 rounds for the first stage and T2
rounds for second stage of the framework.

4. Experiments
4.1. Datasets
Overview of the datasets. To evaluate the performance
of FedNDA compared to other existing methods such
as FedAvg and FedNoRo, we utilize two benchmarks:
CIFAR-10 [22] and ICH [23]. In CIFAR-10, the main
task is the image classification of ten classes. The
CIFAR-10 dataset consists of 60,000 color images
of size 32x32 across 10 classes. Each class contains
6,000 images, representing categories such as airplanes,
cars, birds, cats, deer, dogs, frogs, horses, rabbits,
and trucks. 50,000 samples are used for training
and 10,000 are used for testing. While CIFAR-
10 is frequently used to assess federated learning
frameworks, the ICH dataset has been specifically
designed as a comprehensive resource for evaluating
Brain CT Hemorrhage classification methods. The ICH
dataset comprises 67,969 brain CT slices and includes
five classes: subarachnoid, intraventricular, subdural,
epidural, and intraparenchymal hemorrhages, which
are commonly observed in brain CT scans. In the ICH
dataset, samples are randomly divided into the training
and test sets following a 7:3 split. Figure 2 and Figure 3
illustrate samples of the two datasets respectively.

Data partition across clients. In this experiment, we focus
on evaluation with non-idd setting. To allocate data to
clients, we utilize both Bernoulli and Dirichlet distribu-
tions. The Bernoulli distribution controls the probabil-
ity of retaining data samples for each client, while the
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Figure 2. Samples from CIFAR-10 dataset.

Figure 3. Samples from ICH dataset.

Dirichlet distribution allocates data classes unevenly
across clients. This combination effectively simulates
real-world federated learning scenarios where clients
have heterogeneous data in both sample size and class
distribution. As a result, it provides a robust environ-
ment for evaluating the generalization capabilities and
efficiency of federated learning algorithms.

For this partition, we generate the indicator matrix
Φ of size N ×M, where N is the number of clients,
and M is the number of classes in the dataset. The
element Φij indicates whether the local dataset Di of
the client Ci contains the class j ∈ [1,M]. The value
of Φij is determined by Bernoullie distribution with
probability p. We define the vector zj with length of∑N

i=1 Φij that is the total number of clients containing
the class j. The element of the vector zj will be
sampled from symmetric Dirichlet distribution αdir . In
our experiments, N is set to 20, and M is 10 and 5
regarding CIFAR-10 and ICH dataset, respectively. We
choose p = 0.9 for Bernoulli distribution and αdir = 2.0
for Dirichlet distribution.

Noisy label generation. We begin by defining the Noisy
client rate ρ, which represents the proportion of
clients with noisy samples among the total N clients.
Specifically, the number of clients with noisy samples
is ρN . Additionally, we define the local noise rate ηk
for each client Ck following a uniform distribution
U (ηl , ηu), where ηl , ηu are lower and upper noisy
sample rates, respectively. In our experiments, we set
ρ to 0, 0.2, 0.4, 0.6, 0.8, and 1, representing noise
levels ranging from no noise to very high levels of
noisy clients, and (ηl , ηu) with (0.3, 0.5) and (0.5, 0.7).
Based on these rates, we randomly generate noisy labels
according samples of clients.

Figure 4 and Figure 5 illustrate the data distributions
for N = 20 clients for the CIFAR-10 and ICH datasets,
respectively. Colors represent the classes distributed
across each client, while the length of each bar
represents the number of samples for each class. We
clearly observe the non-IID nature of the data thanks
to the use of data sampling based on Bernoulli and
Dirichlet distributions.

Figure 4. Illustration of non-IID partitioning on CIFAR-10
dataset.

Figure 5. Illustration of non-IID partitioning on ICH dataset.

4.2. Implementation details
We implement ResNet-18 [24] with a pre-trained ini-
tialization from ImageNet. The number of communi-
cation rounds is set to 100, and the local epoch is 5.
The global model warm-up phase, denoted as T1, is
set to 15 rounds using FedAvg before initiating noisy
client detection. We set a constant learning rate lr of
3e-4, and a batch size b of 16. Table 1 summarizes
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Table 1. List of hyper-parameters and models used in our
experiments.

Parameters Symbol Value

Number of clients N 20

Number of classes (CIFAR-10/ICH) M 10/5

Model architecture F ResNet-18

Participing client rate γ 1

Noisy client rate ρ {0, 0.2,..., 1}

Upper noisy sample rate ηu 0.5, 0.7

Lower noisy sample rate ηl 0.3, 0.5

Noisy sample rate ηk Unif orm(ηl , ηu )

Bernoulli distribution’s prob. p 0.9

Symmetric Dirichlet distribution’s prob. αdir 2.0

1st stage communication rounds T1 15 for CIFAR-10

10 for ICH

2nd stage communication rounds T2 85 for CIFAR-10

90 for ICH

Learning rate lr 3e-4

Weight decay wd 5e-4

Trade-off coefficient λ 0.8

Temperature value T 0.8

Batchsize b 16

the most important hyperparameters utilized in our
experiments.

4.3. Experimental results
The experiments have been conducted to evaluate: 1)
the ability of FedNDA for noisy client detection; 2)
the overall performance of FedNDA compared to two
state-of-the-art models: FedAvg (without noisy client
detection) and FedNoRo (with noisy client detection);
3) the robustness of FedNDA to the noisy level.

Evaluation of noisy client detection. Evaluating the
accuracy of noisy client detection is crucial, as it
significantly impacts subsequent processes. In our
noisy label generation process, we have ground truth
information about which clients are noisy and their
respective noise levels. By using GMM as a classifier for
noisy and non-noisy clients, we can identify the noisy
cluster and the clean cluster based on the prediction
results.

We first represent each client as a feature point in
the space defined by per-class loss vectors. Principal
Component Analysis (PCA) is applied, retaining the
two most significant components for visualization, as
shown in Figure 6. This experiment is conducted on
CIFAR-10 as an example. Clearly, clean clients (blue
circles) exhibit similar per-class loss patterns, clustering
closely in the feature space. In contrast, noisy clients
(red circles) show diverse per-class loss patterns and are
distributed sparsely throughout the feature space. This

demonstrates that using a Gaussian Mixture Model,
combined with per-class loss vectors, is highly effective
in distinguishing clean clients from noisy ones.

We further investigate the ability to estimate the
noisiness of clients. In this experiment, we evaluate the
effectiveness of the proposed Earth Mover’s Distance
(EMD) approach with the conventional Euclidean
distance (ED) for measuring noisiness score. Figure 7
presents the noisiness normalized to the range [ηl , ηu]
alongside the ground truth noise level ηk for each noisy
client Ck , previously identified using GMM. The results
indicate that the normalized noisiness closely aligns
with the true noisy sample rate of each client. Notably,
for client C17, both ED and EMD perfectly estimate the
noisiness. However, EMD appears to provide slightly
more accurate estimations overall.

Figure 8 shows the performance of noisy client detec-
tion at different noisy client rates ρ = 0.2, 0.4, 0.6, 0.8, 1.
It is interesting to see that our FedNDA is able to detect
with 100% of accuracy when ρ = 0.2, 0.4, 0.6, 0.8. When
all clients are noisy ρ = 1, the accuracy decreases to
71.43%. However, this situation does not always occur
in practice.

To evaluate the performance of the GMM-based
method for identifying clean and noisy clients, we
conducted K-Means (K = 2) and DBSCAN as two
additional clustering methods in step 3 of the first
stage of our algorithm. Using DBSCAN, we set the
neighborhood radius (ϵ) to 0.5 and the minimum
number of points (MinPts) to 2. Fig. 9 shows that GMM
and K-Means produce similar results of detection,
leading to the same accuracy graphs, which overlap
with each other. DBSCAN starts slower than GMM and
K-Means, but finally reaches comparable accuracy.

Comparison with existing models. In this paper, we
compare the performance of our proposed model,
FedNDA, with existing models. On the CIFAR-10
dataset, we re-implement and train the experimented
models (FedAvg, FedCorr, FedELC, FedNoro) while
on the ICH dataset, we utilize the reported results
from existing works (FedAvg, FedProx, FedLA, RoFL,
RHFL, FedLSR, FedCorr, FedNoRo) with the same
experimental setup.

Results on the CIFAR-10 dataset Experiments on
this dataset were performed under two different
configuration settings: 1) the first setting employs the
SGD optimizer with image resizing and reports the
global accuracy after 100 rounds; and 2) the second
setting employs the Adam optimizer without image
resizing and reports the result after 50 rounds.

Table 2 shows the comparative result of Fed-
NDA versus FedAvg[1], FedCorr[10], FedELC[14], and
FedNoRo[13] on the CIFAR-10 dataset. The results
show that FedNDA consistently achieves the highest
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Figure 6. Visualization of GMMs estimated with 20 clients using the first two components of the Principal Component Analysis (PCA)
and Kernel Density Estimation (KDE) algorithms on the CIFAR-10 dataset.

Figure 7. Evaluation of estimation of noisy sample rate at each
client

accuracy across all experimental setups, demonstrat-
ing its robustness and adaptability. Specifically, when
using the SGD optimizer with resized inputs, FedNDA
achieves 84.99% of accuracy without noisy clients and
84.38% with noisy clients, outperforming FedAvg and
FedNoRo by notable margins. When using the Adam
optimizer without resizing, FedNDA further improves,
reaching 87.39% of accuracy without noise and 86.13%
with noise, maintaining its leading position even as
other methods experience performance drops. FedCorr
and FedELC generally lag behind, with FedCorr being
particularly sensitive to the presence of noisy clients,

Figure 8. Performance of noisy client detection at different noise
noisy client rates ρ.

Table 2. Comparison of FedNDA’s accuracy (BACC) with existing
models in both testing scenarios on CIFAR-10 dataset: without
noisy clients (ρ = 0, (ηl , ηu) = (0.0, 0.0)) and with noisy
clients (ρ = 0.4, (ηl , ηu) = (0.3, 0.5)).

Method Without noisy clients With noisy clients
SGD
Resize

100 rounds

Adam
No Resize
50 rounds

SGD
Resize

100 rounds

Adam
No Resize
50 rounds

FedAvg [1] 79.26 - 79.70 -
FedCorr [10] - 75.31 - 69.53
FedELC [14] - 84.85 - 83.53
FedNoRo [13] 81.95 86.94 80.78 86.05
FedNDA (our) 84.99 87.39 84.38 86.13
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Figure 9. Global accuracy on the validation set with various
clustering algorithms for FedNDA on the CIFAR-10 dataset:
GMM, DBSCAN, K-Means in an experimental setting ρ =
0.4, (ηl , ηu) = (0.3, 0.5) .

and FedELC showing moderate resilience, especially
under Adam optimization.

Overall, the introduction of noisy clients leads to
accuracy reductions for all methods, but FedNDA’s
performance remains the most stable, indicating
its strong resistance to data corruption and client
heterogeneity. Fig. 10 and Fig. 11 illustrate the
FedNDA’s accuracy across training rounds on the
CIFAR-10 dataset without noisy and with noisy clients,
respectively. Experiments show that FedNDA achieves
more stable results and converges quickly than FedELC
and FedCorr.

Figure 10. Comparison of algorithm accuracy over rounds without
noisy client

Results on the ICH dataset: Table 3 presents
the comparative results of FedNDA on the ICH
dataset. In addition to comparisons with FedAvg
and FedNoRo, we also include results from existing
works. For without noisy client setting (i.e ρ =
0, (ηl , ηu) = (0.0, 0.0)), FedAvg achieved 69.34% of
accuracy, while the accuracy increased by 4.25%
with FedNoRo. Our FedNDA provides the highest

Figure 11. Comparison of algorithm accuracy over rounds with
noisy client rate at 0.4

accuracy of 73.81%, which is 4.47% and 0.22% higher
than FedAvg and FedNoRo, respectively. With noisy
client setting, we report the result with the rate
of noisy clients ρ = 0.4 and the local noise rate of
samples ηi following U (ηl , ηu) = (0.3, 0.5), FedNDA
stills outperformed FedNoRo and other FL models such
as FedAvg, FedProx, FedLA, ROFL, FedLSR, FedCorr.

Table 3. Comparison of FedNDA’s accuracy (BACC) with existing
models in both testing scenarios on ICH dataset: without noisy
clients (ρ = 0, (ηl , ηu) = (0.0, 0.0)) and with noisy clients (ρ =
0.4, (ηl , ηu) = (0.3, 0.5)).

Method, Year Without noisy clients With noisy clients
FedAvg [1] 69.34 60.52
FedProx [25] 68.16 60.85
FedLA [26] 73.56 66.60
RoFL [27] - 40.35
RHFL [28] - 55.26
FedLSR [29] - 52.48
FedCorr [10] - 53.62
FedNoRo [13] 73.59 70.69
FedNDA (our) 73.81 71.17

Robustness of FedNDA to noisy client rate. To evaluate
the robustness of FedNDA to different noise client
rates, we vary the rate of noisy clients ρ from 0.2
to 1 with a step size of 0.2. We also change the
rate of noisy samples ηk in each client Ck using a
uniform distribution U (ηl , ηu) with ηl , ηu are lower
and upper bounds of the noisy sample rate. In our
experiment, (ηl , ηu) = (0.3, 0.5) and (ηl , ηu) = (0.5, 0.7).
Fig. 12 shows the accuracy of FedNDA for these
two different pairs of (ηl , ηu). All experiments are
conducted on the CIFAR-10 dataset. We observe that the
accuracy of FedNDA remains consistent as the number
of noisy clients increases. When all clients are noisy
(ρ = 1), the accuracy decreases slightly; however, this
scenario may not be realistic in practice, as it is unlikely
that all clients are noisy.
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Figure 12. Robustness of FedNDA to noise client rate ρ when
(ηl , ηu) = (0.3, 0.5)|(0.5, 0.7) on CIFAR-10 dataset. The rate
of noisy clients ρ (horizontal axis) varies from 0.2 to 1. Values in
the vertical axes represent the corresponding accuracies (%).

Impact of λ on the FedNDA performance. As mentioned
in section 3.2, we applied a specific training strategy
for each group of clients. For clean clients, we utilized
the Cross-Entropy loss function, while we combined
CE loss with KL loss to train noisy clients. In eq.(10),
the hyperparameter λ defines the weight for each loss
component. We varied the value of λ from 0.2 to 1 with
a step size of 0.2. A higher value of λ increases the
contribution of the KL loss to the overall loss function.
Fig. 13 shows the accuracy achieved by FedNDA across
different values of λ. We observe that λ = 0.2 yields the
highest accuracy of 86.5%. When λ = 1, meaning KL
is not considered, the accuracy is reduced to 86.05%.
This result is reasonable, as it reflects a balanced
contribution of the KL loss to the overall objective
function.

Figure 13. The effect of on model robustness under random label
noise on the CIFAR10 dataset

5. Conclusions
This paper introduced a novel framework, FedNDA, for
federated learning. The proposed two-stage framework
can identify noisy clients based on their per-class loss
vectors using the Gaussian Mixture Model (GMM)
technique. It then determines the noise rate of
identified noisy clients by computing the Earth Mover’s
Distance (EMD) between the distribution of per-class
losses and that of the average losses from clean clients.
In the first stage, our method achieves 100% of accuracy
in determining the noise rate when noise levels range
from 0.2 to 0.8. The accuracy decreases to 71.43%
when all clients are noisy. In the second stage, the
framework trains clean and noisy clients differently,
employing a noise-aware aggregation strategy. Our
approach outperforms state-of-the-art FL algorithms
on two benchmark datasets. Additionally, the method
demonstrates high stability across varying noisy client
rates. In future work, we plan to integrate more
information, such as gradient information or Local
Intrinsic Dimensions (LID), to better identify noisy
clients when all clients are noisy. We also aim to
evaluate the framework on real-world noisy datasets.
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