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Abstract

The performance of energy harvesting (EH)-enabled long-range (LoRa) networks is analyzed in this work.
Specifically, we employ deep learning (DL) to estimate the coverage probability (Pcov) of the considered
networks. Our study incorporates a general fading distribution, specifically the Nakagami-m distribution, and
utilizes tools from stochastic geometry (SG) to model the spatial distributions of all nodes and end-devices
(EDs) with EH capability. The DL approach is employed to overcome the limitations of model-based methods
that can only evaluate the Pcov under simplified network conditions. Therefore, we propose a deep neural
network (DNN) that estimates the Pcov with high accuracy compared to the ground truth values. Additionally,
we demonstrate that DL significantly outperforms the Monte Carlo simulation approach in terms of resource
consumption, including time and memory.
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1. Introduction
Low power wide area networks (LPWAN) have recently
been considered the best candidate for implementing
the Internet of Things (IoT) compared with cellular
networks and WiFi, thanks to their low power
consumption and long transmission distances [1, 2].
Among all available LPWAN networks, long-range
(LoRa) has gained significant attention from both
academia and industry. The success of LoRa networks
is attributed to its advanced modulation scheme,
chirp spread spectrum (CSS), which provides better
performance compared to conventional modulations
such as quadrature amplitude modulation (QAM) and

∗Corresponding author. Email: tranconghung@siu.edu.vn

phase shift keying (PSK). Other advantages of LoRa
networks include extremely low power consumption
and the ability to communicate over distances of up
to tens of kilometers by appropriately adjusting the
spreading factor (SF), coding rate (CR), and transmit
power [3]. Even though LoRa end-devices (EDs) can
operate and last for several years, they eventually need
to be replaced. This replacement is challenging if the
EDs are located in unpopulated areas. Additionally, if
the number of EDs is in the tens of thousands, such
replacement becomes almost infeasible. As a result,
finding solutions to improve energy efficiency (EE) and
avoid such maintenance tasks are critically important
for LoRa networks.

Luckily, energy harvesting (EH) techniques have been
widely studied and employed in the last decade. By
charging the devices’ batteries with radio frequency
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(RF) signals, one can eliminate the need for battery
replacement [4]. The practical implementation of EH
in wireless networks includes two approaches. The
first approach is to split the RF signals between
information decoding and energy harvesting, known as
simultaneous wireless information and power transfer
(SWIPT) [5]. The second approach is to install power
stations to broadcast RF signals to charge the batteries
of EDs. It is clear that the latter approach provides
better performance as it does not share the RF signals
between the energy harvester and information decoder.
However, from an economic perspective, the latter
approach is more costly than the former.

In wireless communication systems, besides EH
technologies and LoRa networks, deep learning (DL)
has also been widely applied to solve problems that
cannot be addressed via model-based approaches [6–
8]. By exploiting the power of data-driven methods,
several long-standing problems in wireless networks
have been solved. Consequently, in the present work, we
address the performance of EH-enabled LoRa networks
by employing the DL approach to take advantage of all
these advanced technologies and networks.

1.1. Literature review
In this section, we summarize existing works related to
the topics of energy harvesting, deep learning in LoRa
networks, and the combinations of these techniques.
Starting with energy harvesting in wireless networks,
this area has been widely studied [9–13]. For instance,
Le et al. investigated the performance of EH-enabled
dual-hop multi-input multi-output (MIMO) systems,
deriving the characteristics of the end-to-end (e2e)
signal-to-noise ratio (SNR) with two protocols: time
switching and power splitting. However, they focused
on general wireless systems instead of specific networks
such as cellular networks, WiFi, and LPWAN. The
work in [10] investigated the performance of the
mutual inductance of the transmitter and receiver in
wireless power transfer-enabled systems. In contrast,
we consider LoRa networks employing deep learning
techniques. Huan and other authors in [12] derived
the outage probability (OP) of multi-hop relaying
networks with energy harvesting and partial relay
selection, representing the OP in a closed-form
expression. Again, they considered a generic wireless
network and did not use deep learning techniques to
estimate the performance metric too. User selection
protocols, including random selection, distance-based
selection, and channel gain based selection, with
energy harvesting and hardware impairment, were
investigated in [13]. Specifically, they derived the OP
under three different selection schemes.

Regarding LoRa networks, Georgiou and his col-
leagues in [14] derived the coverage probability (Pcov)

of LoRa networks. However, they assumed that the
signal-to-noise ratio and signal-to-interference ratio
(SIR) are independent of each other, whereas we con-
sider this strong correlation in the present work. Thanh
and others in [15] also derived the Pcov of LoRa net-
works, considering the correlation between SIR and
SNR, and additionally derived the area spectral effi-
ciency (ASE) of the networks. Nevertheless, they did
not incorporate both energy harvesting and deep learn-
ing in their work. The performance of multi-gateway
downlink LoRa networks was addressed in [16]. Several
multiple access methods in LoRa networks were studied
in [17], revealing that slotted-ALOHA outperformed
the conventional ALOHA approach. The integration
of EH-enabled in LoRa networks were deployed in
reality. Particularly, Orfei and colleagues, for instance,
studied the application of LoRa networks in road
monitoring in Rome, Italy, where LoRa devices were
powered by energy harvested from electromechani-
cal sources [18]. On the other hand, Dalpiaz et al.
conducted an experiment using a battery-free power
meter in LoRa networks, employing a simple energy
harvester circuit using electrical induction and a capac-
itor [19]. Additionally, authors in [20] utilized EH-
enabled LoRa networks to monitor water supply, where
the transceiver was powered by a hybrid of solar
and hydroelectric sources. Their results demonstrated
that with EH-enabled technology, the system’s lifetime
increased to 432 hours. Another example is from Meli
and Bachmann in [21], who reported a solar-powered
LoRa system. Their experiments showed that when the
transceiver was placed near a window, the LoRa mod-
ule could transmit hundreds of messages per day. For
further practical implementations, demos, and exper-
iments of EH-enabled LoRa and LoRaWAN networks,
please refer to [22] and the references therein.

Regarding deep learning in LoRa networks, the
authors in [23] applied deep reinforcement learning
to enhance the LoRa gateway energy efficiency by
optimizing channel and spreading factor allocation.
The work in [24] also addressed the energy efficiency
of LoRa networks using a DL approach, focusing
on system-level EE rather than device-level like
[23]. However, these works did not consider energy
harvesting in LoRa networks. The combination of LoRa
networks and EH was studied in [25], where they
derived the steady-state distribution of the capacitor
voltage and the outage probability under the impact
of co-SF interference. Our previous work in [26]
also derived the Pcov of EH-enabled LoRa networks.
Nonetheless, neither [25] nor [26] used DL to study and
optimize performance of the LoRa networks.

Different from the above-mentioned works, the
present study considers EH-enabled LoRa networks and
investigates their performance using the DL approach.
Additionally, we take into account the correlation
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between SIR and SNR, the general fading such as
Nakagami-m, and tools from stochastic geometry (SG).
Specifically, the primary innovations and contributions
of this work are summarized as follows:

• We consider EH-enabled LoRa networks employ-
ing stochastic geometry and deep learning. We
model the fading with Nakagami-m distribu-
tion and the spatial distribution of the end-
devices using a homogeneous Poisson point pro-
cess (HPPP). The correlation between SIR and
SNR is also taken into account.

• We design a neural network (NN) to estimate the
Pcov performance. Our results show that the well-
trained DNN provides highly accurate outcomes,
with a mean square error (MSE) and mean
absolute error (MAE) of the test set being less
than 10−4 and 0.004, respectively. The estimated
Pcov and the corresponding ground truth values
overlap too.

• We unveil several insights from extensive compu-
tational results, highlighting the advantages of the
DL approach compared to Monte Carlo simula-
tion.

The structure of the manuscript is organized as
follows: Section 2 provides the system model, while
the deep neural networks (DNN) design is given in
Section 3. Section 4 presents numerical computations
and discussions. Finally, Section 5 concludes the
manuscript.

2. System model

Power beacon

User

Gateway

Energy harves�ng link

Informa�on link

Figure 1. The considered EH-based LoRa networks.

Considering a single-gateway uplink LoRa network
as shown in Fig. 1. The gateway is located at the center
of the disk with radius R, and all LoRa devices are
randomly distributed around it. The LoRa end-devices
are modeled according to a homogeneous Poisson point
process with density Ω. Besides the LoRa gateway

and end-devices, the network also includes M power
beacons (PBs) that continuously broadcast wireless
signals to charge the EDs’ batteries. To maximize the
harvested energy, the M power beacons are installed on
a circle centered at the network’s midpoint. All nodes
are equipped with a single antenna. The extension to
multiple antennas at the gateway and/or EDs is left
for future work. The assumption of the single antenna
in LoRa networks is reasonable since LoRa devices are
low-cost devices.

2.1. Channel modeling
Let us denote av,w as the channel coefficient from
the transmitter v to the receiver w which is modeled
by a Nakagami-m distribution with corresponding
shape and spread parameters m and κ. Consequently,
the channel gain a2

v,w follows a Gamma distribution
with shape and scale parameters m and θ = κ

m . The
cumulative distribution function (CDF) and probability
density function (PDF) of a2

v,w, denoted by Fa2
v,w

(x) and
fa2

v,w
(x), are computed as follows:

Fa2
v,w

(x) =
1

Γ (m)
γ
(
m,

x
θ

)
fa2

v,w
(x) =

1
Γ (m)θm xm−1 exp

(
− x
θ

)
, (1)

where γ(·, ·) is the lower incomplete Gamma function,
and Γ (·) is the Gamma function. Additionally, we
further assume that the channel coefficient remains
unchanged within one transmission block and changes
independently between each transmission.

Remark 1. It should be emphasized that the Nakagami-
m distribution is considered a general distribution that
can be adapted to other well-known fading models,
such as Rayleigh and Rician. Compared with Rayleigh
fading, Nakagami-m accounts for the line-of-sight
(LOS) component, while Rayleigh fading does not. In
comparison with Rician fading, Nakagami-m is more
tractable since its probability density function does
not involve a special function like the modified Bessel
function of the first kind.

Besides the small-scale fading, the signal propagation
from transmitter v to receiver w also suffers from large-
scale path loss. In the present work, a simplified path-
loss model is adopted. Mathematically speaking, the
large-scale path-loss from v to w, denoted by ∆v,w, is
formulated as

∆v,w = ∆0
(
dv,w

)β , (2)

where ∆0 =
(

4π
λ

)2
is the path-loss constant at the

reference distance d0 = 1 meter, dv,w is the distance
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between the transmitter v and receiver w, and β is the
path-loss exponent. The wavelength, denoted by λ, is
given by λ = c

fc
where c = 3 × 108 m/s is the light speed,

and fc is the carrier frequency in Hz. The path-loss
exponent, denoted by β, depends on the transmission
environment. For instance, in rural areas, β is close to 2,
while in urban environments, β is typically between 3.5
and 4.

2.2. Spreading factor allocation
In the present work, a recently proposed spreading
factor allocation based on fair collision (FC) probability
is adopted. It is emphasized that the adopted
fair collision probability scheme outperforms the
conventional distance-based approach as well as
random assignment. Under the adopted FC scheme, an
end device is assigned the spreading factor c according
to the following equation [27]:

SFc =
c

2c

12∑
b=7

b
2b

, c ∈ {7, . . . , 12} . (3)

2.3. Energy harvesting modeling
All EDs harvest energy from the broadcast signals sent
by the power stations. The harvested energy at a generic
i-th ED utilizing SFc, denoted by Ei,c, is then evaluated
as follows:

Ei,c = Thar,cω
M∑
m=1

PSa
2
m,i

∆m,i
, (4)

where PS is the transmit power of the power station;
ω ∈ (0, 1) is the energy harvesting efficiency; a2

m,i and
∆m,i are the channel gain and path-loss from the m-
th power station to the i-th ED. Thar,c is the harvesting
duration, which is equivalent to the idle mode of the ED
utilizing SFc, and is computed as follows:

Thar,c =Tdur,c − Ttrans,c,

Tdur,c = max
{
Ttx,c
χ

, Tbet

}
. (5)

Here, Tdur,c is the whole transmission duration of SFc;
Ttx,c = 2c

BWLpac is the duration of the packet with SFc
where Lpac (bytes) is the length of the packet; BW
represents the bandwidth of the system; Tbet is the
duration between two reports of the EDs; χ is the duty
cycle and is regulated by the government. Typically,
χ should be less than 1%; Ttrans,c is the transmission
duration under spreading factor c. In general, Ttx,c

χ ≪
Tbet, thus, Thar,c can be rewritten as

Thar ≈ Tbet − Ttrans, ∀c. (6)

2.4. SNR and SIR at the gateway
The signal-to-noise ratio and signal-to-interference
ratio at the gateway for a desired ED denoted by 0 using
SFc are formulated as follows:

SNR0,c =
P0,ca

2
0

∆0σ2 ,

SIR0,c =

P0,ca
2
0

∆0∑
i∈ΩA

c

Pi,ca
2
i

∆i

, (7)

where P0 = E0
Ttrans

= Thar
Ttrans

M∑
m=1

PSa
2
m,0

∆0d
β
m,0

represents the trans-

mit power of the desired ED. The noise variance at
the gateway is given by σ2 = 10−174+NF+10 log10(BW )/10.
Here, a2

e,0 and d
β
e,0, with e ∈ {m, i}, denote the small-

scale fading and large-scale path-loss from the e-th
transmitter to the desired ED. Additionally, ΩA

c = χ ×
Ω × SFc represents the set of active EDs using the same
spreading factor as the desired ED.

Remark 2. Direct inspection of (7) reveals the following
observations:

• The transmit power of the ED, P0, is a random
variable (RV) rather than a constant number,
as assumed in previous works. Specifically, P0
depends on the channel gain and path-loss from
all power beacons to the EDs. Unfortunately,
the characteristics of this random variable,
including its cumulative distribution function
and probability density function, cannot be
expressed in closed form for an arbitrary number
of PBs or for Rayleigh fading.

• The signal-to-interference ratio and signal-to-
noise ratio are strongly correlated because they
share the same random variables: P0, a2

0, and ∆0.
Additionally, P0 and Pi are also correlated due to
the fixed positions of the PBs, which means the
distances from PBs to EDs are correlated.

2.5. Performance metrics
In this work, we use coverage probability as the sole
performance metric. In LoRa networks, the coverage
probability differs from conventional communications
systems. Specifically, Pcov is defined as the joint
probability of both the signal-to-noise ratio and signal-
to-interference ratio, rather than being expressed in
terms of the signal-to-interference-plus-noise ratio
(SINR). Mathematically, the coverage probability for
the generic end-device using spreading factor c is
formulated as

Pcov (c) = Pr {SIRc > zc, SNRc > τc} . (8)
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Here, τ ∈ {−6,−9,−12,−15,−17.5,−20} (dBm) repre-
sents the SNR threshold. The smallest value, τ =
−20 dBm, corresponds to spreading factor SF12, and
increasing the spreading factor will raise the SNR
threshold. Conversely, the largest value, τ = −6 dBm,
corresponds to SF7. The term zc represents the SIR
threshold for co-SF interference and is given by zc =
1,∀c as stated in [3]. It is important to note that we
assume perfect orthogonality between spreading fac-
tors, and thus there is no capture effect considered in
this work.

As pointed out in Remark 2, both SIR and
SNR include many correlated RVs, making it infea-
sible to find their CDF and PDF. To address
the strong correlation between SIR and SNR in
(8), some works in the literature approximate this
by treating them as two independent probabilities
[14, 28], such that Pcov (c) = Pr {SIRc > zc, SNRc > τc} ≈
Pr {SNRc > τc}Pr {SIRc > zc}. Nevertheless, the CDF
and PDF of the SNR and SIR conditions themselves still
cannot be expressed in closed-form expressions [28].
Therefore, in this work, we compute the joint prob-
ability in (8) by leveraging the power of data-driven
approach, specifically the deep learning. We propose
and design a deep neural network to estimate the Pcov
of the considered networks. The design of the proposed
DNN is provided in the next section.

3. Deep neural networks design
3.1. Dataset creation

Small-scale fading parameters

Spreading factor

Neural 

Networks Coverage ProbabilityTransmission bandwidth

Packet length

Path-loss exponent

Number of report

2 inputs

Energy Harves�ng Efficiency

Figure 2. Deep neural networks.

It is evident that training any neural network is
impossible if the dataset is missing. However, since
the considered network is novel, real-world data is
unavailable. Consequently, synthetic data is generated
using the Monte-Carlo method. Each sample includes
one output, i.e., coverage probability, and eight inputs:
path-loss exponent, shape and scale parameters of the
Nakagami-m fading, transmission bandwidth, packet
length, number of reports per day, energy efficiency
conversion, and transmit power of the power beacon.
Fig. 2 illustrates the input-output relationship of
the NN. It is noted that the data range aligns
with LoRa standardization and covers a wide range

of transmission environments. The entire dataset is
divided into three parts: 70% for the training set, 20%
for the development set, and the remaining 10% for the
test set.

3.2. Normalization
All data samples are normalized using max-min
normalization. Mathematically, the input and output of
the normalization process are given by

wo =
wi −min (wi)

max (wi) −min (wi)
, (9)

where wi and wo denote the input and output of the
normalization, respectively, and max(·) and min(·) are
the maximum and minimum functions. From (9), we
observe that wo ranges between zero and one.

3.3. Hyper parameters selection
The hyperparameters are carefully designed and
selected to optimize the DNN performance. Specifically,
the number of hidden layers and the number of neurons
per layer are optimized using the grid search approach.
For simplicity, we consider an architecture where all
hidden layers have the same number of neurons,
denoted by L layers and N neurons, denoted by the
shorthand (L,N ). For the optimizer, we use the widely-
adopted Adam optimization approach [29].

3.4. Loss function
All training processes require at least one loss function
to minimize, and in this work, we use the mean square
error as the loss function for the neural network.
Specifically, it is formulated as follows:

min MSE =
1

∥Υtrain∥

∑
y∈Υtrain

(
qy − q̃y

)2
, (10)

where ΥX , X ∈ {train, devel, test}, represents the X-th
dataset; ∥·∥ denotes the cardinality of the set Υ ; and
qy and q̃y are the ground truth value and its estimated
version, respectively.

3.5. Performance metric of the neural networks
Apart from the MSE, we also adopt another metric to
evaluate the performance of the NN. More precisely,
we use the mean absolute error and is formulated as
follows:

MAE =
1
∥ΥX∥

∑
y∈ΥX

∣∣∣qy − q̃y ∣∣∣ . (11)

5
EAI Endorsed Transactions 

on Industrial Networks and Intelligent Systems | 
| Volume 12 | Issue 2 | 2025 |



Thi-Tuyet-Hai Nguyen et al.

4. Numerical computations and discussions
In this section, we present numerical results to verify
the accuracy of the estimated coverage probability
against the ground truth values. We also provide
the mean square error and mean absolute error
for the deep neural network on the training set,
development set, and test set. All parameters used for
the numerical computations are listed in Table 1, while
the architecture of the DNN is detailed in Table 2.

Table 1. Numerical Parameters [26].

Parameters Value

Spreading factor {7, 8, 9, 10, 11, 12}
Duty cycle χ = 0.1%

Carrier frequency fc = 920 MHz

Noise figure NF = 6 dBm

SNR threshold z∈
{−6,−9,−12,−15,−17.5,−20}
dBm

Path-loss exponent β ∈ [2.5, 4]
Packet length Lpac ∈ [10, 200] bytes

Transmission bandwidth β ∈ {125, 250} kHz

Power beacon transmit
power

PS ∈ [0, 60] dBm

Energy conversion effi-
ciency

ω ∈ (0, 1)

Number of report per day Nreport ∈
{0.5, 1 : 24, 48, 96, 144, 288}

Shape parameter m ∈ [0.5, 10]
Scale parameter θ ∈ [0.01, 10]
Network radius R = 1.5 km

Number of power beacon M = 10

Density of EDs Ω = N̄ED
πR2 = 1.414 × 10−4

ED/m2

SIR threshold τc = τ = 1,∀c
Transmission duration Ttrans = 3 sec

Fig. 3 illustrates the mean square error of the
training set with respect to the number of epochs
for different DNN architectures. We observe that the
MSE monotonically decreases as the number of epochs

1It is evident that a larger training set typically leads to better
results. However, in this section, a training set of 14000 samples
is used for training the DNN, as it already yields reasonably good
results, as depicted in Figs. 5, 6, and 7. However, in future work,
additional samples will be included to further improve the system’s
performance.

Table 2. The DNN architecture (Unless otherwise stated)

Parameters Value

Epochs 250

Number of input 8

Number of output 1

Number of hidden layers L = 3

Number of neurons per
layer

N = 40

Size of training set ∥Υtrain∥ =
140001

Size of development set ∥Υdev∥ = 4000

Size of test set ∥Υtest∥ = 2000
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−1

Epochs

T
ra
in

M
S
E

L = 2, N = 30

L = 2, N = 40

L = 3, N = 30

L = 3, N = 40

Figure 3. Training MSE versus number of epochs with different
hidden layers and number of neurons per layer

increases, with all settings becoming almost stable from
200 epochs onward. Thus, unless otherwise stated, 250
epochs are used to train the neural networks in this
section. From Fig. 3, we also observe that the setup
with L = 3 layers and N = 40 neurons, i.e., (3, 40),
outperforms other configurations starting from the
200th epoch. Consequently, we use the setup (3, 40) for
the entire section unless specifically stated otherwise.
Conversely, the (2, 30) configuration yields the worst
results, while the (3, 30) and (2, 40) setups rank 2nd
and 3rd, respectively. Additionally, we see that all
architectures exhibit similar performance when the
number of epochs is less than 120.

The MSE performance of the development set with
respect to the number of epochs is provided in Fig. 4.
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Figure 4. Development MSE versus number of epochs with
different hidden layers and number of neurons per layer

Similar to the observations from Fig. 3, the architecture
(3, 40) provides the best performance out of all settings.
Additionally, the performance of the development set
and the training set are quite similar, with the best
performance reaching approximately 4 × 10−5.

The MSE performance of the best epoch for all
configurations is shown in Fig. 5 for both the
training and development sets. We observe that the
(3, 40) configuration consistently outperforms the other
setups. Interestingly, with the exception of the (2, 10)
setup—where the development MSE is better than
the training MSE—all other configurations display the
opposite trend, with the training set MSE consistently
outperforming the development set MSE. For L = 2,
the MSE continues to improve up to approximately
20 neurons per layer. This is likely because a minimal
number of neurons does not allow the system to learn
effectively, and increasing the neuron count initially
improves performance. However, further increases
in neuron count in a two-layer network provide
diminishing returns, as the network approaches its
capacity limits, with MSE plateauing around 5 × 10−5.
For L = 3, the MSE continues to decrease until N =
40, beyond which it starts to increase, indicating that
the (3, 40) configuration is optimal for the considered
networks.

Fig. 6 illustrates the MAE of the development set
using the best epoch for each configuration. Generally,
we observe the same trend as with the MSE, increasing
the number of neurons N within the same number
of layers L is beneficial. This figure also reveals that
even the worst setup, (2, 10), has an MAE below
8 × 10−3. This level of accuracy is acceptable for

Table 3. Computation time for each sample

Method Times (seconds)

Monte-Carlo simulation ≈ 16

DNN < 1

most applications, such as evaluating the coverage
probability. Additionally, the best setup, (3, 40), is
only about twice as accurate as the worst setup,
demonstrating that even the less optimal configurations
perform reasonably well.

The MSE and MAE of the test set from the best epoch
of the development set are shown in Fig. 7. We observe
that the performance of both MSE and MAE is slightly
worse compared to the training and development
sets. Nonetheless, the performance remains within an
acceptable range. For instance, the MSE of the setting
(3, 40) is less than 10−4, while the MAE is below 0.004.

Table 3 illustrates the computation time required for
estimating the Pcov using both the Monte-Carlo and
DNN approaches. It is evident that the DNN signif-
icantly outperforms the Monte-Carlo approach under
the current setup, providing faster estimation times.
Additionally, the Monte-Carlo simulation consumes
more memory than the DL approach provided that the
DNN is well-trained.

Fig. 8 shows the Pcov for both the estimated and
ground truth versions. We observe that the estimated
curve and the ground truth curve perfectly overlap,
demonstrating that a well-trained DNN can estimate
the Pcov with very high accuracy.

Fig. 9 studies the impact of the number of hidden
layers on the performance of the MAE under the test
set. We observe that the MAE increases beyond L =
3, suggesting that L = 3 is optimal for the considered
networks. This aligns with the universal approximation
theorem, which states that deeper networks generally
capture more complex features. However, as shown in
Fig. 9, further increasing the number of layers leads to
overfitting, causing the DNN’s performance to decline.

5. Conclusion
The performance of the EH-enabled LoRa networks
was addressed in the present work. By leveraging
deep learning, we were able to estimate the Pcov
with very high accuracy, overcoming the limitations
of the model-based approach that only computes for
simple networks. Compared with the Monte Carlo
approach, the deep learning approach consumes fewer
resources, provided the neural network is well-trained.
There are several ways to enhance the contributions
of the present work. An immediate extension of this
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Figure 5. MSE versus best epochs of both training and development set with different hidden layers and number of neurons per layer
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Figure 6. MAE versus best epochs of development set with different hidden layers and number of neurons per layer.

work could be to maximize the coverage probability
by optimizing key parameters such as LoRa device
transmit power, transmission bandwidth, and packet
length. One promising method is to use Fountain
codes to significantly enhance the spectral efficiency
of the networks [30]. Another possible direction is to

consider multi-hop relaying networks to shorten the
transmission distance and save transmit power, thus
improving both spectral efficiency and energy efficiency
[31].
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Figure 7. MAE and MSE versus best epoch of development set on the test set with different hidden layers and number of neurons
per layer.
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