
EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems Research Article

Resource-Efficient Deep Learning: Fast Hand
Gestures on Microcontrollers
Tuan Kiet Tran Mach1, Khai Nguyen Van1, Minhhuy Le1,2,∗

1Intelligent Communication System Laboratory, Phenikaa University, Hanoi 12116, Vietnam
2Falcuty of Electrical and Electronic Engineering, Phenikaa University, Hanoi 12116, Vietnam

Abstract

Hand gesture recognition using a camera provides an intuitive and promising means of human-computer
interaction and allows operators to execute commands and control machines with simple gestures. Research
in hand gesture recognition-based control systems has garnered significant attention, yet the deploying of
microcontrollers into this domain remains relatively insignificant. In this study, we propose a novel approach
utilizing micro-hand gesture recognition built on micro-bottleneck Residual and micro-bottleneck Conv
blocks. Our proposed model, comprises only 42K parameters, is optimized for size to facilitate seamless
operation on resource-constrained hardware. Benchmarking conducted on STM32 microcontrollers showcases
remarkable efficiency, with the model achieving an average prediction time of just 269ms, marking a 7×
faster over the state-of-art model. Notably, despite its compact size and enhanced speed, our model maintains
competitive performance result, achieving an accuracy of 99.6% on the ASL dataset and 92% on OUHANDS
dataset. These findings underscore the potential for deploying advanced control methods on compact, cost-
effective devices, presenting promising avenues for future research and industrial applications.
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1. Introduction
With the growing ubiquity of computers in everyday
life, bridging the interaction gap between humans and
machines has become a critical research area. While
conventional input methods like keyboards and mice
persist, they fail to represent the most natural form
of human-machine interaction. As technologies such as
virtual reality, remote control, and augmented reality
gain traction, traditional input devices often prove
inadaptable. Hand gesture recognition (HGR) emerges
as a promising alternative, offering a more intuitive and
natural means of interaction. HGR systems interpret
and classify separately hand poses and motions in
real-time, facilitating remote interaction with digital
interfaces and environments [1]. These systems find
applications across various domains, from gaming to
touchless control systems and accessibility solutions
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like sign language translation. HGR holds promises to
enhance communication for the hearing-impaired, aid
in medical tasks, and provide faster, more convenient
computer access for individuals with disabilities, the
elderly, and children. In an era where devices are
increasingly integrated into daily life, the ability to
interact effortlessly and intuitively with technology is
paramount, with hand gesture recognition leading this
revolution by redefining human-computer interaction.

HGR is categorized into two common approaches
including sensor-based and vision-based [2]. Sensor-
based HGR relies on sensors attached directly to the
user’s hand or arm to capture various data types, such
as shape, position, movement, or trajectory. Although
sensor-based excels at collecting accurate data, it may
be less practical for everyday use due to its reliance
on specialized equipment. In contrast, vision-based
HGR utilizes one or more cameras to capture hand
motions and appearances. This approach offers greater
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flexibility and ease of setup compared to sensor-
based systems. Vision-based systems can interpret hand
gestures without requiring users to wear specialized
equipment, allowing for more natural and intuitive
interactions. However, vision-based HGR may face
challenges in handling diverse lighting conditions,
complex backgrounds, and occlusions, which can
affect gesture recognition accuracy [3]. Additionally,
vision-based systems may require more computational
resources for real-time processing, particularly when
dealing with complex hand poses and data type.

Due to the field’s lengthy development history, there
are several related work in the field of vision-based
HGR achieved satisfactory results. The earliest vision-
based techniques took advantage of the characteristics
of images to apply the most efficient processing
methods. For instance, color information is crucial
for identifying specific hand gestures against varying
backgrounds, while texture analysis aids in discerning
subtle differences in hand configurations. The primary
application of color detection involves identifying the
skin tone present on the hand. Method [4] process
a low-cost web-cam image with a fusion of four
stage. First, Jayashree et al. used gray threshold
method combined with median filter and Gaussian
filter to filter noise and convert RGB image to
denoised binary image. Then "Sobel" edge detection is
applied for extracting region of interest. Finally, they
used feature matching method, specifically Euclidean
distance calculation, to compare the feature vectors of
centroid and area of edge between test set and the
training set. The proposed method was evaluated in
American Sign Language (ASL) alphabet with 26 static
hand gesture related to A-Z and achieved a positive
result of 90.19%. However, following the success of
state-of-the-art deep learning models in image-related
tasks, the field of image processing has increasingly
adopted advantages from deep learning [5, 6, 7, 8,
9]. Rather than completely eliminate traditional vision
techniques, a hybrid approaches using a Dual–Channel
Convolutional Neural Network (DC-CNN), fusion the
hand gesture images and hand edge images after
preprocessing using Canny edge detection [10]. The
output can be classified using the SoftMax classifier,
and each of the two-channel CNNs has a unique weight.
The proposed system’s recognition rate is 98.02%.
However, the performance of these methods is limited
by how well the handcrafted extractor selected features
represent the characteristic of hand. In contrast, end-
to-end deep learning models have the ability to
automatically learn hierarchical features directly from
raw data. Hussain et al. [11] fine-tuned two state-of-
the-art CNN architectures - Inception V3 and Efficient
B0 - that have achieved noticeable performance on
various image-related tasks. Both models were trained
with the same input, namely the RGB images of

recorded hand gestures. These models were evaluated
on the ASL dataset yielding accuracy of 90% and 99%,
respectively. Improvements in sensors technologies
bring new approaches to leveraging depth image data
captured by devices such as Kinect and Intel RealSense.
The method [12] uses two VGG19 with identical
architectures but distinct input types. Specifically,
VGG19-v1 was fed the RGB images to extract colour-
based features, while VGG19-v2 took the depth images
as input to learn depth-based representations. By
combining the two streams of information, the authors
were able to achieve a classification accuracy as high
as 94.8% on the ASL dataset. More advanced deep
learning models aim to combine multi-scale or multi-
level features to enhance network learnability. The
ExtriDeNet method utilizes two modules - IFFB and
IFAB - to extract image features at different scales
[13]. The multi-scale features are then merged before
being fed into a classifier. The model demonstrates
outstanding performance with some highly complex
datasets such as HGR-I with 93.56% or NUS-II with
98.75%. Recent works such as [14] and [15] have
made changes to the backbone and neck components
of the YOLO architecture to develop lightweight
detection models. In particular, the approach described
in [14], which using ShuffleNet V2 as the backbone
in YOLOv3, has achieved impressive results on two
challenging datasets with complex backgrounds such
as senz3D dataset reaching 99.5% and Microsoft Kinect
dataset reaching 99.6%. Significantly, the model size
was only 8.9 MB compared to the 123.5 MB size
of the original YOLOv3 network. Although many
studies have been carried out, these studies focus
heavily on improving model accuracy and pay little
attention to computational costs. This poses challenges
for executing the model on low-cost, constraint
hardware such as microcontroller devices with limited
memory capacity and computational speed, resulting in
significant inference time delays.

The rapidly growing adoption of Internet of Things
(IoT) devices powered by microcontrollers, with some
reports indicating over 250 billion in 2022, opens
up opportunities to deploy applications across many
industries however faces challenges [16]. These low-
cost, energy-efficient microcontrollers facilitate the
domain of Tiny Machine Learning (Tiny-ML) involv-
ing direct deployment of deep learning models at the
sensor to substantially expand AI applications through
localized intelligent tasks. While this approaches pro-
vides an avenue to deploy hand gesture recogni-
tion systems with improved flexibility and broader
application scope by leveraging resource-constrained
devices to enable optimizations in energy consump-
tion, costs and operations, integrating deep learn-
ing poses difficulties due to microcontrollers’ lim-
ited memory restricting model sizes, processing power
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impacting speed/efficiency, and battery life requiring
energy-efficient algorithms [17]. Overcoming hurdles
is critical to realize microcontroller-based deep learn-
ing’s full potential, including for feasible HGR in
highly resource-limited environments through contin-
ued Tiny-ML technique research. Deploying the HGR
system on microcontrollers opens up potential avenues
in the field of touchless control in factories with low
investment and usage costs.

The main purpose of this research is to develop a
compact HGR system tailored for microcontrollers with
constrained resources. Considering the above limita-
tions, our focus lies in proposing a lightweight CNN
architecture that satisfies the requirements of model
size, inference time, and computational cost. Addi-
tionally, we explored optimization techniques aimed
at compressing model size before implementation on
these microcontrollers. This outlines the entire major
contributions within this research. The architecture is
based on MobileNetV2 [18] and MobileNetV3 [19] with
2D depthwise separable convolution (DSC), bottleneck
and Squeeze-and-Excitation block [20]. Our proposal
is used as pixel-based feature extractor, which extracts
spatial features in the image. After obtaining high-level
features using our architecture as backbone, we inte-
grate a classifier or detector as top module depending
on intended use. The proposed method exhibits the
competitive result with state-of-art model when evalu-
ate in two different datasets American Sign Language
(ASL) [21] and OUHANDS [22] datasets. Emphasiz-
ing the achievement of accurate results from a single
input frame, our model significantly enhances inference
time efficiency. The qualified model is benchmarked in
STM32 platform.

The following sections of this document are pre-
sented in order: Section 2 will detailly describe our
proposed method, encompassing the processes of data
preprocessing, augmentation, and our proposed model
architecture. In Section 3, a comprehensive evaluation
of the results, including in-depth analysis and com-
parative against preceding methods, will be provided.
This section will also describe the benchmarking of our
model’s performance on a variety of microcontrollers
from the STM32 family. The conclusions will be sum-
marized and presented in the final Section 4.

2. Proposed method
Figure 1 illustrates the block diagram of the process
involved in building proposed method. Before perform-
ing model training, data augmentation techniques is
used for enhancing training data diversity and then
normalize the entire dataset to make sure the pixel val-
ues of images are within a consistent range. The model
was trained using the classification module with the
ASL dataset due to its substantial volume, facilitating

enhanced feature learning of hand gestures. Addition-
ally, we employ transfer learning techniques by lever-
aging obtained pre-trained model with the OUHANDS
dataset, utilizing detector module as top layers. This
approach enables the model to benefit from prior learn-
ing and adapt more effectively to the nuances of hand
gesture recognition tasks. After training the model, the
quantization algorithm is employed using the TFLite
framework. This algorithm facilitates the reduction of
the float-point TensorFlow model to 8-bit precision,
making it compatible with embedded hardware that
exclusively supports 8-bit computations. Final evalua-
tion will be done on some STM32 microcontrollers and
deploy to OpenMV H7 to investigate inference time.

2.1. Data preparation
Data augmentation. Data augmentation is a critical
technique for training deep learning models, helping to
address limited datasets and improve generalization by
artificially expanding the data through transformations
such as rotation, flipping, adding noise, and more. In
hand gesture recognition, the accurate identification of
distinct gestures heavily depends on hand shape and
structure, requiring models to learn robust represen-
tations under diverse real-world capturing conditions
involving various angles, positions, and environmen-
tal factors. Therefore, geometric transformations like
translation, rotation, and random zoom are essential
to simulate these capture variations within the dataset
and expose the model to a broader range of inputs. A
random brightness adjustment from -0.1 to 0.1 is also
implemented to reduce sensitivity to lighting changes
during usage. Through intelligently applying such aug-
mentations involving affine and color transformations,
the dataset is expanded in a way that enhances the
model’s stability to factors like perspective and lighting,
contributing to its overall robustness and generalized
capabilities critical for accurate hand gesture identifica-
tion. Because the purpose is to help the model learn the
necessary features, the augmentation technique is only
applied to the training data set and not to the testing
data. Examples of some images after the augmentation
process are shown in Figure 2.

Normalization. Normalizing an image refers to the
process of adjusting the pixel values to conform to
a standardized scale or distribution. This process
aids in improving convergence during optimization,
as it minimizes issues related to features at different
scales, thereby facilitating smoother convergence and
preventing oscillation. Furthermore, normalization
acts as a form of regularization by preventing
models from being outrageously sensitive to certain
features, thus aiding in preventing overfitting and
enhancing generalization performance. Given an image
I represented as a matrix of pixel values, where
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Figure 1. Block diagram of proposed method for hand gesture recognition.

Figure 2. Some samples after data augmentation with Random
Zoom, Random Rotation, Random Brightness.

Iij denotes the pixel value at row i and column j,
the process of normalizing using Min-Max scaling to
rescale the pixel value to range [0, 1] as Equation 1
below:

I ′ij =
Iij −min(I)

max(I) −min(I)
(1)

2.2. Proposed model

We employed an end-to-end approach using deep learn-
ing model to automatically learn the representation of
feature from raw data, delivering a complete solution
without needing anything from conventional vision-
based techniques. The proposed model is constructed
based on the MobileNetV3 [29] architecture with some
modifications in construction. In detail, we reduced
the number of layers, adjusted the bottleneck block
and classifier. This approach is aimed at refining the
data and effectively decreasing the number of param-
eters. Unlike previous research that focus heavily on
model performance, our method focuses on the trade-
off between accuracy and model size. The proposed
method helps optimize performance on computational
cost to provide higher computational efficiency. As
illustrated in Figure 3 and detailed in Table 1, the over-
all architecture contains a feature extractor as backbone
followed by a classifier as head. The backbone first

applies a standard CNN block for initial feature learn-
ing from the input through a series of operations: 2D
CNN with 16 filters using kernel size of 3 × 3, batch nor-
malization for gradient stabilization, hard swish as acti-
vation, max pooling for down-sampling, and dropout
layer for regularization. In summary, the function H1(•)
transforms the multi-channels input Xi ∈ RH×W×C into
16 feature maps z1 ∈ RH ′×W ′ , presented as Equation 2
below:

z1 = H1(•) = Dropout (MP 2( h(BN (C3(Xi))))) (2)

where C3(•) is the 2D standard convolution with kernel
size of 3, BN (•) represents the batch normalization
operation, MP 2(•) denotes the max pooling with stride
of 2, h is hard swish activation function.

Following by 3 micro-bottleneck blocks that serve
to extract higher-level features, micro-bottleneck is
crucial ingredient that helps the model learn features
that accurately and succinctly describe the data. Each
of them is composed of one SE Conv Block and
two SE Residual Block, which includes pointwise 2D,
depthwise 2D, batch norm, hard-swish and notably,
squeeze and excitation block as described in Figure 4.
Incorporating the Squeeze & Excitation block enriches
the data representation capabilities of these sub-blocks
by dynamically recalibrating features based on channel-
wise information. To mitigate output complexity and
enhance cost-effectiveness, a dropout layer with a 0.1
rate is appended at the conclusion of each block before
transitioning to the subsequent stage. Micro-bottleneck
blocks employ a sequence of convolutional layers
with 8, 16, and 32 filters, respectively, maintaining
a consistent kernel size of 3×3 across all blocks.
We analyze the impact of expansion factor (t) on
performance and generalization, testing values of 0.25
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Figure 3. Proposed model architecture as base model for hand gesture recognition. I use the first four stages as feature extractor
and final stage as lightweight classifier.

Table 1. Model configuration

Block/Stages Number of parameters Sub-block/Layers Configurations

First stage 512

Conv2D F = 16, k = 3 × 3, s = 1
Batch Norm -
Hard swish -
Max Pooling 2D s = 1
Dropout r = 0.1

Micro-bottleneck 1 2130
SE Conv Block F = 8, k = 3 × 3, s = 2, ratio = 3
SE Residual Block F = 8, k = 3 × 3, s = 1, ratio = 1
SE Residual Block F = 8, k = 3 × 3, s = 1, ratio = 1

Micro-bottleneck 2 5732
SE Conv Block F = 16, k = 3 × 3, s = 2, ratio = 3
SE Residual Block F = 16, k = 3 × 3, s = 1, ratio = 1
SE Residual Block F = 16, k = 3 × 3, s = 1, ratio = 1

Micro-bottleneck 3 19656
SE Conv Block F = 32, k = 3 × 3, s = 2, ratio = 3
SE Residual Block F = 32, k = 3 × 3, s = 1, ratio = 1
SE Residual Block F = 32, k = 3 × 3, s = 1, ratio = 1

Lightweight classifier 14042

Conv2D F = 64, k = 1 × 1, s = 1
Batch Norm -
Hard swish -
Average Pooling 2D s = 7
Conv2D F = 128, k = 1 × 1, s = 1
ReLU -
Conv2D F = 26, k = 1 × 1, s = 1

Flatten 0 - -
Output 0 SoftMax Classes = 26
Total 42072

and 3.0. This assesses behavior under a traditional
residual (t < 1) or inverted residual (t > 1) structure.

SE Conv Block is delineated as a series of consecutive
operations, as illustrated in Figure 4, and outlined by
Equation 3:

zi = H ′iF (•)
= Dropout(BN (P 1(SE( h(BN (P 1(zi−1)))))))

(3)

where zi ∈ RH ′×W ′×F′ is the feature map at i_block after
input feature map zi ∈ RH×W×F being processed by
H i

F′ (•) operation, let P 1
c (•), BNc(•), D3

c (•) denotes the 2D
pointwise convolution, the batch normalization, and 2D
depthwise convolution respectively applied to the c-th
feature map of input zi−1 from previous stage. Within
input X obtained from previous layer, each operation
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can be computed as below Equations 4 to 6:

P 1
c,l(x) =

∑
f

{X}f · {K l}f + Bl (4)

BNc(x) = γ ⊙
x − µB
σ̂B

+ β (5){
D3
c,l(X)

}
i

=
∑
u

{X}u ◦ {K l}i−u + Bl (6)

where XH×W×f represents the H ×W matrix with f -
th feature map; Kl and Bl denote the 2D convolution
kernel weights of the l-th layer transform f -th input
feature maps to c-th output feature, and {•}i is the
i-th element of a set of channels. Further, µB, σ̂B,
γ and β are sample mean, standard deviation, scale
parameter and shift parameter respectively used in
batch normalization.

SE Residual Block functions similarly to the SE
Conv Block. However, in addition to its primary
operations, the SE Residual Block incorporates an extra
shortcut employing Conv2D with a kernel size of 1 × 1.
This additional step enhances information retention in
the output following the model’s extraction process,
thereby mitigating the risk of excessive information loss
as the model depth increases. Furthermore, it serves
to prevent gradient explosion during backpropagation.
The main operation of a SE residual block is a series of
layers described as Equation 7:

zi = H i
F′ (•)

= Dropout(P 1(SE( h(BN (D3( h(P 1(zi−1)))))))

+ C1(zi−1)) (7)

where C1 is convolution 2D with kernel size 1 × 1 in
shortcut.

Adjusting the top layer of a neural network
model to include Conv2D and Pooling layers is a
strategic move, especially when working with image
data. Incorporating Conv2D 1 × 1 layers followed by
pooling layers can significantly reduce the number of
parameters in a neural network compared to using
Dense layers. This is because Conv2D 1 × 1, also known
as pointwise convolution, acts as a dimensionality
reduction technique, allowing for the mixing of channel
information without affecting the spatial dimensions.
When combined with pooling layers, which further
condense the data by spatially downsizing the output
from the convolutional layers, the model becomes more
computationally efficient. Dense layers, while powerful,
can lead to a vast number of parameters, especially in
deep networks, because each neuron is connected to all
neurons in the previous layer. This not only increases
the computational load but also the risk of overfitting.
By using Conv2D 1 × 1 and pooling layers, the network
maintains its ability to learn complex features with

Figure 4. Detailed structure of each SE block used in micro-
bottleneck. Block a) is SE Conv Block to help reduce spatial
dimension before entering block b) SE Residual Block to better
extract features.

fewer parameters, leading to faster training times and
potentially better generalization on unseen data. The
operation of the lightweight classifier is serialized as
Equation 8:

ŷ = H(•)
= α(Flatten(C1(ReLU (C1(AP ( h(BN (C1(zi−1)))))))))

(8)

where AP denotes Average Pooling with stride of 7 and
α(•) is SoftMax activation function.

2.3. Training process
As mentioned above, the training process is divided into
two parts. Because each hand gesture dataset usually
does not have many samples, we use the ASL set for
pre-training because this data set has nearly 100,000
samples. The obtained model was benchmarked on
STM32 before being transferred learning with the
FOMO technique on the OUHANDS and the self-
collected data set.

We use Adam optimizer to minimize categorical
cross-entropy loss function for multi-class classification
task. The loss quantifies the dissimilarity between the
predicted probabilities and the true categorical labels
as represented in Equation 9:

L = − 1
N

N∑
i=1

c∑
j=1

yij log(pij ) (9)
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The lower the loss, the more accurate the model. By
minimizing the loss, the model learns to assign higher
probabilities to correct class, improving accuracy. We
initialize learning rate at 0.001 and use learning rate
decay strategy if the validation loss does not decrease.
The model is trained on an NVIDIA RTX A5000 High-
Performance Computer (HPC) for 100 epochs with a
batch size of 64 samples.

After training with ASL, we transfer learning the
obtained model on OUHANDS dataset. The model
was made some modification to be able to integrate
the FOMO technique. The model was cut off the last
three layer at Average Pooling 2D and replaced by
a per-region class probability map. This map, called
heat map, is a sized-down version of the input. We
use a custom loss function with weight to quantify
the class probabilities for each unit in heat map with
corresponding patch in the input image. The true label
need to be created by segment a input image with
bounding box. Every outside the box is background and
inside the box assigned to the corresponding label.

3. Experimental result & benchmark
3.1. Experimental Setup & Dataset
Hand gesture recognition has been an active research
area for long time, resulting in the availability of numer-
ous open-source datasets that can be leveraged. For
training and evaluation, we utilize existing datasets
commonly used in previous work. However, newer
datasets captured under diverse real-world conditions
with indoor and outdoor involving multiple partici-
pants, while providing a more realistic simulation, tend
to be smaller in size. This poses a challenge as limited
data makes it difficult to train models from scratch to
achieve optimal performance.

American Sign Language (ASL) dataset [21] is
selected for pre-training and the OUHANDS [22] for
transfer learning. With ASL, the dataset includes 87,000
images of American Sign Language alphabets, each
200x200 pixels, across 26 classes including letters A-
Z. Each image in the dataset is a hand captured
in different experimental environments and under
different lighting conditions. However, this dataset does
not appear people, only hands inside the image. For the
OUHANDS dataset, this data is more diverse and better
simulates real-life scenario. The data was recorded in
many different environments by many volunteers and
there were people in the images as a distracting agent.
However, this data set only has 3000 images for 10
gestures including A, B, C, D, E, F, H, I, J, K. Figure 5
illustrates some sample from two dataset.

In addition, we also collect a data set in our
environment with classes corresponding to OUHANDS.
This data set will be mixed with the OUHANDS
set to increase the number of samples as well as

Figure 5. Some samples from two dataset. a) from ASL and b)
from OUHANDS dataset

Figure 6. Experimental setup use the same hand gesture as
OUHANDS

help the model generalize better. Our dataset includes
300 images for 10 classes, each class will contain 30
images, corresponding to the number of experimental
repetitions of a participant in the OUHANDS dataset.
Figure 6 describes our experimental setup. Each
recording will record a 30-second video, the hand will
maintain the same gesture and move to different angles
of the camera to capture many different perspectives.

3.2. Experimental Results

We investigate the behavior of the bottleneck blocks by
adjust expansion factor (t) in two different directions:
traditional residual block and inverted residual block.
Observing the results in Figure 7, a comparison between
the models employing t values of 0.25 and 3.0 reveals
high accuracies of 96.7% and 99.6%, respectively.
Although the model using t = 0.25 is 3% lower in
accuracy, it is also 1.4 times smaller than the model
using t = 3.0. However, when employing transfer
learning with the OUHANDS dataset using the FOMO
technique, significant differences appear, as depicted in
Figure 8. The confusion matrix highlights pronounced
disparities between the two models. While the t = 3.0
model achieves high accuracies exceeding 80% across
all classes, the t = 0.25 model exhibits instability and
variability among different classes. Notably, class Non
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Figure 7. Accuracy and number of parameters when using two
different expansion factor, t = 0.25 and t = 3.0

achieves a score exceeding 99%, contrasting sharply
with class C, which registers only 43%.

This observation underscores a drawback of
lightweight deep learning models based on the
TinyML technique. Because it must be optimized
for specific datasets and task, these models often
sacrifice generalizability. A comparison between the
OUHANDS and ASL datasets further elucidates
this point. While both datasets relate to HGR,
OUHANDS presents distinct challenges, particularly in
background differentiation, absent in the ASL dataset.
Consequently, despite optimization for ASL, the model
utilizes an expansion factor of 0.25, yet still struggles
to perform effectively on OUHANDS.

3.3. Ablation Studies
This section aims to showcase the effectiveness of
the proposed architecture, characterized by a fusion
of SE blocks with a lightweight classifier (LC),
through an ablation study. To achieve this, we
conduct a comparison among various CNN structures,
each constructed by adjusting specific segments of
the proposed model. The first modification involves
removing the SE block from both the SE Conv
and SE Residual blocks while maintaining identical
hyperparameters. This allows us to assess the impact
of SE blocks on model performance. The second
modification entails replacing the lightweight classifier
layer with a Flatten layer followed by Fully Connected
layers. This alteration enables us to evaluate the model’s
effectiveness in terms of computational costs. Looking
at table 2, removing the SE block reduces model size,
but it also reduces the model’s performance on the
OUHANDS data set as well as the ASL data set.
The model only achieved 85.5% when evaluated on
OUHANDS and approximately 95% when evaluated on
the ASL set. If we eliminate the LC and replace it with a
classifier block including Flatten and Dense, the model
increases the number of parameters to 99.7K but the
model’s performance also drops to 96.12% on ASL. This
proves that our proposed model is superior when using
the proposed modules.

Figure 8. Confusion matrix of proposed method with a) t = 0.25
and b) t = 3.0 when deploying transfer learning in OUHANDS
dataset

Table 2. Summary of ablation evaluation of the proposed model
in comparing its accuracy and model size with other some
modifications

Backbone ASL OUHANDS # of params

Bottleneck
95.23% 85.5% 33.4K

without SE

Bottleneck
96.12% - 99.7K

without LC

Bottleneck 99.60% 92.0% 42.1K
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Figure 9. Comparing size (a) before and after implementing the
quantization technique for each of the following models: proposed
model with micro-bottleneck, Lightweight CNN [24], CrossFeat
[23] and ExtriDeNet [13]

3.4. Benchmark in microcontrollers
To prepare the models for deployment on microcon-
trollers, we utilize the post-training integer quanti-
zation method to convert the existing floating-point
model to 8-bit precision. This process is achieved using
the TFLite framework’s tools, allowing us to logically
transform the model without the need for manual
retraining, while still preserving its accuracy. The quan-
tization leads to a significant reduction in model size,
up to 4 times smaller, enhancing both size and inference
speed on the CPU. Looking at Figure 9, it can be seen
that our model is much smaller than previous models.
With only 155 KiB after optimization, the proposed
model is 6× smaller than the Cross Feat [23] model with
975.5 KiB, the smallest of the previous models. Mean-
while comparing with the state-of-art ExtriDeNet, our
method is 8.6× smaller. Even so, the model’s accuracy
as mentioned above is still extremely competitive. The
other models on the table are all larger than 1000 KiB.
This can be a big barrier to being able to deploy the
model on microcontrollers. When considering inference
time, our model also has the fastest with average infer-
ence time about 269 ms, twice as fast as extriDeNet
[13] (about 500ms), and 10× faster than other models
(CrossFeat [23] with 3281 ms and Lightweight CNN
[24] with 2025 ms). The model achieves fastest pre-
diction in NUCLEO-H743ZI2 series with only 92 ms,
about 11× faster than slowest model in benchmarking.
Looking at Figure 10, we also deploy proposed model
with FOMO in OpenMV H7 to check the feasibility and
obtain the inference time at 147 ms.

3.5. Comparision with previous method
The proposed model delivers superior performance,
achieving accuracy of over 99% with ASL dataset. Some
other methods conducted previously also produced
similar results on the ASL dataset. Methods [25] using

Figure 10. Benchmark inference time when deploying in
OpenMV H7 and STM32 microcontrollers

convolutional neural networks with spatial pyramid
pooling, this structure enables neural networks to
accept input images of arbitrary sizes and aspect ratios,
overcoming the need for resizing or cropping images
to fit a fixed input size. Besides, SPP typically utilizes
multiple levels of pooling, with each level representing
a different grid size. This enables the network to
capture both fine-grained details and global context
information from the input image. The results obtained
from this model have an accuracy of up to 99.99%.
However, this model has a number of parameters up to
6.3 million parameters and is completely incapable of
embedding in microcontrollers. With two other models
that are built lighter, method [24] built light bottleneck
blocks in succession gives a result of 98.72% accuracy.
However, with a size of up to 848K parameters, this
model is still 20× larger than the proposed model.
CrossFeat [23] uses convolutional with different kernel
sizes to extract multi-scale data as well as remember
low-level features so you can add spatial information to
the layers behind. Thanks to that, the model achieves
an accuracy of up to 99.5% with 975K parameters.
Because it must run many kernel sizes of different
sizes in parallel to extract model data, this model
is not optimized for RAM-limited hardware. For the
OUHANDS data set, there is a model like ExtriDeNet
[13] that also uses a multi-scale feature extractor
to extract data, but this model’s evaluation on the
OUHANDS set is only 65.1% even though it has up
to 1.3 million parameters. The method shows obvious
ineffectiveness when compared to our method when
the proposed model achieves an accuracy up to 92%
but only needs 42.1K parameters. A more optimized
approach produces particularly good results up to
98.75% using two architectures: Multi-scale structure
and lightweight attention to enhance the power of the
model[26]. This model is also lighter than ExtriDeNet
with only 666.7K parameters but still 15× larger
than the proposed model. When comparing with us,
our proposed model offers an acceptable trade-off
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Table 3. Summarize the result of the proposed model and
previous model in HGR System

Method Dataset Accuracy Benchmark

[25] ASL 99.99% -

[24] ASL 98.72%
1018 KiB Flash
271.97 KiB RAM
tinf erence = 2025 ms

[23] ASL 99.5%
956.38 KiB Flash
510.69 KiB RAM
tinf erence = 3282 ms

[13] OUHANDS 65.1%
1.3 MiB KiB Flash
269 KiB RAM
tinf erence = 500.4 ms

[26] OUHANDS 98.75% -

Our ASL/ 99.7%/ 140 KiB Flash
method OUHANDS 92% 290.13 KiB RAM

tinf erence = 269 ms

between accuracy and model size, making it suitable for
deployment on microcontrollers with various hardware
constraints. The summary of comparison is described in
Table 3.

4. Conclusion
Hand Gesture Recognition (HGR) has emerged as
a promising avenue poised to revolutionize human-
computer interaction, particularly with the prolifera-
tion of microcontroller devices playing an increasingly
pivotal role in our digital landscape. Motivated by these
trends, We proposed a lightweight micro-bottleneck
model tailored for HGR systems on microcontrollers.
Our model demonstrates competitiveness with state-of-
the-art methods in terms of accuracy, achieving 99.6%
on the American Sign Language (ASL) dataset and 92%
on the OUHANDS dataset. Notably, despite its high
accuracy, the model maintains a significantly lighter
size, comprising just over 42,000 parameters. Specifi-
cally, it is 8.6× smaller than ExtriDeNet [13] and 10×
faster than CrossFeat [23] in inference time. This opens
up many possibilities for integrating newer and more
natural control systems into existing systems in the
easiest and most cost-effective way.
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