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Abstract

In this paper, we propose a deep reinforcement learning (DRL) approach for solving the optimisation problem
of the network’s sum-rate in device-to-device (D2D) communications supported by an intelligent reflecting
surface (IRS). The IRS is deployed to mitigate the interference and enhance the signal between the D2D
transmitter and the associated D2D receiver. Our objective is to jointly optimise the transmit power at the
D2D transmitter and the phase shift matrix at the IRS to maximise the network sum-rate. We formulate a
Markov decision process and then propose the proximal policy optimisation for solving the maximisation
game. Simulation results show impressive performance in terms of the achievable rate and processing time.
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1. Introduction

Device-to-device (D2D) communications play a critical
role in 5G networks by allowing users to communicate
directly without the involvement of base stations. It
helps reduce the latency and improve the information
transmission efficiency [1, 2]. In [1], the D2D trans-
mitters harvest energy through the simultaneous wire-
less information and power transfer protocol (SWIPT).
Then, a game theory approach was proposed to solve
the power allocation and power splitting at SWIPT
with pricing strategies for maximising the network
performance. In [2], the optimised power allocation
was proposed to maximise the energy efficiency (EE)
performance at the D2D-based vehicle-to-vehicle com-
munications, by following a machine learning-based
approach. Authors in [3] proposed a three stage wire-
less energy harvesting protocol for a relay-assisted
network in a cognitive spectrum sharing paradigm.
For the considered network scenario and algorithm
they provided a closed form expression for the outage
probability. Subsequently, through computer simula-
tions they showed how the most relevant parameters
like the energy harvesting constraint, the interference
power constraints on the primary user network, and an
interference imposed by primary user network on the

secondary user cognitive network, impact on the outage
probability.

Intelligent reflecting surface (IRS), referring to the
technology of massive elements of flexible reflection
capability controlled by an intelligent unit, has recently
attracted great attention from the research community
as an efficient means to expand wireless coverage.
The IRS can manage the incoming signal by a
controller, which allows to efficiently adapt the angle
of passive reflection from the transmitters toward the
receivers [4–7]. In [5], the IRS harvests energy from
the access point (AP) and uses it for reflecting the
signal in two phases. The AP beamforming vector, the
IRS’s phase scheduling, and the passive beamforming
were optimised to maximise the information rate. In
[6], a channel estimation scheme for a multi-user
multiple-input multiple-output (MIMO) system has
been designed with the support of double IRS panels.

Some research works have investigated the efficiency
of the IRS in assisting the D2D communications [8–
12]. In [8] and [9], two sub-problems with fixed passive
beamforming vector and fixed phase shift matrix were
considered. To solve the power allocation optimisation
with the fixed phase shift matrix, the authors in [8]
used the gradient descent method while the authors
in [9] employed the Dinkelbach method. For the
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phase shift optimisation, a local search algorithm was
proposed in [8] while fractional programming was
utilised in [9]. However, these approaches assume a
discrete phase shift and only reach a sub-optimal
solution. Moreover, these works only consider perfect
conditions, e.g., channel state information (CSI). In
addition, these algorithms cause large delays due to
high computational complexity.

Very recently, deep reinforcement learning (DRL)
has been applied as an effective solution for solving
complicated problems in wireless networks [13–17].
In [2], the DRL algorithm was used to choose
the continuous transmit power level at the D2D
transmitters for maximising the EE performance. In
[14], discrete and continuous action spaces were
considered for the beamforming vector and the IRS
phase shift in multiple-input single-output (MISO)
communications. Then, two DRL algorithms were
used to maximise the total throughput. In [15], a
method based on the DRL was used for optimising
the unmanned aerial vehicle (UAV)’s altitude and
the IRS diagonal matrix to minimise the sum age-
of-information. In [16], the authors used the DRL
technique to maximise the signal-to-noise ratio.

Solving the joint optimisation of power allocation and
IRS configuration results to be a challenging problem.
The traditional optimisation approaches mostly focus
on solving sub-problems [8–12]or considering a dis-
crete phase shift matrix at RIS [8, 10] to reduce the
complexity. In contrast, as already mentioned before,
the adoption of DRL based algorithms represents a very
powerful and efficient approach for solving non-convex
and complex problems. In this paper, we propose a DRL
algorithm for solving the joint power allocation and
phase shift matrix optimisation in IRS-assisted D2D
communications. Firstly, we conceive a D2D commu-
nication system with the support of the IRS. The D2D
channel is a combination of the direct link and the
reflective link. In this context, the IRS is used to mitigate
the channel interference, as well as to enhance the infor-
mation transmission. Secondly, we formulate a Markov
decision process (MDP) [18] for the network through-
put maximisation in the IRS-assisted D2D communica-
tions, in which the optimisation variables are the power
at the D2D users and the phase shifts at the IRS. In this
paper, we characterise the continuous action space and
propose an on-policy algorithm to search for an optimal
policy for maximising the network sum-rate. Therefore,
we reduce the human intervention for designing the
discrete variables, reduce neural networks’ size, and
train them better in centralised learning. Finally, we
compare the efficiency of our proposed methods with
other schemes in terms of the achievable network sum-
rate.

2. System Model and Problem Formulation
We consider an IRS-assisted wireless network with N
pairs of D2D users distributed randomly and an IRS
panel, as shown in Fig. 1. Each pair of D2D users
comprises of a single-antenna D2D transmitter (D2D-
Tx) and a single-antenna D2D receiver (D2D-Rx). An
IRS panel with K reflective elements is deployed to
enhance the signal from the D2D-Tx to the associated
D2D-Rx and mitigate the interference from other
D2D-Txs. The IRS with reflective elements maps the
receiver’s signal by the value of the phase shift matrix
controlled by an intelligent unit. The received signal
at the D2D-Rx is composed of a direct signal and a
reflective one.

We denote the position of the nth D2D-Tx at time
step t as Xt

n(Tx) =
(
xtn(Tx), ytn(Tx)

)
, n = 1, . . . , N and that

of the ℓth D2D-Rx as Xt
ℓ(Rx) =

(
xtℓ(Rx)), ytℓ(Rx)

)
, ℓ =

1, . . . , N . The IRS is fixed at the position (xtIRS, y
t
IRS, z

t
IRS).

The phase shift value of each element in the IRS belongs
to [0, 2π].

Information Transmission
Interference

D2D-Tx
D2D-Tx D2D-Tx

D2D-Rx
D2D-Rx D2D-Rx

Figure 1. System model of the IRS-assisted D2D communica-
tions.

We denote the direct channel from the nth D2D-
Tx to the ℓth D2D-Rx at time step t by htnℓ, and
the reflective channel by H t

nℓ. The phase shift matrix
at the IRS at time step t is defined by Φt =
diag(ηt2e

jθt
1, η

t
2e

jθt
2, . . . , η

t
Ke

jθt
K ), where ηtk ∈ [0, 1] and

θt
k ∈ [0, 2π] represent the reflection amplitude and the

phase shift value, respectively; j is the imaginary unit.
In this paper, we assume that the amplitudes of all
elements are set to ηtk = 1.

The distance between the nth D2D-Tx and the ℓth
D2D-Rx at time step t is defined as

dtnℓ =

√(
xtn(Tx) − xtℓ(Rx)

)2
+
(
ytn(Tx) − ytℓ(Rx)

)2
. (1)

Similarly, the distance between the nth D2D-Tx and
the IRS is dtn,IRS and the distance between the IRS and
the ℓth D2D-Rx is dtIRS,ℓ at time step t. The direct
channel is formulated as

htnm =
√
β0(dtnℓ)

−κ0 , (2)
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where β0 is the channel power gain at the reference
distance d0 = 1 m and κ0 is the path-loss exponent in
the line-of-sight (LoS) case. Here, we assume that the
small-scale fading follows the Nakagami-m distribution
with m as the fading severity parameter.

The channel gain between the nth D2D-Tx and the
IRS can be written as

htn,IRS =
√
β0(dtn,IRS )−κ1


√

ϑ
1 + ϑ

h̃LoSn,IRS +

√
1

ϑ + 1
h̃NLoS
n,IRS


(3)

where κ1 is the path loss exponent, ϑ is the
Rician factor; h̃LoSn,IRS and h̃NLoS

n,IRS are the LoS and the
non-line-of-sight (NLoS) components for the D2D-
Tx and the IRS link, respectively. Specifically, the
deterministic LoS component is defined as h̃LoSn,IRS =

[1, e−j
2π
λ d cos(φt

AoA), . . . , e−j
2π
λ d(K−1) cos(φt

AoA)], where d and
λ are the IRS’s element spacing and the carrier
wavelength, respectively; cos(φt

AoA) is the cosine of the
angle of arrival(AoA). The NLoS component h̃NLoS

n,IRS ∼
CN (0, 1) follows i.i.d. complex Gaussian distribution
with zero mean and unit variance. Similarly, the
channel gain between the IRS and the ℓth D2D-Rx
is hIRS,ℓ. The reflective channel via the IRS from the
nth D2D-Tx toward the ℓth D2D-Rx at time step t is
described by H t

nℓ = htn,IRSΦhtIRS,ℓ.
The received signal at the nth D2D-Rx at time step t

can be written as

stn =
(
htnn + htn,IRSΦhtIRS,n

)√
ptnu

t
n

+
N∑
ℓ,n

(
htℓn + htℓ,IRSΦhtIRS,n

)√
ptℓu

t
ℓ + ϖ,

(4)

where ptn is the transmit power at the nth D2D-Tx
at time step t, ut

n is the transmitted symbol from the
nth D2D-Tx, and ϖ ∼ N (0, α2) is the complex additive
white Gaussian noise.

Accordingly, the received signal-to-interference-
plus-noise ratio (SINR) at the nth D2D-Rx can be
represented as

γ t
n =

|htnn + htn,IRSΦhtIRS,n|
2ptn∑

ℓ,n,ℓ∈N |htℓn + htℓ,IRSΦhtIRS,n|2p
t
ℓ + α2

. (5)

The achievable sum-rate at the nth D2D pair during
time step t is defined as

Rt
n = B log2(1 + γ t

n), (6)

where B is the bandwidth.
In this paper, we aim at optimising the power alloca-

tion of all N pairs of D2D users P = {p1, p2, . . . , pN } and
the phase shift matrix Φ of the IRS to maximise the net-
work sum-rate while satisfying all the constraints. The

considered network optimisation can be formulated as
follows:

max
P ,Φ

Rt
total =

N∑
n=1

Rt
n

s.t. 0 < pn < Pmax,∀n ∈ N
Rt
n ≥ rmin,∀n ∈ N

θk ∈ [0, 2π],∀k ∈ K,

(7)

where Pmax is the maximum transmit power at the D2D-
Tx and the constraint Rt

n ≥ rmin,∀n ∈ N indicates the
quality-of-service (QoS) of the D2D communications.

3. Joint Optimisation of Power Allocation and
Phase Shift Matrix
Given the optimisation problem (7), we formulate the
MDP with the agent, the state space S , the action space
A, the transition probability P , the reward function R
and the discount factor ζ. Let us denote Pss′ (a) as the
probability when the agent takes action at ∈ A at the
state s = st ∈ S and transfers to the next state s′ = st+1 ∈
S . In particular, we formulate the MDP game as follows:

• State space: The channel gain of the D2D users
forms the state space as

S =
{
|h11 + ht1,IRSΦhtIRS,1|

2, . . . , |h1N+

ht1,IRSΦhtIRS,N |
2, . . . , |hnℓ + htn,IRSΦhtIRS,ℓ |

2,

. . . , |hnN + htn,IRSΦhtIRS,N |
2, . . . , |hN1+

htn,IRSΦhtIRS,1|
2, . . . , |hNN + htn,IRSΦhtIRS,N |

2
}
.

(8)

• Action space: The D2D-Txs adjust the transmit
power and the IRS changes the phase shift for
maximising the expected reward. Thus, the action
space for the D2D users and the IRS is considered
as follows:

A = {p1, p2, . . . , pN , θ1, θ2, . . . , θK }. (9)

• Reward function: The agent needs to find an
optimal policy for maximising the reward. In our
problem, our objective is to maximise the network
sum-rate; thus, the reward function is defined as

R =
N∑
n=1

B log2

(
1 + γ t

n

)
(10)

In this paper, we consider a centralised optimisation
where the agent is considered as a central processor, for
example, at a base station, on a powered D2D user or on
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the cloud. At the beginning of each time step, the agent
transfers the action toward the D2D pairs and the IRS.

By following the MDP, the agent interacts with the
environment and receives the response to achieve the
best expected reward. Particularly, the state of the agent
at time step t is st ∈ S . The agent chooses and executes
the action at ∈ A under the policy π. The environment
responds with the reward rt ∈ R. After taking the action
at , the agent moves to the new state s′ with probability
Pss′ (a). The interactions are iteratively executed and the
policy is updated for the optimal reward.

Next, we propose a DRL approach to search for an
optimal policy for maximising the reward value in (10).
The optimal policy can be obtained by modifying the
estimation of the value function or directly by the
objective. We use an on-policy algorithm for our work,
namely proximal policy optimisation (PPO) with the
clipping surrogate technique [19]. There are several
advantages when designing the state space and action
space in a continuous form. Firstly, we can reduce the
human intervention while we do not need to decide the
number of discrete variables. Secondly, we can reduce
the size of neural networks and train them better. For
example, if we have N D2D pairs with the power of
each D2D pair being discretised into J level and K IRS
elements with the phase shift of each element being
divided into K values, we need to define the output of
the action-chosen neural network by N × J + K × L in
the centralised optimisation. In the meantime, we need
only N + K units for the output layer in the network
when we use the continuous action space. Consider
the probability ratio of the current policy and obtained
policy ptθ = π(s,a;θ)

π(s,a;θold ) , we need to find the optimal policy
to maximise the total expected reward as follows:

L(s, a;θ)=E
 π(s, a;θ)
π(s, a;θold)

Aπ(s, a)

=E
ptθAπ(s, a)

, (11)

where E[·] is the expectation operation and Aπ(s, a) =
Qπ(s, a) − V π(s) denotes the advantage function [20];
V π(s) denotes the state-value function while Qπ(s, a) is
the action-value function.

In the PPO method, we limit the current policy such
that it does not go far from the obtained policy by using
different techniques, e.g., the clipping technique and
Kullback-Leiber [20]. In this work, we use the clipping
surrogate method to prevent the excessive modification
of the objective value, as follows:

Lclip(s, a;θ) = E
min

(
ptθA

π(s, a),

clip(ptθ , 1 − ϵ, 1 + ϵ)Aπ(s, a)
),

(12)

where ϵ is a hyperparameter.

Consider the positive value of the advantage Aπ(s, a)
function and once π(s, a;θ) > (1 + ϵ)π(s, a;θold), the
term (1 + ϵ) takes action and the objective is limited by
(1 + ϵ)Aπ(s, a). We have

Lclip(s, a;θ) = min

 π(s, a;θ)
π(s, a;θold)

, (1 + ϵ)

Aπ(s, a). (13)

Meanwhile, when the advantage Aπ(s, a) is negative
and π(s, a;θ) < (1 − ϵ)π(s, a;θold), the term (1 − ϵ) puts a
ceiling to the objective value and the objective is limited
by (1 − ϵ)Aπ(s, a). We have

Lclip(s, a;θ) = max

 π(s, a;θ)
π(s, a;θold)

, (1 − ϵ)

Aπ(s, a). (14)

Moreover, for the advantage function Aπ(s, a), we use
[21]:

Aπ(s, a) = rt + ζV π(st+1) − V π(st), (15)

where the state-value function V π(s) is obtained at the
state s under the policy π as follows:

V π(s) = E
[
R|s, π

]
. (16)

To train the policy network, we store the transition
into a mini-batch memory D and then use the
stochastic policy gradient (SGD) method to maximise
the objective. By denoting the policy parameter by θ, it
is updated as

θi+1 = arg maxE
[
L(s, a;θ)

]
. (17)

In this work, we use a policy search algorithm
to search for an optimal policy π∗ with the policy
parameter θπ. The PPO algorithm is an on-policy
method; thus, we initialise a network for the policy
π. After each interaction with the environment, the
transition (st , at , rt , s′) is stored in a buffer D. Then,
the policy network is trained by the SGD with Adam
optimiser [22] over D samples. The policy parameters
are updated by executing (17). Moreover, we use the
advantage function to define the PPO objective as in
(15). Thus, we define a network with the parameter φθ
to calculate the value function (16). The value network
parameters φθ are updated by mean-square error using
the SGD algorithm as follows:

φi+1
θ = arg min

1
D

D∑(
V π(s) − r

)2
(18)

The PPO algorithm for joint optimisation of the trans-
mit power and the phase shift matrix in the IRS-aided
D2D communications is presented in Algorithm 1,
where M denotes the maximum number of episodes
and T is the number of iterations during a period of
time.
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Algorithm 1 Proposed approach based on the PPO
algorithm for the IRS-assisted D2D communications.

1: Initialise the policy π with the parameter θπ
2: Initialise other parameters
3: for episode = 1, . . . ,M do
4: Receive initial observation state s0

5: for iteration = 1, . . . , T do
6: Obtain the action at at state st by following the

current policy
7: Execute the action at

8: Receive the reward rt according to (10)
9: Observe the new state st+1

10: Update the state st = st+1

11: Collect set of partial trajectories with D
transitions

12: Estimate the advantage function according to
(15)

13: end for
14: Update policy parameters using SGD with mini-

batch D

θi+1 = arg max
1
D

D∑
Lclip(s, a;θt) (19)

15: Update value network parameters φθ using the
SGD

φi+1
θ = arg min

1
D

D∑(
V π(s) − r

)2
(20)

16: end for

4. Simulation Results

For numerical results, we use Tensorflow 1.13.1 [23].
The IRS is deployed at the center (0, 0, 0), while the
D2D devices are randomly distributed within a circle of
100 m from the center. The maximum distance between
the D2D-Tx and the associated D2D-Rx is set to 10
m. We assume d/λ = 1/2, and set the learning rate for
the PPO algorithm to 0.0001. For the neural networks,
we initialise two hidden layers with 128 and 64 units,
respectively. All other parameters are provided in
Table 1. We consider the following algorithms in the
numerical results.

• The proposed algorithm: We use the PPO
algorithm with the clipping surrogate technique
to solve the joint optimisation of the power
allocation at the D2D user and the IRS’s phase
shift matrix.

• Maximal power transmission (MPT): We apply
the equal power allocation for the transmission
of D2D-Tx, where each D2D-Tx transmits with

maximal power Pmax. We use the PPO algorithm
to optimise the IRS’s phase shift matrix.

• Random phase shift matrix selection (RPS): We
optimise the power allocation at the D2D-Tx with
random selection of the phase shift matrix Φ.

• Without IRS: The D2D-Tx transmits information
without the support of the IRS. We optimise the
power allocation by using the PPO algorithm.

• Vanilla policy gradient method (VPG)[24]: We
use neural networks for deploying a classical
policy gradient method to optimise the power
allocation of the D2D-Txs and the IRS’s phase
shift matrix.

Table 1. SIMULATION PARAMETERS.

Parameters Value

Bandwidth (W ) 1 MHz
Path-loss parameters κ0 = 2.5, κ1 = 3.6
Channel power gain −30 dB
Fading parameter µ = 3
Rician factor ϑ = 4
Noise power α2 = −110 dBm
Clipping parameter ϵ = 0.2
Discount factor ζ = 0.9
Max number of D2D pairs 10
Initial batch size K = 128

Firstly, we compare the achievable network sum-
rate provided by our proposed algorithm with that
of other schemes. Fig. 2 plots the sum-rate versus
different numbers of the IRS elements, K , where the
number of D2D pairs is set to N = 5. As can be
observed from this figure, the PPO algorithm-based
technique outperforms other schemes and is followed
by the MPT technique. The RPS, WithoutIRS and VPG
schemes show poorer performance in terms of the
network sum-rate. The achievable network sum-rate
using our proposed algorithm and MPT improves with
increasing the number of IRS elements. The results
show that with the monotonic increase in the value of
K , the communication quality between the D2D-Tx and
associated D2D-Rx is enhanced, while the interference
from other D2D-Txs is suppressed.

Next, the performance of the previously mentioned
four schemes is compared while varying the number
of D2D pairs, N , in Fig. 3. We set the number of
IRS element to K = 50 and take the average over 500
episodes to obtain the results. Our proposed algorithm
shows better performance, followed by MPT. With
higher number of D2D users, N ≥ 6, the performance

5 EAI Endorsed Transactions on 
Industrial Networks and Intelligent Systems 

12 2022 - 05 2023 | Volume 10 | Issue 1 | e1



K. K. Nguyen, A. Masaracchia, C. Yin

10 20 40 50 60
K

46

47

48

49

50

51

Su
m
-ra
te
 (b
its
/s
/H
z)

Proposed algorithm
MPT
RPS
WithoutIRS
VPG

Figure 2. The network sum-rate versus the number of IRS
elements, K .

attained by the proposed algorithm still stables while it
decreases significantly for the other schemes. The RPS
and WithoutIRS models show the worse performance.
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Figure 3. The network sum-rate versus the number of D2D pairs,
N .

Further, we set N = 5, K = 50 and compare the
performance results of the four schemes while changing
the value of the threshold, rmin, in Fig. 4. When the
value of rmin increases towards infinity, the number of
D2D pairs that satisfies the QoS constraints decreases
and the sum-rate of all schemes tends to 0. The
proposed algorithm outperforms the other schemes for
all values of rmin. The gap between our algorithm and
others increases following the increase in rmin when
rmin ≥ 15 dB. The MPT algorithm exhibits the worst
performance when rmin = 20 dB. This suggests that
the optimisation of power allocation is important for
efficient D2D communications.
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Figure 4. The network sum-rate versus the QoS threshold, rmin.

Next, we compare the total sum-rate of the four
schemes by setting different maximum transmission
powers at the D2D-Tx, Pmax, in Fig. 5, with N = 5,
K = 50. As Pmax varies from 200 mW to 400 mW,
the performance of the five schemes increases in the
same upward trend. The gap between our proposed
algorithm and the other schemes increases with the
increase value of Pmax as we jointly optimise both power
allocation at the D2D-Tx and the IRS’s phase shift
matrix. It is clear that the proposed algorithm is more
effective for mitigating interference and providing a
better communication quality.

Furthermore, we use neural networks for establishing
the DRL algorithm. Thus, after iterative interactions
with the environment, the neural networks are trained
for achieving an optimal solution. After training offline,
the neural network can be deployed to the system
for online execution. The online neural networks can
determine the proper action for the IRS phase shift
value and the D2D-Tx power allocation for maximising
the network sum-rate in real-time.
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Figure 5. The network sum-rate versus the maximum transmit
power, Pmax.

In Fig. 6, we compare the convergence speed of
the PPO algorithm while varying the number of IRS
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elements, K . The PPO algorithm converges faster with
the lower value of K . The slower convergence speed
with the higher value of K is mainly caused due to the
higher number of optimisation variables.
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Figure 6. The network sum-rate while using the PPO algorithm.

5. Conclusion
In this paper, we have presented a DRL-based
optimal resource allocation scheme for IRS-assisted
D2D communications. The PPO algorithm with the
clipping surrogate technique has been proposed for
joint optimisation of the D2D-Tx power and the IRS’s
phase shift matrix. Numerical results have showed
a significant improvement in the achievable network
sum-rate performance compared with the benchmark
schemes. Our proposed scheme demonstrates the
superiority of using IRS in mitigating the interference
in the D2D communications when compared with other
existing schemes.
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