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Abstract

Sphere detector (SD) is an effective signal detection approach for the wireless multiple-input multiple-output
(MIMO) system since it can achieve near-optimal performance while reducing significant computational
complexity. In this work, we proposed a novel SD architecture that is suitable for implementation on the
hardware accelerator. We first perform a statistical analysis to examine the distribution of valid paths in the
SD search tree. Using the analysis result, we then proposed an enhanced hybrid SD (EHSD) architecture that
achieves quasi-ML performance and high throughput with a reasonable cost in hardware. The fine-grained
pipeline designs of 4 × 4 and 8 × 8 MIMO system with 16-QAM modulation delivers throughput of 7.04 Gbps
and 14.08 Gbps on the Xilinx Virtex Ultrascale+ FPGA, respectively.
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1. Introduction
Multiple-input multiple-output (MIMO) communica-
tion is one of the critical technologies for modern wire-
less systems. MIMO takes advantage of spatial diversity
to wireless for simultaneous transmission of signal sym-
bols, hence, significantly improving the system capac-
ity and spectrum efficiency[1]. MIMO systems have
become a core component of HSPA+ (3G), LTE (4G),
5G, and other modern wireless communication systems.
One of the technical challenges in MIMO technology
is that the receiver side needs to simultaneously detect
multiple symbols accurately in real-time, especially for
systems with a large number of antennas.

Maximum-likelihood (ML) detection achieves opti-
mal performance in MIMO systems with the cost of
high complexity, which exponentially increases with
the number of transmission antennas and modulation
order. Therefore, this algorithm is not practical for
real-time MIMO detection but is typically used as a
baseline design. The sphere detector (SD) has emerged

∗Corresponding author. Email: kien.trinh@lqdtu.edu.vn

as one of the primary methods that could substantially
reduce the detection complexity in the MIMO system
while maintaining an acceptable bit error rate (BER)
(i.e., comparable to that of the optimum ML detector)
[2, 3]. SD was first proposed by Fincke and Posh [4, 5]
for locating the closest vectors in the given lattice. SD
could be implemented using software and hardware
or hybrid platforms and has been actively studied in
the literature. Most SD variants focus on optimizing
SD by finding the best balance between their error
performance and associated computational complexity.
Original SD algorithm exhibits variable complexity and
decoding latency, which could be beneficial for software
implementation but hardly achieves real-time through-
put for practical MIMO systems. Within the boundary
of this study, we focus on SD architecture that is suited
for the MIMO signal detection accelerator.

Fixed-complexity sphere detection (FSD) has been
proposed in [6–12], where the search tree is divided
into the full-expansion stage and the single expansion
stage. The former considers every possible path, while
the latter expands only to the best solution within
its local tree. By using a fixed number of search
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paths, FSD overcomes the drawback of varying latency
in the conventional SD and could achieve a near-
ML performance at the expense of sufficiently large
computation [6, 7]. Several hardware implementations
have been proposed and demonstrated [8–12]. In [8],
the authors introduced an FSD prototype on Virtex
II FPGA having constant throughput of 600 Mbps.
In [9], the authors demonstrated an FPGA-based FSD
targeted for WiMax application that achieves 800 Mbps
at 102 Mhz. In [10], Wu et al. proposed four-nodes-
per-cycle parallel FSD architecture that is very area-
efficient, though the achievable throughputs are just
213.3 Mbps and 27.7 Mbps on 130 nm CMOS and
FPGA, respectively. Furthermore, a pipelined FPGA SD
architecture using the Schnorr-Euchner algorithm was
proposed in [11] that achieves near ML accuracy but
with a limited throughput of 48 Mbps. In [12], the
authors demonstrated a 90 nm VLSI implementation
of modified FSD that limits the number of searches in
sub-tree by the best child node prediction technique.
The simulated result shows a maximum throughput of
2.2 Gbps, which so far is the fastest hardware of FSD
implementation in our record.

K-best is another popular SD accelerator architecture
and has been actively studied recently [13–22]. The
K-Best SD is based on breadth-first search, which
considers only the best (K) candidates at each level to
be passed to the next level of the search tree. Thus,
ML could be considered a special case of K-best with
a sufficiently large K [13]. The conventional K-best
sphere detectors use the same K value at all levels
[13–18], while recent developments offer more flexible
and efficient designs [19–22]. Among those, several
practical K-Best SD has been prototyped on hardware
[16, 17, 19–22, 28] that show advantages over FSD in
both complexity and throughput.

A variant of the K-best algorithm was proposed in
[19], where the search tree is split into sub-branch
with a lower value of K , which can significantly reduce
the complexity while achieving good BER performance
for a 4x4 MIMO system. In [20], the variable K-best
has been proposed to reduce the complexity without
degrading the BER; the corresponding 180 nm VLSI
implementation [20] exhibits a throughput of 1.5 Gbps.
Furthermore, the sorting reduced K-best (SR K-best)
detector was then proposed in [17], which is based on
two methods of staging reduction and QR transform
performed on complex numbers; the corresponding
VLSI implementation on CMOS 90 nm achieves a
throughput of up to 3.1 Gbps. In [21], Wu et al.
proposed a bounded selective spanning technique that
effectively removes invalid nodes from the K best nodes,
thus reducing the necessary computation compared
to the prior works, though the implementation on
FPGA achieves moderate throughput of 484.8 Mbps

for a 4 × 4 MIMO detector. In [28] adopted non-
constant K-best algorithm has been proposed to keep
more survival nodes in top search tree layers and
reduce the computational complexity in bottom layers
as opposed to the conventional K-best algorithm;
the corresponding VLSI implementation on CMOS
90 nm for 4 × 4 MIMO achieves a throughput of up
to 4.08 Gbps. In [18], a hybrid K-best architecture
was introduced where K is maintained throughout
the detection, but only a low-complexity successive
interference cancellation is applied in lower levels.
The corresponding proposed design implemented on
65 nm CMOS achieves the throughput of 3.2 Gbps for
a 64-QAM 4 × 4 MIMO detector. In [16], the authors
proposed a sorted-Cholesky lattice reduction K-best
that exhibits 3.85 Gbps for the 8 × 8 MIMO system with
40 nm VLSI implementation. In the most recent work
[22], Wu et al. proposed a robust bounded spanning
with a fast enumeration and configurable SD algorithm,
implemented on FPGA for a 4 × 4 MIMO detector. The
proposed design permits an adequate balance between
the detection accuracy and the hardware efficiency and
could achieve quasi-ML accuracy with a 74% reduction
in complexity, though the achievable throughput is
moderate (494 Mbps).

This paper proposes a novel hybrid SD architecture of
MIMO detection accelerator on FPGA, so-called EHSD.
The proposed architecture could be viewed as a hybrid
version of conventional FSD and variable K-best. As
the fundamental difference, our design approach relies
first on extensive simulation and statistical analysis
to determine the most optimal SD configuration that
balances the trade-offs between complexity, accuracy,
and hardware cost. The main contributions of this work
are listed as follows:

1. We proposed a statistical analysis approach to
systematically study the relationship between the
sphere radius, the BER performance, and design
complexity to systematically optimize search tree
topology and the number of calculation units for
each level, aiming at the sub-optimal design that
reaches quasi-ML BER performance.

2. We carried a thoroughly micro-architectural
optimization for fundamental computation units
and developed techniques for searching and
sorting candidate points in the lattice for each SD
level that could perform a global comparison for
node selection with a reasonable hardware cost.

3. We have implemented on FPGA 4 × 4 and 8 ×
8 MIMO configurations of the proposed EHSD
detection algorithm. The fine-grained pipelined
design can deliver the maximum throughput of
7.04 Gbps (14.08 Gbps) and fixed latency of
145.45 ns (400 ns) for 4 × 4 (8 × 8) MIMO systems
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Figure 1. Block diagram of the general MIMO system with SD.

with less resource utilization compared to the
prior works.

The rest of this paper is organized as follows. Section
2 describes the system model of the MIMO system with
SD. Section 3 analyzes the distribution of valid nodes
in the sphere detection search tree. The proposed EDSD
architecture is presented in Section 4, followed by the
hardware design of the EHSD in Section 5. Section 6
provides the simulation and implementation results.
Finally, Section 7 concludes the paper.

2. System Model
Consider a MIMO system with NT transmit and NR
receive antennas, as shown in Fig. 1. The MIMO
channel is characterized by its complex channel

matrix
(
hij

)NR×NT ∈ CNR×NT , whose elements are drawn
independently from the complex Gaussian distribution
with zero mean and unit variance. Those parameters
indicate the attenuation and phase shift for each
path from the transmitter to the receive antennas;
they are assumed to be perfectly known in advance
(i.e., through the channel estimation stage). For
transmission, elements xi of complex signal vector
x = (xi)

NT ×1 ∈ Ω ⊂ CNT ×1 are sent concurrently through
NT transmit antennas, where Ω is the set of the
signal modulation constellation. Hence, the received
NR-element complex signal vector y = (yi)

NR×1 ⊂ CNR×1

can be expressed as

y = Hx + n, (1)

where n = (ni)
NR×1 ∼ CN (0, σ2I ) is a complex Additive

White Gaussian Noise (AWGN) vector.
The ML detector performs an exhaustive search for

all the possible symbol vectors in Ω set to obtain the
one with a minimum squared error:

x̂ML = arg min
x∈Ω
∥y −Hx∥2, (2)

The computational complexity of ML detection
grows exponentially with the number of antennas

in the MIMO system. Therefore, the ML detector is
complicated to apply in the real MIMO system detector.
Hence ML detection can be replaced by the SD to
reduce the computational complexity. The SD only
calculates the Frobenius norm for candidate points
inside a hypersphere that is formed around the received
signal vector with a predetermined radius rsph. The
equation (2) can be transformed as

x̂SD = arg min
x∈S
∥y −Hx∥2, (3)

where {S ⊂ CNT ×1 : ∥y −Hx∥ ≤ rsph} is a set of all
possible points in the lattice Hx, whose distance
to y is always smaller than the hypersphere radius
rsph. Choosing a suitable value of rsph is essentially
important for determining the SD computational
complexity and BER performance. To further reduce
the amount of computation in SD, equation (3) can
be transformed into an identical problem by applying
the QR decomposition to the channel matrix, that is
H = QR where matrix Q is a unitary matrix whose size
is NR ×NR and QQH = I while R is an NR ×NT upper
triangular matrix. Replacing H by QR and after simple
transformation, equation (1) becomes

ỹ = Rx + QHn, (4)

where ỹ = QHy. Note that QHn has the same statistics
as n, hence equation (3) is equivalently characterized as

x̂ = arg min
x∈S
||̃y − Rx||2, (5)

where ŷ = Rx. Equation (5) can be calculated through
the following cost function:

D(̃y, ŷ) = ||̃y − Rx||2 ≤ rsph
2. (6)

Since the matrix R is the upper triangular, the cost
function D(̃y, ŷ) is also a partial Euclidean distance that
can be calculated recursively from one transmit antenna
to another:

Dm(̃y, ŷ) ∆=
NR∑
i=m

ỹi − NT∑
j

Rijxj


2

, (7)

D(̃y, ŷ) = D1(̃y, ŷ), (8)

Dm−1(̃y, ŷ) = Dm(̃y, ŷ) +

ỹm−1 −
NT∑

i=m−1

Rm−1,ixi


2

, (9)

where ỹm−1 is the (m − 1)-th element of the received
signal vector after multiplication of the received signal
vector by QH ; Ri,j is an element of matrix R that
belongs to the i-th row and the j-th column, and the
cost function Dm(̃y, ŷ) is a partial Euclidean distance of
the candidate symbol x at the m-th search level. For
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all possible transmit symbol vectors that are satisfied
x ∈ {S ⊂ C2N×1 :

∥∥∥Rx − ỹ∥∥∥ ≤ rsph}, we set D2N+1(̃y, ŷ) =
0, and have the following inequality

Dm−1(̃y, ŷ) ≤ rm
2 − Dm(̃y, ŷ), (10)

rm
2 = rsph

2 −
NR∑

i=m+1

Di (̃y, ŷ), (11)

where m = 2N, 2N − 1, ..., 1 (N = NR = NT ). Choosing
the value of rsph critically affects the computational
complexity and the system performance. If rsph is large,
a large number of candidate symbols are covered in
the hypersphere, which improves BER with the trade-
off in an increase of the computational workload.
In contrast, when rsph is small, the correct solution
has a greater chance of staying out of the chosen
hypersphere. Hence, the initial search radius and the
expected quantity of lattice points in the hypersphere
must be judiciously selected to balance computational
complexity and system performance.

3. Statistical Analysis of the Valid Node
Distribution in The SD Search Tree
In the SD search tree, the number of nodes to be
traversed at the k-th level is M(2N+1−k), where M is the
modulation order, N is the number of receive antennas
in the system, and k receives value from 1 to 2N .
So, with a large value of rsph, the number of valid
nodes from the i-th level to (i − 1)-th level increases
by M times (i.e., exponentially). We consider nodes in
the SD search tree valid if the distance of the points
generated by the Hx lattice corresponding to those
nodes to the received signal vector is less than the
value of an corresponding partial Euclidean in that
level. The number of valid nodes in the sphere at each
level could be randomly distributed and depends on
the model parameters, including the sphere radius rsph,
Eb/N0, and channel status. Among those, the chosen
spherical radius significantly influences the number of
valid nodes at each level.

This section analyzes the number of valid nodes
(the survival search paths) distributions at every
SD level w.r.t different rsph and Eb/N0 levels. Two
conventional SD models have been built on MATLAB
for 4 × 4 and 8 × 8 MIMO systems. Using sufficiently
large random inputs, we perform the basic SD
algorithm to acquire the statistical report of the node
distribution at each search tree level. Each element of
the equivalent channel matrix H is also normalized
to follow the standard Gaussian distribution (AWGN
model adopted), and the Eb/N0 varies from 0 to 15 dB
while the radius varies from 0.3ET to 1.1ET with ET
is the transmitter power, considering each element of
the input signal vector are normalized with the average
signal energy on each transmit antenna is 10.

The simulation results for different antenna configu-
rations are reported in Fig. 2 and Fig. 3, respectively.
In those plots, the horizontal axis denotes the level
number in the search tree, where the numbers of SD
levels (the rank of the matrix H ) are 8 and 16 for
4 × 4 and 8 × 8 MIMO configurations, respectively. The
y-axis represents the mean (µnode in Figs. 2, 3.b) and
the number of nodes corresponding to the cumulative
distribution of 99.999% coverage 1 (cdf99 in Figs. 2,
3.a) of total survival search nodes in every level. These
results were statistically evaluated for each (rsph, Eb/N0)
pair. The evaluation is considered reliable when the
increase in the number of random input patterns having
little impact on its statistical results. In our analysis, 1
million 16-QAM vectors were generated. Note that to
have a fair comparison between antenna configurations,
we normalized the initial radius by the transmitter
power ET .

From Figs. 2-3, some notable trends could be
observed for the two models. First, increasing the
sphere radius rsph leads to an increase in both µnode and
cdf99 in every level for 4 × 4, and 8 × 8 MIMO systems.
As mentioned earlier, when rsph is too small, there may
be no solutions inside the sphere, making it impossible
to locate the correct solution, especially in scenarios
with high Eb/N0. On the other hand, when rsph is too
large, the possible solution may surge up, leading to
unbearable hardware cost. The value of cdf99 is much
larger than µnode meaning that it would be too costly
to process all possible valid nodes. Therefore, it is a
critical design knob to set an adequate level of rsph to
balance the hardware efficiency under a target BER.
This tendency is also observed for Eb/N0, i.e., increase
Eb/N0 implies a similar but weaker impact on the µnode
and cdf99.

Also, from the statistical data, the numbers of valid
nodes apparently are not the same for all levels in the
search tree. The peaks of the µnode depend mainly on the
rsph, typically at the 3-rd to 6-th level in 4 × 4 MIMO,
and 8-th to 12-th level for the 8 × 8 MIMO system. This
can be explained by two opposite effects: the expanding
number of valid nodes while lowering the search lever;
and the shrinking of the sphere corresponding to the
reduction of effective sphere radius Dm (see Eq. (10)).
In detail, the solution vector is not entirely determined
at the top level (DNR

= rsph), so the possible choices
are small. The search tree expands rapidly at a lower
level, but as soon as a certain component in the solution
vector is determined, Dm is reduced accordingly. As a
result of the combined effects, the peaks are typically
found somewhere in the middle levels.

1For example, if this cdf99 = 100 at the i-th level means that the
99.999% number of the valid nodes ranges from 0 to 100 and the
number of valid nodes greater than 100 is equal to just a small portion
of 0.001%.
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Figure 2. (a) The number of nodes corresponding to cumulative distribution of 99.999% coverage of all available valid node .and
(b) the mean (µnode) of valid search nodes in each level of SD search tree in 16-QAM 4 × 4 MIMO system, simulated for 1 million
random input patter with AGWN.

a) b)
Layer number Layer number

Figure 3. (a) The number of nodes corresponding to cumulative distribution of 99.999% coverage of all available valid node; (b) the
mean (µnode) of valid search nodes in each level of SD search tree in 16-QAM 8 × 8 MIMO system. Simulated for 1 million random
input patterns with AGWN.

It is also noticeable that SD in an 8 × 8 MIMO is much
more computationally intensive than a 4 × 4 MIMO
system. Indeed, considering the same normalized initial
radius r2

sph = 0.5ET , the maximum of both µnode and
cdf99 of 8 × 8 MIMO is found almost 4.3 times higher
than that of 4 × 4 MIMO. The high cdf99 indicates that
in the worst-case scenarios, the number of search paths
could be very large. For example, let us consider 4 × 4
MIMO systems at r2

sph = 0.5ET ; Eb/N0 ranging from 0 dB
to 15 dB, we would need to process maximum for

about 95 to 115 nodes at 3-rd levels (see Fig. 2.a) while
corresponding maximum µnode is only about 15 to 20,
i.e., approximately 5 to 6 times lower. Similar results
can be observed for other MIMO systems and radius
levels.

As a short summary, the number of valid nodes is
reported to be a few orders of magnitude less than
the total number of nodes in each search tree level.
It confirms the fact that the required computation
workload for SD must be much lower than that of the
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exhaustive search in ML. Furthermore, not all the valid
nodes are needed to be processed when we consider
the ultimate design goal is BER performance, as we
will show in the next Section. The statistical results
also indicate that the critical search level, where the
number of valid nodes reaches the maximum, is found
somewhere at a few middle levels. These findings are
foundations for the study of the topology of the SD
implementation.

4. The Proposed EHSD Architecture
From the above analysis, the number of valid nodes
varies across the search level, and this has been
exploited for further enhancing the K-best algorithm in
[17, 19, 20, 23]. In those works, a larger K is used in
early levels to avoid error propagation, and a smaller
K in the top levels reduces computational complexity.
This pattern, however, is not necessarily optimum
according to the statistical results in the previous
section. In addition, apart from the statistical data, the
SD micro-architecture has to be optimized according
to the system BER. The EHSD proposed in this work
shares a similar idea on how the BER performance
can be maintained using much fewer resources for
practical hardware implementation. However, in our
approach, instead of empirically selecting Ki for each
i-th level, we determine the level configuration for a
specific BER target based on the statistical result from
the analysis in the previous Section. We also propose
here a sorting method that guarantees to cover the
most potential valid nodes in each considered level.
The latter minimizes the miss rate of correct nodes and
allows the safe removal of a large number of valid nodes
that are highly likely not the true solution. After that,
the estimated computational workload helps to best
determine the number and structure of the compute
blocks in each search level, which is meaningful for
hardware implementation. Finally, we quantify the
intrinsic relationship between rsph and Eb/N0. It helps
optimizes sphere radius based on Eb/N0 to minimize
BER, targeted for fixed hardware detector design. In the
following, the design of 4 × 4 MIMO EHSD is described
in detail. The design of a higher MIMO order detector
can be developed in the same approach and will be
summarized later.

4.1. Nodes Selection Using Recursive Sorting
Algorithm
As analyzed above, when reaching the middle levels,
the number of generated nodes is much higher than
those discarded outside the hypersphere. Hence, the
major workload is concentrated at a few middle lev-
els. Limiting the number of nodes at the middle lev-
els is crucial for reducing the computation workload

and finding an appropriate resource allocation. Inter-
estingly, our further study shows that we eventually
require much fewer nodes while still maintaining good
BER by adopting a sorting algorithm. The sorting algo-
rithm takes out the best number of candidates, whose
number typically is much smaller than the number
of valid nodes. In the following, we will present the
detailed method to optimize the value of K first by
sorting and selecting the best candidates among the
valid nodes.

For usual selection, all survival paths are divided
into K subsets. Then the best candidates, which are
passed to the next level, are chosen as the local best
candidate for each subset. This is called group sorting or
local sorting (LS), which is simple and straightforward
to be implemented on hardware. Nonetheless, this
sorting method leads to the possibility that the best
node in a subset is still worse than the other nodes
in the different subsets, which have been excluded. An
increasing number of K could solve the problem, but it
also increases the hardware cost and processing latency.

For getting the true best K nodes from all survival
nodes, the global sorting (GS) algorithm was used. In
this work, we proposed a recursive GS method, which
is well suited for hardware implementation. Initially,
all considered nodes are divided into M groups of L
elements. Then each group is sorted by L-to-K sorting
block to get the M × K best nodes. The M × K sorted
nodes are then divided into M × K/L group to be
sorted using the same sorting block. This process is
repeated until K best nodes are finally retrieved. We
use Batcher’s sorting algorithm [24] for designing the
sorting core, which is a fast and area-efficient algorithm
for a recursive design.

We conduct a typical study to compare the effect
of LS and GS methods. Without loss of generality, we
assume that K best nodes are extracted from available
valid nodes at the considered level after each sorting.
To compare two sorting methods, we analyze the error
probability that the true solution is not in the sorted list
of K best nodes (namely sorting error rate (SER) 2). The
lower SER means the method has better performance
and vice versa.

Fig. 4 shows the dependence of the SER at a 5-th level
in the 4 × 4 MIMO system on the radius rsph and Eb/N0
when K = 4, i.e., only 4 best nodes are extracted from all
valid nodes after sorting. We found that with increasing
the radius and decreasing Eb/N0 ratio, the SER using
the LS method increases significantly compared to that
of the GS method. Specifically, at the same level of
Eb/N0 that GS is always better than the LS method.
This advantage of GS is more significant with a large

2In detail, the SER is statistically calculated by the number of wrong
solutions divided by the total number of trials.

6 EAI Endorsed Transactions on 
Industrial Networks and Intelligent Systems 

12 2022 - 05 2023 | Volume 10 | Issue 1 | e3



Sub-optimal Deep Pipelined Implementation of MIMO Sphere Detector on FPGA

radius. The two methods perform similarly only when
the signal level is reasonably good (i.e., ≥ 10 dB) and the
node selection is made almost without error.

Furthermore, Fig. 5 shows the SER with fixed rsph = 3
at several critical levels from 3 to 6 for the 4 × 4 MIMO
system. Here we set the number of sorting nodes K = 4
at 3-rd, 4-th levels, and K = 8 at 5-th, 6-th levels, which
is based on the statistical analysis on the valid node in
Section 4. Very similar results can be observed here. The
SERs of the two methods are the same only at very high
Eb/N0 (≥ 10 dB). In contrast, the GS is superior to the
LS in most other cases, especially for larger (K = 8) and
higher levels (5-th, 6-th levels). This could be explained
by the number of valid nodes at these levels becoming
much larger than in cases with smaller K and lower
levels. As the number of valid nodes increases, there
is a higher probability that the real solution is located
outside the sphere when selecting the nodes just by LS,
as we discussed earlier.

Overall from this quantitative analysis, it can be
concluded that the GS method exhibits much better
performance compared to the LS. This advantage
essentially comes with the inevitable cost of resource
utilization and processing latency.

4.2. The Dependence of BER on rsph
In this subsection, we investigate the dependence of
BER on rsph, aiming to find the best radius value to meet
different channel conditions from the design. Finding
the minimum radius under a system BER target is
essential to reduce the amount of computation. Based
on the MATLAB model in the previous Section, we
conduct simulation with random inputs to evaluate

So
rti

ng
 e

rro
r r

at
e 

Figure 4. The sorting error rate at 5-th level using two sorting
models: the local sorting (LS) that takes the 4 local best nodes
and the global sorting (GS) that takes the global best 4 nodes
for 4 × 4 MIMO with 16-QAM.

Level

Figure 5. The ratio between sorting error rate with rsph = 3 for
two sorting models: the local sorting that takes the 4 (8) best
nodes and the all-inclusive sorting that takes the 4 (8) best
nodes at levels 3, 4 (5, 6), respectively.

system BER, given the ground truth solution. From the
design perspective, the target BER and the SD radius
can be considered as the runtime parameters, i.e., can
be set during the operation mode. Fig. 6 presents the
analysis of BER dependence on the SD radius and Eb/N0
level. From Fig. 6, it is clear that increasing SD radius
help to reduce the BER, but that is effective for only a
small range of rsph. Each BER curve has two inflection
points, in which the second inflection point gives a good
BER value with the smallest radius. For rsph > 3, the
BER becomes saturated. The optimal rsph depends on
Eb/N0, but it is located somewhere from 2.5 to 3.5. This
finding is important since it permits limiting the ranges
of search nodes without sacrificing BER performance.

4.3. The Proposed EHSD Architecture
From the above analysis, we found that BER is very
sensitive to small values of rsph and becomes saturated
with a large enough sphere radius. For example, with
the 4 × 4 MIMO system, the simulation results from
the MATLAB model indicate that rsph = 3 seems to be
the best for a wide range of Eb/N0. In the following,
we propose a dedicated architecture that could leverage
both sorting and BER-radius relationship to reduce the
computational workload.

The core processing block in this architecture is the
level processing block (LPB). This block calculates the
PDE, i.e., Dm in Eq. (10), corresponding to the selected
modulation symbol at the m-th level. The calculation is
not the same for every level because R in Eq. (4) is an
upper triangle matrix. In detail, only the y8 component
is the assigned symbol at the top level, so only a single
multiplication and addition is needed. Lowering the
search level increases the computation complexity of
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the LPB linearly. We hence propose a general structure
of SD as follows:

1. Full expanding cluster: First few levels, as men-
tioned, are not the critical ones in the sense that
the complexity of LBP is still low and the number
of search nodes is small. In the first three levels,
from 8 down to 6, the core processing will cover
all search nodes because the computational com-
plexity in these levels is not high. The maximum
number of nodes is limited and is 64 at level
6. As reported in the previous section, to cover
99.999%, this level would need 25 LPBs. However,
adding sorting blocks to calculate the number
of valid nodes would be more complicated and
costly than adding LPB blocks [20, 26].

2. Variable K-best cluster: The remaining levels are
selectively applied K-best, where K is statistically
determined and optimized with the sorting
algorithm. According to the results in Fig. 2, after
level 6-th, the number of valid nodes is reduced
from total 256 to just 26 to 32 (for coverage of
99.999% valid nodes). However, by applying the
GS sorting algorithm, this level need only K5 = 8
nodes to achieve a fairly good BER. Similarly, in
this particular MIMO 4 × 4 system, the statistical
results confirm that the set of K4−1 = (8, 4, 4, 4) is
a suitable K set for the implementation.

Fig. 7 plots the simulated BER for several EHSD
configurations listed in Table 1 and for Zero-forcing,
Minimum-Mean-Square-Error (MMSE), conventional
SD algorithms with rsph = 1 − 4, and the baseline ML.
From the figure, it is clear that all proposed EHSD
outperform simple algorithms such as ZF and MMSE

Figure 6. The dependence of BER on rsph for 4 × 4 MIMO with
16-QAM.

Table 1. Configurations of EHSD algorithm

*Config- Number of chosen Ki best solutions for each level i-th
uration 8-th 7-th 6-th 5-th 4-th 3-th 2-th 1-th
Config.1 4 16 32 8 6 4 4 1
Config.2 4 16 32 16 8 4 4 1
Config.3 4 16 20 24 16 8 4 1
Config.4 4 16 24 26 16 8 4 1
Config.5 4 16 8 8 4 4 4 1

Figure 7. BER performance Comparison different EHSD
configuration with ZF, MMSE, conventional SD and ML methods.

and SD with rsph < 2 and have the BER quite close
to that of SD with rsph = 4 and ML. Among the
configurations, the last one (K=[4 16 8 4 4 4 1]) has
BER performance slightly worse than the other, but that
comes with a significant reduction in the hardware cost,
and that result is quite in line with the proposed design
based on the statistical analysis mentioned above.

By applying a similar method, the suitable configura-
tion for the 8 × 8 MIMO system is K8×8 = [4 16 28 28 24
16 12 12 8 8 8 8 8 4 4 4 1]. It is worth noting that those
proposed configurations are based on extensive simu-
lation with sufficient large random inputs, hence, are
almost independent of channel conditions and input
pattern.

5. Hardware Design Of The Proposed EHSD
This section describes the hardware architecture of the
sphere detector block for the N ×N MIMO system with
16-QAM modulation that will be implemented based
on the EHSD algorithm in Fig. 8. The RTL model 4 × 4
and 8 × 8 detectors are encapsulated on VHDL and have
been simulated and synthesized using Xilinx Vivado
2019.2. In the following, the hardware architecture
model is described in bottom-up order, i.e., starting
with the basic processing block that will be used to
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build up the more sophisticated block and the whole
detector.

5.1. Level Processing Block
As mentioned in Fig. 8, the basic level processing block
(LPB) is the primitive calculation element. The detailed
structure of an LPB is shown in Fig. 9. LPBs perform
the partial Euclidean radius calculation according to
Eq. (11), which could be considered as the most
basic calculation of the sphere decoding algorithm. To
conveniently describe the design structure and unify
the name for the input data, we rewrite the eq. 11 as
follows.

rm−1
2 = rm

2 −

 2N∑
i=1

xiRmi − (QHy)m


2

, (12)

In Eq. (12), rm is the spherical radius value at the m-th
level, and (QHy)m is m-th element of the vector (QHy).
Instead of working with the radius, we perform all
calculations with its squared form to avoid the square
root operation, which normally is very expensive not
only for hardware but software implementation.

According to the above formula, the LPB mainly uses
the adder and multiplier resources while QHy can be
calculated only once because the received signals y and
QH are known. Hence, we assume that the Q′y matrix
has been pre-computed before entering the detector
block, and the

∑2N
i=1 xiRmi value is directly taken into

LPB without any further processing. The remaining
intensive calculation here is the sum-of-the product,
which requires N multiplications and N additions.
Taking into account that xi is a modulated symbol, e.g.,
for 16-QAM, it has only four choices {−3,−1,+1,+3},
the multiplication can be simplified by replacing it with
adders, shifters, and multiplexers, i.e., in the form of the
lookup operation. In addition, because xiRmi is shared
by many LPB at the same level, we pre-calculate these
values to enable fast lookup and saving resources.

As a result, LPB uses only one multiplier (one DSP
slice in FPGA) to perform the squaring calculation.
In addition, because R is the upper triangular matrix,
Rm has a 2N + 1 −m of zero elements. Therefore, it is
unnecessary to allocate resources to perform all 2 ∗N
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Figure 8. Block diagram of the proposed EHSD for 4 × 4 MIMO.

additions but based on each specific level to perform
the calculation

∑N
i=1 xiRmi . Therefore, the LPB block

requires 2 to {(N + N/2 + N/4 + .. + 1) + 2} adders and 1
to 2N 4-to-1 multiplexers depending on the processing
level. For example, the 8-th level (in 4 × 4 MIMO)
requires only 2 adders, while the last level needs all
9 adders. This is the main reason for the proposal of
a full expansion cluster in Fig. 8 for the first 3 levels.
At micro-architectural optimization, we divide the LPB
block into 3 pipeline stages as shown in Fig 9. This
aims to shorten the clock period and improve system
throughput.
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Figure 9. Detailed hardware implementation of a LPB.

The output of the LPB is vector x̂ according to the
node level. For example, as shown in Fig. 9, after LPB
processing from level (2N − 2)-th, the output x̂ to the
next (2N − 3)-th level is updated x̂2N−2 = +3, assuming
this symbol is selected for this particular node.

5.2. Node Selection Block
The valid node selection block (NSB) is an important
component of the sphere detector. This block selects a
certain number of valid nodes with priority according
to the value of the sphere radius. Specifically, those
valid nodes after LPB are sorted by the Batcher sorting
followed by a K-best NSB, as shown in Fig. 10. Without
loss of generality, it is assumed that inputs of the NSB
at level L − 1 is a set of 4KL nodes, each represented
by a matrix of level radius value and estimated
transmitted signal

(
rsphX

)
4KL×(2NR+2−L)

. The output of

NSB keeps KL−1 best nodes, which are represented
in a sorted matrix

(
rsphX

)
KL−1×(2NR+3−L)

by KL−1 rows

corresponding to the KL−1 smallest radius rsph.
Batcher sorter block: The Batcher sorter block is

designed according to the algorithm in [24]. The sorter
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outputs N input values and their associated data in
ascending order. In our case, the radius values are the
sorted value and QAM symbol and the corresponding
partial Euclidean distance is the associated data. The
smallest radius typically corresponds to the best node
candidates though the ground truth received symbols
are not always the closest node in the considered sphere.

The Batcher algorithm can be extended for arbitrarily
4KL though the 4KL normally is selected to be a power
of 2. This especially enhances the design efficiency in
hardware, where the resource is fully utilized, and the
core has a balance pipelined structure. In addition, it
is straightforward to design the higher input Batcher
sorter by hierarchically constructing from the smaller
sorter blocks.
K-best Selection Block: In the next processing step, The

K-best selection block will filter out all the nodes with
a larger distance from the considered points and pass
to the next level (L-th) only K best nodes. Note that
similar to the Batcher sorter, K-best selection can be
optionally added pipelined registers for performance
improvement.

5.3. The Overall Structure of Proposed EHSD
The generic structure of the EHSD is shown in Fig. 11.
The input of the sphere detector block consists of the
upper triangular matrix R, the received vector ỹ = QHy
(see Eq. (4), and the initial squared spherical radius
value r2

sph. The output of EHSD is the best solution
inside the sphere of the 16-QAM symbol vector x̂.

In addition to the main function blocks presented
above, there is also the XR multiplier block that takes
care of pre-computing the cases of the product xiRmi .
R multiplier uses only multiplexer and adders, not
DSP, which saves kernel resources. The calculated xiRmi
values are used for further processing.

Furthermore, the detector is constructed as the design
in Fig. 11, i.e., for N ×N MIMO, the first top levels
(i-th to 2N -th) are fully expanded while the following

K-Best 
Selection
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Figure 10. Detailed hardware implementation of an NSB.

levels are sorted for resource optimization. The first
processing level (level 2N ) has 4 LPBs corresponding
to 4 possible values of x2N,i in vector x̃2N , whose
entry being an element of the set Sr accompanied with
initial radius values r2N = rsph. Each output of this level
(r(2N−1)i ,x(2N−1)i , i = 1 ÷ 4) will correspond to 4 possible
values of x(2N−1)i , therefore, the (2N − 1)-th level has 16
LPBs. Similarly, we take the full expansion until level
i, which requires 42N−i+1 LPBs. In our implementation,
the final full expansion level of 4 × 4 and 8 × 8 MIMO
is 6 and 14, respectively. Note that outputs from each
level are latched into pipeline registers to ensure an
adequate system clock frequency. Furthermore, sorting
is applied to prevent the excessively large number
of LPBs. Specifically, after the i-th level, we use the
NSB((42N−i+1)→ Ki) block to truncate (42N−i+1) nodes
in the tree to select only Ki best nodes. This then
requires Ki × 4 = 4Ki LPBs for processing at the (i − 1)-
th level. The 4Ki outputs of the (i − 1)-th level are
truncated to keep only Ki−1 best nodes. This process
continues until the lowest level, as illustrated in Fig. 11,
where only one best full x̃1 vector is taken.

As mentioned above, the LPB and NSB blocks
support adjustable pipeline stages, so as the entire
detector design. At fully pipelined, the whole 4 × 4
MIMO detector has 64 pipeline stages, where each
LPB has 3 pipeline stages, NSB blocks have different
pipeline stages depending on sorting complexity: 10 for
NSB(64 − 8), 7 for NSB(32 − 8) and NSB(32 − 4), and 5
for NSB(16 − 4).

For this design, the 4 × 4 (8 × 8 ) MIMO detector
takes 64 (176) clock cycles to decode the first symbol,
from then on every clock the detector block completes
decoding one symbol, the maximum throughput of
the system then is defined by the maximum clock
frequency.

6. Simulation and Implementation Results
6.1. Functional Verification
The whole design is shown in Fig. 13 has been
implemented using VHDL and functionally verified
using the Vivado simulator. We also implemented a
corresponding MATLAB model to generate test data
and make sure that the hardware model delivers
the same function as expected. The MATLAB model
simulates the whole MIMO channel to generate detector
parameters, including R, Q matrices, and input signal
y vector making the corresponding output x vector.
This set of data is then converted to an appropriate
data format for logic simulations. Specifically, we
generate 1 million data sets corresponding to 1 million
transmitted signal vectors. Each element of the matrix
R is represented by 15 signed bits. For the QHy matrix,
it is 17 signed bits. Each element of the solution
vector x represents 2 bits corresponding to the four
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Figure 11. Structure of the hardware implementation of the proposed EHSD.

possible values of xi . The decoded symbols are mapped
back to the signal constellation to be converted to a
bitstream. With 1 million symbols, so we have 16Mb
bits transmitted.

MATLAB

COMPARE BER

Bit stream transmitted

Data test
Bit stream 
detected

MATLAB

COMPARE BER

Bit stream transmitted

Data test
Bit stream 
detected

Figure 12. Verification platform of the EHSD using Vivado
Simulator and MATLAB

After preliminary functional simulation, we compare
the BER of the proposed EHSD block with the
BER of the theoretical ML and the conventional
SD decoding method obtained from the MATLAB
simulation. The results in Fig. 13 show that the
BER of the hardware-implemented EHSD closely
matches the BER of ML and the conventional SD
methods. The slight difference between the hardware
model of EHSD and the conventional SD method
results from limiting the number of valid nodes
selected at each level as well as the precision of
the fixed-point implementation used. This observation
essential is a trade-off between accuracy and efficiency
in terms of resources and throughput. We can
always further improve the BER of the EHSD by
increasing the K-best node selection. However, this
would lead to an increase in resource utilization

Figure 13. BER performance of the proposed hardware EHSD,
ML and the conventional SD

and possible throughput degradation. Nonetheless,
considering hardware implementation, from the BER
plots, it can be seen that EHSD exhibits similar BER
compared to conventional SD while the computation
workload is reduced significantly, as we have discussed
in Section 4.

In order to evaluate the feasibility of the design,
we synthesized the EHSD design on several Xilinx
FPGA devices for determining resource utilization
and the achievable maximum clock frequency and
the corresponding throughput. The results are shown
in Fig. 14, according to which the design can be
fully implemented on some low-end and mid-end
devices such as Artix7-XC7A200T, Kintex7-XC7K325.
The number of LUTs that the design uses is about
69.7K LUTs accounting for 53% of the LUT resources
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on the XC7A200T chip and only 9% on the Virtex7
UltraScale+ chip. The number of DSP blocks is 196,
corresponding to 196 LPB blocks used as expected,
which can be well satisfied by popular FPGA devices.
The two main components that take up the most
resources in this design are the LPB and NSB. All
LPBs account for 30% of the LUTs that the design
uses, while the NSB takes up 59%, almost double
the design resources. Each LPB block is manually
optimized separately for each decoding level, where
at the most computationally complex levels, each LPB
block costs 1 DSP and an average of 150 LUTs. The
complexity of NSBs depends on the size of their Batcher
sorting block. In this design, the 64-to-8 Batcher sorting
block shows a high cost of 21.31K , while 16-to-4
Batcher sorting occupies only 2.4K LUTs, i.e., almost
10 times lower than the most complex 64-to-8 sorting
block but still much larger than the LUTs occupied by
all LPBs.
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Figure 14. The EHSD resources utilization and maximum
throughput frequency for (a) 4 × 4 and (b) 8 × 8 MIMO
detectors.

Regarding the performance, the maximum clock
frequency of the design on each chip is different due to
the base technology used. With the Artix7-XC7A200T
chip, the maximum clock frequency is only 180 MHz.
With the high-end chip Virtex7-UltraScale+ XCVU7P,
it can reach 440 MHz. The maximum clock frequency
is also dependent on the pipeline architecture of the
design. Maximum path delay is caused by the multiplier
or adder in LPB and CSW2 blocks in NSB (see Fig. 10). It
is possible to improve the maximum clock frequency of
the design by adding pipeline registers at the expense
of Flip-Flop (FF) resources, especially for the Batcher
sorting block. For example, for the reported results, in
Batcher sorting blocks for every two consecutive CSW2
blocks, we put a pipeline register, the total number of
FFs used is 24.7K , which is 72% of the total FFs used by
the whole design. The total FF resources increased by
45% in the case of the deep-pipelined Batcher sorting
block implementation (i.e., inserting the register for
every swapping stage). The amount of FF reduces by

24% to a trade-off for approximately 50% degradation
in the maximum frequency. The processing latency
also depends on the number of pipeline stages. The
EHSD design for the (4 × 4 MIMO) system requires
64 clock cycles, which correspond to 145ns (355ns)
on XCVU7P (XC7A200T). The system throughput does
not depend on the pipeline stage but only on the
maximum frequency. For 4 × 4 MIMO with the 16-
QAM symbol, the throughput (calculated as fclk ∗ 16)
reaches 7.04Gbps (2.88Gbps) for XCVU7P (XC7A200T).
We also have an 8 × 8 MIMO implemented on FPGA
for evaluation. 8 × 8 MIMO has a much higher design
complexity compared to 4 × 4 MIMO. It is shown that
the design takes 88% LUT on XC7K480T and 34%
on the high-end XCU7P. More details, the significant
resource are utilized for NSB (55.6%) since the high
inputs NSB (96-input-8-output) is used in this design.
Regarding the performance, the processing latency is
essentially larger than that of 4 × 4 MIMO with 400ns
(i.e., 176 clock cycles). However, thanks to the deep-
pipelined design, the maximum clock frequency is
achievable at 440Mhz, correspondingly The throughput
of the detector is almost double compared to 4 × 4
MIMO, as expected.

6.2. Comparison To The State-of-the-Art
In Table 2, we compared our implementation of
the proposed 4 × 4 (8 × 8) MIMO with some of
recent SD detectors implementations. The proposed
algorithm has polynomial complexity as K-best, but the
configuration has been optimized to achieve the best
BER ratio with the least use of computational resources.
Regarding the throughput, the maximum throughput
of our proposed detectors is superior to that of other
published works, even with ASIC implementation
ones. Particularly, the throughput of the proposed
algorithm for 4 × 4 is higher 13-14 times higher than
the throughput offered by K-best implementations in
[22] and [21]; for 8 × 8 MIMO, our EHSD shows 4 times
throughput higher than recent ASIC implementations
in [17] and [16]. As can be seen, the throughput of the
EHSD with 8 × 8 configurations is achieved to surpass
the upper limit of the 5G radio network communication
(10 Gbps). The latency of EHSD is as small as about 1/19
(about 1/7) compared to the MBD-FD [17] and equals
1/5 (1/2) of LDLR [16].

LUT and DSP resources of EHSD take up less, and
the maximum operating frequency is higher than that
in [21, 22] thanks to the rigorously microarchitectural
optimization. While most of the other 8 × 8 MIMO
decoder requires ASIC implementation, we are the first
to confirm that the design could be optimized to fit
modern FPGA devices with fairly good performance.
This result indicates the technological feasibility of
FPGA for high throughput MIMO detection.
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Table 2. Comparison of the proposed MIMO detector and the state-of-the-art.

Work Proposed [22]’21 [21]’17 Proposed [17]’14 [16]’21
Antenna size 4 × 4 4 × 4 4 × 4 8 × 8 8 × 8 8 × 8
Modulation 16-QAM 16-QAM 16-QAM 16-QAM 64-QAM 64-QAM
Algorithm Hybrid K-best(R-BSFE) K-best(BSS-EFE) Hybrid K-best(GR-LR) K-best(LDLR)
Technology FPGA FPGA FPGA FPGA ASIC (90nm) ASIC(40nm)
LUT(×103) 69.7 77.4 112.6 269.6 − −
DSP 196 573 495 548 − −
Flip Flop 33,999 − − 144, 327 − −
Gate (kG) − − − − 585 3, 837
Max Clock (MHz) 440 305 252 440 65 641
Latency 145.45ns − − 400ns 2.88µs 710ns
Throughput (Mbps) 7, 040 519.14 484.8 14, 080 3120 3, 846

7. Conclusion
In this work, we have proposed a generic design
methodology to optimize the decoder for practical
hardware implementation. Based on statistical analysis,
we proposed an enhanced model of SD detection
where a significant amount of calculations can
be reduced without degrading the system BER.
The model is specifically optimized for hardware
implementation, which could deliver fixed latency and
decent throughput at a reasonable expense of resources.
The deep-pipelined version of the EHSD detector has
been implemented for the 4 × 4 (8 × 8) MIMO system
that achieves a throughput of 7.04 Gbps (14.08 Gbps),
and latency of 145.45 ns (400 ns). Our implementation
results also indicate that a reconfigurable hardware
platform with its undeniable advantages in cost-
efficiency and resource capability could be seriously
considered for practical implementation of MIMO
decoding and MIMO relay stations in modern wireless
networks.
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