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Abstract

The rapid growth of 360-degree video streaming has transformed how users experience immersive content,
especially on mobile devices. However, delivering high-quality 360-degree video streams to mobile devices
is challenging due to their constrained computational resources, limited bandwidth, and the need for
real-time processing. The paper introduces COSMN (Clustering-Based Optimization for 360-Degree Video
Streaming over Mobile Networks), an innovative framework to tackle these challenges. COSMN leverages
a clustering-based optimization approach to dynamically adapt video streaming to the viewer’s region of
interest (ROI), minimizing resource consumption while maintaining high-quality visuals for the most relevant
portions of the video. The framework operates by dividing the 360-degree video into multiple tiles and
clustering these tiles based on user viewing patterns. By predicting user behavior with clustering algorithms,
COSMN efficiently prioritizes bandwidth and processing power for the tiles within the viewer’s ROI. The
system also integrates adaptive bitrate streaming techniques to ensure seamless playback under varying
network conditions. Experimental results demonstrate that COSMN significantly reduces bandwidth usage
and computational load on mobile devices while providing a smooth and immersive viewing experience.
Compared to traditional 360-degree online streaming methods, COSMN achieves superior performance in
terms of latency, video quality, and resource efficiency. This work paves the way for scalable, 360-degree
online streaming solutions on mobile platforms, making immersive video experiences more accessible and
practical for everyday users.
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1. Introduction
Virtual reality (VR) technology has advanced to create
highly realistic three-dimensional (3D) environments,
allowing users to vividly explore a fully immersive
360 degree space. These environments are entirely
computer-generated or captured from real-world scenes
using 360-degree cameras, both offering a strong sense
of presence and immersion. In this virtual setting, users
can interact with objects and navigate spaces as if they
were real. Experiencing VR typically requires special-
ized devices, such as virtual reality headsets or other
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display tools, which effectively recreate environments
with remarkable realism. By providing an immersive
and interactive experience, VR has found widespread
application in various fields. From [1–3] education and
healthcare to manufacturing and entertainment, VR
has uncovered great potential, enhancing productivity,
facilitating learning, and providing users with unparal-
leled entertainment experiences.

360-degree videos with high resolution (e.g., ≥ 4K)
[4] demand substantial bandwidth while mobile devices
often struggle to handle such content, leading to
decreasing user experience. To overcome this challenge,
there are several solutions rely on tile-based viewport
adaptive streaming, unicast and multicast to optimize
bandwidth usage [5–7]. Generally, 360-degree video
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is divided into tiles, each of which is encoded with
different quality levels. Within the Field of View (FoV),
tiles inside viewport are distributed at high quality
while tiles outside the viewport are distributed at lower
quality.

Besides, Scalable High-Efficiency Video Coding
(SHVC) is an extension of the H.265/HEVC compres-
sion standard, designed to optimize video compression
and video content delivery in varying network condi-
tions [8]. SHVC enables to encode video into multiple
layers, consisting of base layer and enhancement layers,
as illustrated in Figure 1. The base layer provides the
minimum quality required to ensure content recon-
struction, while the enhancement layers add informa-
tion to improve resolution or overall quality. This fea-
ture allows SHVC to flexibly adjust video quality based
on network conditions and available resources.

Regarding to communication bandwidth issue men-
tioned above, on the other hand, the advancement of
mobile networks, particularly 5G, has unlocked sig-
nificant potential for delivering immersive video con-
tent, including 360-degree videos. 5G networks provide
extremely high bandwidth with peak data rates of up to
10 Gbps and latency as low as 1 millisecond, making
them well-suited for streaming high-resolution 360-
degree videos [9]. With its ability to support high-
quality playback and enable advanced applications,
such as live 360-degree video streaming, 5G repre-
sents a transformative solution for the future of next-
generation multimedia technologies.

Therefore, the integration of high-bandwidth 5G
networks and advanced video compression techniques,
such as Scalable High-Efficiency Video Coding (SHVC),
potentially provides a solid foundation for streaming
360-degree video content. These technologies combine
with a Field of View (FoV)-based approach [10],
facilitate the delivery of high-quality tiles within
the user’s Region of Interest (ROI) while minimizing
bandwidth consumption for areas outside the viewport.

Despite this, managing network resources fairly and
efficiently to avoid congestion remains a significant
challenge when multiple users access 360-degree
content [11] on a single 5G cell. Additionally, the
simultaneous transmission of content at different
quality levels is still limited in terms of optimization,
as devices vary in processing and display capabilities,
and users have diverse preferences regarding viewing
regions.

To address such challenges, we propose a new
approach to optimize 360-degree video streaming for
multiple users over mobile network. Our method
(called COSMN - Clustering-Based Optimization for
360-Degree Video Streaming over Mobile Networks), an
optimization framework based on clustering to reduce
resource consumption and ensure high-quality video
delivery. COSMN leverages Scalable High-Efficiency

Figure 1. Video Standardization using SHVC Encoding

Video Coding (SHVC) to flexibly encode various tiles.
The contribution of this paper can be summarized as
follows:

• By dividing 360-degree video into multiple tiles
and grouping them based on clustering algorithm,
COSMN prioritizes tiles in the user’s region of
interest (ROI) for high-quality delivery, while tiles
outside the ROI can be delivered at lower quality.

• Allocating optimal resource based on constraints
to improve significant Quality of Experience
(QoE) compared to previous methods.

The rest of the paper is structured as follows: Section
2 discusses about the state of the art. Our proposed
COSMN algorithm is presented in part 3. Next, part 5
evaluates. At the end of the paper is part 6, the
conclusion.

2. Related work
Recent research on 360-degree video streaming has
focused on addressing the challenges of bandwidth
efficiency, scalability, and quality of experience (QoE)
in mobile networks. A summary of related research on
360-degree video streaming is given in TABLE 1.

The study [12] proposes an optimization framework
that dynamically adapts between unicast and multicast
modes to improve QoE while minimizing bandwidth
usage. Similarly, [13] introduces a cross-layer design
that considers both application layer and network layer
parameters to optimize resource allocation and ensure
fairness in multi-user environments. Meanwhile, [6]
focuses on the use of multicast solutions to improve
scalability and reduce network load, allowing efficient
delivery of content in 360 degrees of bandwidth
intensive to multiple users simultaneously. These
studies provide valuable insights and methodologies for
strengthening 360-degree video streaming. However,
we still find the need for further efforts to develop a
unified framework that balances scalability in video
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Table 1. Brief overview of related studies on 360-degree video streaming

Research Year Connection Clustering
Region of

Interest (ROI) Resource Allocation Tile Layer Scalability QoE Measurement

LVSUM [12] 2023 Multi-user No No Joint optimization-based Yes No

Multicast Sca [6] 2022 Multi-user No No Joint optimization-based Yes No

Multicast All [13] 2022 Multi-user No No Joint optimization-based Yes No

JUMPS [5] 2020 Multi-user No No Joint optimization-based No No

Liveroi [14] 2021 Single-user No Yes DL-learning based No No

DFT [15] 2023 Single-user No No Heuristic-based No Yes

Tile rate allocation [16] 2020 Single-user No No Knapsack-based No No

BBAG [17] 2024 Single-user No No Heuristic-based Yes Yes

Clustering-Based Viewport Prediction [18] 2020 Multi-user Yes Yes Viewport-aware based No No

Macrotile [19] 2022 Single-user Yes No Heuristic-based No Yes

SAM [20] 2025 Multi-user Yes Yes ML-learning based No No

Proposed COSMN 2025 Multi-user Yes Yes Joint optimization-based Yes Yes

quality and network resource allocation, adapting to
user behavior based on Regions of Interest (ROI), and
finally improving QoE under diverse and dynamic
network conditions.

Besides, some studies have been conducted to
develop advanced streaming techniques aimed at
delivering high-quality 360-degree videos with low
latency and optimizing network resource usage. One
of these is VAS (Viewport Adaptive Streaming) – a
proposed method to reduce bandwidth requirements
while still providing good quality for 360-degree
videos. Due to the limited field of view, the basic
principle of VAS is to only stream the viewport -
the portion of the video visible to users (about 20%
of the entire video ) - in high quality, while the
rest of the video is delivered at a lower quality.
VAS approaches include viewport-dependent and tile-
based methods [6]. The viewport-dependent method
dynamically selects specific viewports during the
streaming of 360-degree videos to reduce bandwidth
usage. These areas are encoded with a higher quality
compared to the regions outside the viewport. The
system continuously adapts to the user’s current
viewport position and provides the best-suited version
for their view, optimizing both video quality and
bandwidth efficiency [21]. However, this method has
several limitations, particularly when users abruptly
change their viewing direction, which can lead to
bandwidth wastage. Among state-of-the-art methods,
the tile-based approach is the most frequently used
technique in VAS [17, 22–24]. This method divides 360-
degree videos into non-overlapping tiles and encodes
each tile into multiple versions with different quality
levels. The system selects the highest quality for the

tiles within the user’s viewport and lower quality
for the tiles outside the viewport based on the
user’s viewport position and network bandwidth. This
optimizes both the user’s experience and bandwidth
usage. Enhancing the efficiency of tile-based video
streaming requires perfect head motion and accurate
viewport estimation. With the advancement of Machine
Learning (ML) and Deep Learning (DL), several studies
have employed these techniques to predict viewports
[25–27]. In [25], the authors introduced an online-
updated viewport prediction model which mainly
utilizes Convolutional Neural Networks (CNN) to
extract the spatial characteristics of video frames
and Long Short-Term Memory (LSTM) to learn
the temporal characteristics of the user’s viewport
trajectories. A framework was developed that integrates
Reinforcement Learning (RL) algorithms with viewport
information to optimize 360-degree video streaming
in viewport prediction, prefetch scheduling, and rate
adaptation, as researched in [26, 28]. In [27, 29], a novel
approach combining both head and eye movements of
viewers to predict the viewport instead of only relying
on head movements as previous methods is proposed by
using LSTM to analyze the sequence of input images.
However, these approaches have not addressed the
impact and solutions of inaccurately predicting the
viewport. In work [14] , the paper presents a Region
of Interest (ROI)-based viewport prediction method
for mobile 360-degree VR streaming. This method
proposes the fusion of video content perception and
user preference feedback (i.e., in the form of user head
movement trajectory), using a 3D convolutional neural
network to recognize actions and word embeddings to
match video content with user preferences. Although,
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this method is not a lightweight solution and the fusion
of video content and user feedback may not be the
best in specific scenarios. Another study [18] applies
a viewer clustering method based on viewing history
and viewport patterns, assigning the current user to the
appropriate cluster by matching their viewport patterns
with existing clusters, and predicting the viewport
based on the characteristics of that cluster. Meanwhile,
research [19] proposes a macrotile based 360° video
streaming algorithm in which popularly viewed areas
are encoded as macrotiles. The authors leverage the
historical viewing data when users watch the same
video, then identify the viewing centers of these users
and cluster them together so that they can identify the
macrotiles. In [30], the paper introduces a novel feature
based viewport clustering algorithm that takes spatial,
temporal, motional and other behavioral features of
viewport patterns into account to characterize the user
behavior in a large dataset. However, this method
does not consider effective resource allocation, which
affects the efficiency of processing and delivering 360°
video. Similarly, the authors in [31] present a dynamic
architecture that clusters users for optimized streaming
based on their predicted FoV. This clustering leverages
a DBSCAN-inspired algorithm that incorporates user
head movement data and groups users with similar
FoV preferences to enable transmission of only the
relevant portions of the 360° video to each cluster.
Moreover, study [20] propose a new bandwidth-aware
framework that maximizes the situational awareness
of a given region, using mobile digital boxes and 360°
cameras, mounted on connected vehicles, taking into
account the constrained uplink capacity. The proposed
framework leverages the multiview spectral clustering
approach and the K-Means++ algorithms to ensure
efficient clustering of vehicles based on their GPS
coordinates.

In mobile network environments, where challenges
such as large video data volumes, unstable network con-
ditions, bandwidth resource limitations and dynamic
changes in factors like user location and device res-
olution are encountered, research [5, 15, 16, 32–36]
have been suggested to address these issues. The
authors in [35] introduced a context-aware adaptive
video prefetching mechanism designed to ensure QoE-
guaranteed 4K Video-on-Demand (VoD) delivery over
the global Internet. This method is based on a sys-
tem architecture called MVP (Mobile edge Virtual-
ization with adaptive Prefetching), which allows con-
tent providers to integrate their content intelligence
as a Virtual Network Function (VNF) within the edge
infrastructure of Mobile Network Operators (MNOs).
Similarly, research [32] considered a network architec-
ture designed for mobile VR video streaming, which
included a server holding the VR video content, an MVP
handling the VR video packets, and a head-mounted

display along with a buffer serving together as the user
equipment (UE). In the context of 5G wireless network,
a novel multi-path multi-tier 360° video streaming
solutions was developed in study [36] . By leverag-
ing high-throughput low-latency of 5G network, the
authors proposed tile-based FoV correction and chunk
retransmission schemes to tackle FoV prediction errors
and late chunk deliveries. In [15, 16, 34, 37], the authors
proposed a viewport adaptation based on tile-based
and multicast to stream 360-degree videos to multi-
ple users. These methods optimize the management of
eMBMS (evolved Multimedia Broadcast Multicast Ser-
vice) resources by dividing users into multiple multicast
groups with different conditions and determining the
quality of the tiles in each group. However, these solu-
tions do not consider individual viewing preferences
and ignore the independence of each tile – a factor
exploited in [5, 6] to improve resource allocation and
user experience. In [6], a combination Scalable Video
Coding (SVC) and multicast approach incorporating
Linear Regression algorithm for weight estimation of
tiles was proposed to deliver popular tiles to users in a
bandwidth-efficient manner. In [5], the authors recom-
mended that each tile in a group be delivered in unicast
or multicast mode to balance the diversity in user
behavior. Recent research [12] introduced a framework
for 360-degree video streaming that optimizes band-
width usage through transmission between multicast
and unicast. With this method, the authors integrated
HEVC (High-Efficiency Video Coding) to encode the
video into tiles with multiple versions and spectral
efficiency was adjusted to fit individual requirements.
However, this technique does not yet support scenar-
ios where multiple users simultaneously view various
video contents, including online 360° videos. Besides
using HEVC encoding, study [38] proposes an ROI-
based SHVC and HEVC tile method. This method uses
SHVC to encode the entire 360-degree video, with the
base layer (BL) at a low resolution and the enhancement
layer (EL) at a high resolution for the ROI tiles. The
HEVC is used so that low and high resolution sequences
are separately encoded as the BL and EL of SHVC.
In our research, we focus on a novel clustering-based
approach to optimize 360-degree video streaming by
employing a dynamic clustering strategy for the same
quality level based on their relevance to the user’s
Region of Interest (ROI) and utilizing SHVC to encode
tiles with varying quality levels.

Our main goal - COSMN - is enhancing the Quality
of Experience (QoE), optimizing bandwidth usage, and
ensuring scalability for multi-user scenarios in mobile
network environments.
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Figure 2. Resource Allocation of the Proposed System

3. SYSTEM MODEL AND PROBLEM
FORMULATION

As illustrated in Figure 2, we consider a 360-degree
video streaming system over mobile networks at the
video server, where each 360-degree video is divided
into multiple tiles and encoded into multiple quality
layers (with different bitrates) using Scalable High-
Efficiency Video Coding (SHVC). Additionally, each
layer (version) is separated into segments of fixed
duration to deliver only parts of the video within a short
period. Our proposed Clustering-Based Optimization
for 360-Degree Video Streaming over Mobile Networks
(COSMN) dynamically allocates resources by clustering
users based on their tile preferences and network
conditions and assigning resource blocks (RBs) for
efficient delivery in both unicast and multicast modes.

In detail, the tiles within each cluster are allocated
resources based on their priority: higher-quality tiles
receive more resources (i.e. RBs - Resource Blocks) than
lower-quality tiles.

It is to ensure that users have a smooth experience
and enjoy high-quality 360-degree video streaming in
both unicast and multicast modes. When each user
receives data via unicast, it increases the load on both
the server and the network, particularly under fluctu-
ating network conditions. In addition, by using Multi-
cast for grouped users, network bandwidth and server
processing capability can be utilized more effectively.
Therefore, the clustering strategy potentially helps bal-
ance this by prioritizing multicast and reducing unnec-
essary unicast transmissions. Moreover, when multiple
users receive the same data simultaneously via mul-
ticast, it significantly reduces latency and operational
costs compared to multiple unicast transmissions.

The number of RBs required to transmit user u’s
version v for each tile is formulated as below:

RBsuvt =
τ × Rvt

σu
(1)

Where:

• RBsuvt : The number of network resource blocks
required to send version v of tile t to user u.
A Resource Block (RBs) is the fundamental unit
of bandwidth allocation in OFDM-based mobile
networks. In accordance with 3GPP LTE and 5G
NR standards, each RBs consists of 12 consecutive
subcarriers in the frequency domain (3GPP TS
36.211; 38.211) and spans multiple time slots [39].
In this part, we adopt this standard definition to
ensure consistency with current mobile network
specifications. While our experiments are based
on this configuration, the proposed model can
be readily extended to scenarios with wider
bandwidths and larger numbers of subcarriers,
where the performance is expected to scale
proportionally.

• σ : spectral efficiency of a communication channel.
Spectrum efficiency refers to the amount of data
that can be transmitted over a specific bandwidth
or spectrum while minimizing transmission
errors, measured in bits/s/Hz. Also called spectral
efficiency or bandwidth efficiency, it represents
the maximum number of bits of data that a
cellular network can send to a set number of
users per second, ensuring an acceptable level of
service quality. To be more specific, the higher the
spectral efficiency, the higher the throughput for
the same bandwidth.
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Figure 3. Overview flowchart of the COSMN system architecture

• σu : spectral efficiency allocated for user u, ∀u ∈
[1, U ] , σu indicates spectral efficiency of the
channel between the base station and the terminal
device of the user.

• τ : Duration (in seconds) of each video segment to
be played back.

• Rvt : Bitrate of video version v of tile t.

In such a system, users are grouped into C
clusters according to quality preferences and channel
conditions, where Cluster 1 receives the highest quality

(and most resources), decreasing to Cluster C. COSMN
allocates RBs dynamically over time to each cluster,
depending on the tile priority (based on Region of
Interest) and user link conditions.

During a time interval [t0, t1], a user in a high-
priority cluster may receive a subset of its allocated
RBs and continue receiving the remaining allocation in
subsequent intervals until the quota is met. This enables
adaptive delivery based on instantaneous network
conditions.
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This dynamic resource allocation by clustering helps
optimize bandwidth usage, ensuring that the tiles
within ROI in 360-degree video (i.e., the tiles in
regions that users are interested in, which may include
several areas within a viewport with different viewing
frequencies) maintain high quality, while still keeping
overall bandwidth consumption efficient. Moreover, the
region of interest (ROI) is defined by analyzing user
behavior data, including head movement trajectories,
viewport orientation changes, and the time spent on
specific regions. These data are then mapped to the
video’s tile layout to identify which tiles fall within the
user’s viewing area.

Based on the above model, the resource allocation
challenge can be formulated as an optimization
problem aiming to maximize overall Quality of
Experience (QoE), subject to bandwidth and clustering
constraints.

Maximize:
U∑
u=1

T∑
t=1

C∑
c=1

wut ×Qc × yutc (2)

to maximize the total value of the weighted sum over
all users (u), tiles (t), and clusters (c).
Where:

• wut : Weight between user u and tile t.

• Qc: This is an array that contains the PSNR values
(in dB) of each video version.

• yutc: A decision variable (binary or continuous)
that indicates whether user u is assigned to cluster
c for tile t.

• u: Represents the user (u ∈ {1, 2, . . . , U }).

• t: Represents the tile (t ∈ {1, 2, . . . , T }).

• c: Represents the cluster (c ∈ {1, 2, . . . , C}).

The objective function is subjected to the following
constraints:

yu,t,0 = 1,∀u ∈ U,∀t ∈ T (3)

yu,t,c − yu+1,t,c ≤ 0 (4)

zu+1,t,c − yu,t,c = 0 (5)

1∑
c=0

yu,t,c ≤ 5,∀u ∈ U,∀t ∈ T (6)

U∑
u=1

T∑
t=1

C∑
c=1

(yu,t,c − zu,t,c) × (λc ×
BW
σu

) ≤ R (7)

Eq. 4 and Eq. 5 are applied ∀u ∈ [1, U − 1], ∀t ∈ [1, T ].
Two binary variables yu,t,c and zu,t,c are defined as

follows:

• yu,t,c = 1: user u chooses cluster c for tile t;

• yu,t,c = 0: otherwise;

• zu,t,c = 1: cluster c is removed for user u in tile t;

• zu,t,c = 0: cluster c is still available for user.

It is noted that these constraints are updated
iteratively at each segment due to the change of
users’ viewing directions while watching a 360-
degree video and time-varying networks. Specifically,
users’ throughput and viewport data are collected
through feedback channel and used to recompute the
feasible region of the optimization problem. Then, the
system resolves the objective function with the new
parameters, ensuring that COSMN adapts to time-
varying network conditions while maintaining stable
playback quality.

4. Proposed Method: COSMN Framework
The COSMAN system (in Figure 3) is designed to
optimize 360-degree video streaming by balancing
bandwidth consumption and user experience. On the
server side, the video is first divided into tiles, encoded
into multiple quality levels, and preprocessed for
adaptive transmission. Upon receiving user requests,
the system determines the total number of clients and
iteratively allocates resources. During this process, it
ensures that all users receive the base version of every
tile to guarantee minimum video accessibility. The
system then adjusts the selection of higher-quality tiles
according to users’ bandwidth conditions and predicted
viewing areas, while preventing re-selection of removed
versions. To further enhance Quality of Experience
(QoE), the system limits both the number of low-quality
clusters and the overall bandwidth usage per user.
Finally, the server delivers the base layer of all tiles to
clients and distributes enhanced versions via multicast
or unicast depending on the network scenario. This
architecture enables efficient bandwidth management
while maintaining a consistent viewing quality across
multiple users.

Overall, the whole process of the proposed COSMN
method is summarized, being divided into 3 main steps:

• Step 1: Content preparation and streaming pre-
processing

• Step 2: User clustering based on network
conditions

• Step 3: Selection between unicast and multicast
transmission

Step 1: Content preparation and streaming prepro-
cessing
The server performs content preparation, which con-
sists of video tiling, video encoding, and streaming
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preprocessing tasks. On this side, all versions of a given
360-degree video are stored together with the bitrates
for each version.

In the proposed system, the server and client
are connected within the same Local Area Network
(LAN) to ensure low transmission latency. The client
receives the video content from the server through
a transmission channel, while a feedback channel
conveys information such as the current status of the
client’s network and viewport data to the server. The
playback of a segment starts only after all its tiles have
been successfully downloaded at the client.

The facet is that, while viewing 360-degree video,
users can only see a portion of the video that is called
viewport [40], due to the limited Field-of-View (FoV).

Therefore, in the COSMN framework, we deploy a
tiling-based technique in the Video Adaptive Streaming
(VAS) system to divide a 360-degree video into multiple
tiles. VAS only delivers high-bitrate video segments to
the viewport area, which the user is mainly looking
at, while delivering the other parts of the video with
lower video quality. This technique helps reducing
unnecessary data consumption as well as ensure that
when user suddenly turns their head, they can still
see content rather than experiencing a blank. Thus,
bandwidth demand for delivering a 360-degree video
can be reduced.

Then, before entering the second step, users send
requests to the server, allowing it to determine the total
number of users.
Step 2: User clustering based on network conditions
In the second step, users are clustered according to
network conditions

As shown in Figure 4, a 360-degree video is divided
into T tiles. Each tile is assigned a specific weight
wut where wut represents the weight between the user
and the tile, which is calculated as the ratio between
the visible pixels of tile t and the total number of
pixels in the viewport. Tiles with higher wut , meaning
tiles located within the ROI (Region of Interest) or
receiving more user attention, are prioritized for early
transmission to the user compared to tiles nearby the
ROI.

Subsequently, U users sharing the same quality level
Qc (or sharing the same version) are grouped into C
clusters. Each cluster may have a different number of
users, depending on the quality level corresponding to
each user. The goal is for the tiles to be transmitted to
each cluster with different versions suitable for their
current quality levels. This delivery process follows a
timeline: when user u in cluster c, which has quality
level QcC , wants to download version v of tile t
(associated with a specific weight wut), the system
sequentially transmits versions from version 0 up to
version (v-1) during the user’s download process.

For example, as illustrated in Figure 4, assuming tiles
8, 7, and 4 have descending weights (wut8 > wut7 > wut4)
and are transmitted to two clusters, C and (C-1) during
an interval from t0 to t12. Each tile is encoded into 5
versions, ∀v ∈ [0, 4] with a base version (v0) and four
enhancement versions (v1 to v4).

Cluster c consists of 3 users having higher quality
(QcC > Qc(C−1)), while cluster (c-1) has 4 users sharing
lower-quality tile versions. Tile 8, which is located in
the center of the ROI, has the highest weight and is
transmitted first with version v4 from t0 to t5, followed
by tile 7 from t5 to t9, and tile 4 from t9 to t12. The
delivery order and version selection of tiles depend on
their wut weights and the quality levels of clusters c and
(c-1). Additionally, since not all users start viewing at
the same time, new users can join an ongoing streaming
session at any segment and they are assigned to a
suitable cluster according to their current viewport and
network status. Users within a cluster can be located
same spatial region or distributed through coverage
area, as long as they share similar viewport patterns and
network characteristics.

In general, the COSMN framework must ensure that
all users have downloaded the base version of every
tile. This guarantees that when a user suddenly turns
their head, there is still some content available to
display— even if it is of lower quality. Therefore, Eq. 3
ensures that all users have preloaded the base versions
of all tiles onto their headsets required by the layered
architecture of SHVC.

On the other hand, COSMN prioritizes clustering
the versions selected by different users for the same
tile. This concept is implemented through Eq. 4 or
Constraint 1 and Eq. 5 or Constraint 2, which are
designed to minimize discrepancies in the tile versions
received by different users. In particular, these two
constraints achieve this by enforcing continuity and
preventing the reuse of dropped clusters.

Algorithm 1 Adjust the selection of tile version for
users

1: for tile = 0 to T − 1 do
2: for cluster = 0 to C − 1 do
3: for user = 0 to U − 1 do
4: if user + 1 < U then
5: yu,t,c[user][tile][cluster] − yu,t,c[user +

1][tile][cluster] ≤ 0
6: else
7: yu,t,c[user][tile][cluster] = 0
8: end if
9: end for

10: end for
11: end for

On the one hand, constraint 1 or Eq. 4 describes the
allocation of video versions, ensuring that if current
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Figure 4. Tile Version Clustering and Delivery

user un is not assigned a specific video version v, all
subsequent users (un+1, un+2, un+3, ...) can not select
video version v either. Contrast, if user un in cluster
c receives version v of tile t, all users from user un+1
to user U also receive tile version. This creates a
consecutive group of users selecting the same video
version, which is how our approach groups them into
a cluster to enable multicast mode.

For instance, if there are 5 users (denoted as u1, u2,
u3, u4, u5) respectively and the system is trying to group
them into a cluster to send video version v3. So if u1, u2,
u3 is chosen to send version v3 but u4 is not sent, u4 and
u5 have to switch to the other video version instead of
the same version v3 . Then, u1, u2, u3 are grouped and
video data is delivered via multicast.

Algorithm 2 Ensure a removed version cannot be
selected again

1: for tile = 0 to T − 1 do
2: for cluster = 0 to C − 1 do
3: zu,t,c[0][tile][cluster] = 0
4: for user = 0 to U − 1 do
5: if user + 1 < U then
6: zu,t,c[user + 1][tile][cluster] −

yu,t,c[user][tile][cluster] = 0
7: end if
8: end for
9: end for

10: end for

On the other hand, constraint 2 ensure the video tile
version which is removed can not be able to access
again. This algorithm supports the previous one in the
case of grouping of users to deliver via multicast.

This approach ensures a more uniform viewing
experience by user receiving an equally delivered tile
version. For instance, it prevents scenarios in which
one user receives the highest-quality version of a
tile while others receive much lower-quality versions.
Additionally, by promoting the selection of identical
tile versions among users, the system significantly
reduces the number of tile versions that must be
delivered—similar to users, like what occurs in unicast
transmission mode.

This multicast mode can significantly improve
bandwidth efficiency, and in turn enhancing the overall
Quality of Experience (QoE) by ensuring consistent
video quality delivery, especially under constrained
network conditions.

Nonetheless, by incorporating Eq. 6 into the opti-
mization process, the system effectively prevents over-
prioritization of low-quality versions, which could oth-
erwise degrade the overall QoE. The equation intro-
duces a weighting mechanism that balances the delivery
of high-quality tiles with efficient bandwidth consump-
tion. In this context, the value of 5 is chosen as a design
parameter to control the steepness of the weighting
curve. A smaller value would reduce the prioritization
of higher-quality versions, whereas a larger value would
excessively penalize low-quality versions. Our experi-
mental results show that setting this parameter to 5
achieves a desirable trade-off, aligning with the system’s
goal of maintaining QoE while managing bandwidth.
Although the parameter can be tuned to meet different
system requirements, the default choice of 5 has proven
effective in practice.

Eq. 7 is formulated to constrain total bandwidth
usage during the selection of tile versions for users,

9
EAI Endorsed Transactions on 

Industrial Networks and Intelligent Systems 
| Volume 13 | Issue 1 | 2026 | 



COSMN: Clustering-Based Optimization for 360-Degree Video Streaming over Mobile Networks

Table 2. The bitrate and quality of each video will be considered in our work

Videos Version 0 Version 1 Version 2 Version 3 Version 4

"Less feature" videos

Roller Coaster
PSNR (dB) 39.45 42.86 44.99 47.28 49.42
Bitrate (kbps) 54.86 131.71 250.53 515.88 933.84

Venice
PSNR(dB) 32.73 36.07 38.69 41.76 44.76
Bitrate (kbps) 60.07 183.02 384.87 826.38 1520.55

Paris
PSNR (dB) 38.20 42.19 44.98 47.88 50.72
Bitrate (kbps) 60.78 130.38 209.69 340.25 532.44

"More feature" videos
Rhino

PSNR (dB) 36.10 39.19 41.93 45.40 48.11
Bitrate (kbps) 196.66 441.00 731.52 1234.01 1787.97

Diving
PSNR (dB) 34.49 38.22 40.97 44.01 46.57
Bitrate (kbps) 158.15 393.63 752.26 1481.51 2499.02

ensuring that the overall resource consumption does
not exceed the available network capacity at any given
moment. The equation includes several key parameters:

• BW : the bandwidth required to download each
version or it is actually the bitrate of each video
segment after encoding.

• λc: the priority weight of each tile version.

• σu : The spectral efficiency of the connection
between each user and the base station.

• R : The available resource blocks or the available
network resources.

This equation plays a crucial role in maximizing QoE
by avoiding network congestion and ensuring efficient
resource allocation. By leveraging this equation, the
system can support a large number of users while
maintaining optimal performance.
Step 3: Selection between unicast and multicast
transmission
In the final step, the system performs the transmission,
which begins only after Step 2 has completed. COSMN
delivers video versions to users for their tiles using two
delivery modes: unicast and multicast.

• In multicast mode: Users selecting the same
version of a tile are grouped into clusters
to efficiently receive data via multicast. This
selection is enforced by optimization constraints,
which take into account the network conditions
of all users within the same cluster. The
assigned version is determined by considering the
minimum available bandwidth among users in
the cluster to ensure successful delivery to every
member. In our work, we assume that there are
n given Resource Blocks (RBs) and the system
determines U users to form the optimal C clusters
for multicast transmission. The number of users
in each cluster (denoted as M), where M ≥ 2, can
vary depending on factors such as quality level
and the network conditions of individual users.

• In unicast mode: This mode is activated when
users cannot be grouped together because each
user receives a different version of a tile.

Essentially, our approach prioritizes the multicast
strategy to minimize the needed bandwidth compared
to the unicast mode in which the bandwidth is
demanded by each individual user. By delivering the
same video versions to multiple users simultaneously
in multicast mode, overall bandwidth consumption can
be significantly reduced. Moreover, the versions can be
upgraded or downgraded across segments depending
on changes in network conditions and remaining
bandwidth of users in each cluster. Therefore, this
approach is particularly effective in delivering 360-
degree video content to multiple users with similar
regions of interest (ROI) during the same time period.
Consequently, our method not only optimizes the use of
network resources, but also improves the overall quality
of experience (QoE).

5. Performance Evaluation

5.1. Experimental Settings
Our performance evaluation is conducted through a
custom-built simulator implemented in Python. We
use the dataset of [41], which consists of five 360-
degree videos: Rollercoaster, Diving, Venice, Paris
and Rhino, which stands for "more feature" and
"less feature" categories, with detailed specifications
provided in Table 2. The settings for the two categories
reflect a diverse range of real-world video conditions,
where the content may include various bitrates
and qualities—ranging from dynamic scenes with
significant motion to mostly static content—providing
a fairer basis for comparison. To be more specific,
"more feature" videos (i.e. Rhino video and Diving
video) contain dynamic elements, including numerous
moving objects and complex camera movements. In
contrast, the "less feature" videos show almost static
video, which means that almost all objects in the video
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Table 3. The bitrate and quality used in the experiments

Videos Version 0 Version 1 Version 2 Version 3 Version 4

’Less Feature’ videos
PSNR (dB) 36.79 41.09 42.89 45.64 48.30

Bitrate (kbps) 58.57 148.37 281.69 560.84 995.61

’More Feature’ videos
PSNR (dB) 35.30 38.70 41.45 44.71 47.34

Bitrate (kbps) 177.40 417.32 741.89 1357.76 2143.49

are static or just moving slowly. Overall, "more feature"
videos have higher bitrates compared with "less feature"
videos. However, in terms of quality calculated in dB,
"less feature" videos have a higher quality viewport
according to our formula. The current viewport for
each user is randomly generated as a viewport trace.
Moreover, all videos in the evaluated dataset have frame
rates ranging from 30 to 40 fps.

In addition, Table 2 shows the average bitrate (in
kbps) and the corresponding tile quality, measured
in Peak Signal-to-Noise Ratio (PSNR) for each version
of each video. PSNR is a commonly used objective
fidelity metric that measures the pixel-wise difference
between the original and compressed video, expressed
in decibels (dB). In our system, the mean of each bitrate
and viewport qualiAty for each version is computed,
illustrated in Table 3.

The videos are projected using the Equirectangular
Projection (ERP) format, chosen for its simplicity
compared to other projection methods [42], and are
converted to a resolution of 2890×1920 pixels. Each
frame is partitioned into 24 tiles with a resolution
of 480×480 pixels per tile. To support scalable video
streaming, each tile is encoded using the Scalable High
Efficiency Video Coding (SHVC) extension of the HEVC
standard [43], consisting of one base layer and four
enhancement layers.

Fixed quantization parameters of 38, 32, 28, 24,
and 20 are applied for the Base layer, Enhancement
Layer (or video version) 1, 2, 3, and 4, respectively, as
proposed in the work [17].

The spectral efficiency (σu) of the users is computed
under the setting of U of 45 and 60 corresponding to
45 and 60 users, the same as used in work [12]. The
priority weight λc for each tile version are 0.7, 0.8, 0.7,
1.0 and 1.0 for Base layer, Enhancement Layer 1 through
4, respectively.

The proposed method is tested using Gurobi 12.0.0
Solver1, which is performed on a 64-bit Windows 10
laptop with 20GB Memory and 1.19GHz Intel core i5
CPU.

For performance analysis, the three following refer-
ence methods are used for comparision, as outlined
below:

1https://www.gurobi.com/

• LVSUM [12]: This method transmits viewport
tiles in multiple enhancement layers for maxi-
mum quality, while off-viewport tiles use only the
base layer to save bandwidth. Unlike traditional
methods, LVSUM combines unicast and mul-
ticast modes, dynamically optimizing network
resources to improve video quality and spectral
efficiency for multiple users.

• Multicast Sca [6]: This method combines Scalable
Video Coding and multicast transmission to
optimize 360-degree video delivery, with base
layers multicasted to all users and enhancement
layers transmitted via unicast or multicast as
needed.

• Multicast All [13]: This is a simplified version of
our proposed method, where all users are limited
to receiving the same set of tile layers.

In order to verify whether COSMN outperforms
in terms of QoE score, we have examined various
QoE calculation methods proposed in previous studies,
including [44–46]. However, the QoE computations in
these studies are applicable only to 2D environments.
Additionally, some studies, such as [7, 17, 47–51],
specifically focus on 360-degree videos. Among them,
the QoE formulation from [47] is widely adopted and is
defined as follows:

QoE =
S∑
i=0

(α × bitratei − β × rebuf f eri − γ × smoothi)

(8)
In this formulation, higher QoE can be achieved

by delivering higher bitrate, reducing rebuffer, and
minimizing smooth variation between consecutive
segments, which helps reduce jitter and ensure stable
playback.

Where:

• α, β and γ are assigned to be 1, 1.85 and 1,
respectively, as proposed in work [47].

• S represents the total number of segments. It is
noted that segment 0 (i = 0) refers to the initial
segment index, which is considered before the
playback of the first segment (i = 1).
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• bitratei is the viewport bitrate value of segment
i. If a chunk has d ownload time greater than the
buffer size at the beginning of downloading the
chunk, a rebuffering event occurs.

• rebuf f eri value represents the time difference
between the current buffer size (Bi) and the
duration of the video segment (τseg ), as in
Equation ( 9).

rebuf f eri =


∣∣∣Bi − τseg

∣∣∣ , (Bi > τseg)

0, (Bi = τseg)
(9)

.

• smoothi is defined as the inter-segment viewport
bitrate variation, which is calculated as the
difference in viewport bitrate of consecutive
segments, shown in Eq.( 10).

smoothi = |ri+1 − ri | (10)

Besides, Viewport Quality, which is calculated in dB
according to the average viewport PSNR, is computed
by using formula from our previous work [12], as
follows:

AVSNR =
1
U

U∑
u=1

AVSNRu (11)

AVSNRu =
T∑
t=1

Λut ×Θtcu (12)

In Equation 12, Λut represents the quality of the
numbers on all display tiles, and Θtc represents the
quality of cluster c of tile t. Additionally, the largest tile
layer t is transmitted to user u, denoted cu .

5.2. Performance Evaluation
Impact of Clustering on QoE and Bandwidth. It should be
noted that in this experiment, the system will group
users into clusters with an equal number of users in
each cluster. For instance, if there are 20 users per
cluster, there will be 3 clusters; or if there are 12 users
per cluster, the system will group users and separate
them equally into all video layer clusters. One more
thing to note is that the layers of the clusters in each
of the following cases are randomly adapted based on
the users’ conditions. As a result, the video versions
used in each case will vary. This experiment aims to
demonstrate how grouping users into fixed numbers
of clusters affects the evaluation. In our system, users
will be grouped based on their network conditions and
viewport, so the number of users in each cluster may
vary.

In our proposed strategy, the system clusters users
requesting the same video version and delivers video

Figure 5. Quality of Experience (QoE) and Bandwidth Usage
vs. number of users for Different Clusters for ’Less Feature’ Video
content at 100 kRBs

Figure 6. Quality of Experience (QoE) and Bandwidth Usage
per User for Different Clusters for ’More Feature’ Video content
at 100 kRBs

content to each cluster in multicast mode. Therefore,
it is necessary for us to investigate the benefit of our
clustering mechanism in terms of QoE and Bandwidth
usage over different scenarios. Figure 5 and 6 show
how grouping users into groups will affect QoE and
Bandwidth usage. In our setup, each raw video is
encoded into five different versions, allowing for a
maximum of five clusters.

In the experiment, we set up 60 users who are
grouped into clusters based on available conditions.
The number of users per cluster varies depending on
the network conditions and is expected to yield higher
performance results, as shown in Table 4 or 5. As
Figures 5 and 6 show, the more groups the system
can form, the better the QoE results. However, this
improvement comes with a trade-off in bandwidth
usage. Figures 5 and 6 demonstrate that when only a
single cluster is formed, all users receive only the base

12
EAI Endorsed Transactions on 

Industrial Networks and Intelligent Systems 
| Volume 13 | Issue 1 | 2026 | 



Nguyen Viet Hung et al.

Table 4. QoE evaluation for the "less feature" video content,
under constraints of limited Resource Blocks (kRBs)

# Users kRBs COSMN LVSUM Multicast All Multicast Sca
45 20 1,924 1,917 - -

30 1,936 1,927 - -
45 1,947 1,943 - -
55 1,954 1,949 - -
65 1,960 1,957 - -
75 1,965 1,962 1,873 1,880
80 1,967 1,964 1,880 1,891

60 20 2,584 2,577 - -
30 2,596 2,586 - -
45 2,607 2,602 - -
55 2,613 2,609 - -
65 2,620 2,616 - -
75 2,624 2,621 2,532 2,540
80 2,626 2,623 2,540 2,550

version of the video. This leads to lower bandwidth
consumption, therefore resulting in a lower QoE.

Comparative QoE Analysis. Tables 4 and 5 present the
QoE results measured using four different methods:
COSMN, LVSUM, Multicast All, and Multicast Sca, for
scenarios with 45 and 60 users under various fixed
network conditions. A clear trend that can be observed:
Multicast All and Multicast Sca perform poorly
under low network constraints in both cases—whether
the videos are of ’Less Feature’ or ’More Feature’
types. Moreover, under limited network conditions,
our proposed method generally achieves better QoE
compared to the other approaches. As mentioned in
the previous section, by using our clustering proposed
method, the number of users in each cluster may vary
leading to the much better result as shown in Tables 4
and 5. Even when the available network resources are
limited, the system can deliver superior QoE compared
to the other methods.

For example, in the case of 60 users watching ’Less
Feature’ videos under 20 and 30 kRBs, the differences
between our work and LVSUM method is 0.007 and
0.010 unit, respectively. However, this does not imply
that our method works under any level of network
condition. The approach remains effective as long as
sufficient resources are available to deliver at least the
lower-quality version of the video.

In contrast, for ’More Feature’ videos, the system
requires higher available kRBs to maintain optimal
performance, especially when grouping users to
maximize efficiency.

As the number of users and clusters increases, our
proposed solution demonstrates even greater advan-
tages. In real-world scenarios involving thousands
of users, the incremental improvements in QoE are
expected to scale significantly. As shown in Tables 4 and
5, QoE values consistently improve with the growth in
user numbers. This indicates that our method becomes
increasingly effective as the user base expands, ensur-
ing stable performance even under high network load.

Table 5. QoE evaluation for the "more feature" video content,
under constraints of limited Resource Blocks (kRBs)

# Users kRBs COSMN LVSUM Multicast All Multicast Sca
45 50 1,870 1,858 - -

80 1,889 1,879 - -
120 1,902 1,896 - -
180 1,919 1,915 - -
250 1,929 1,926 1,828 1,838
280 1,931 1,929 1,835 1,849
300 1,931 1,930 1,840 1,855

60 50 2,515 2,503 - -
80 2,533 2,524 - -

120 2,547 2,541 - -
180 2,564 2,560 - -
250 2,573 2,571 2,473 2,483
280 2,575 2,574 2,480 2,494
300 2,576 2,575 2,484 2,500

(a) 45 users of ’Less Feature’ videos

(b) 60 users of ’Less Feature’ videos

Figure 7. The performance between the proposed methods and
the others (RBs = 80 kRBs) in terms of Viewport Quality (dB)

In other words, as user demand grows, our approach
continues to deliver enhanced QoE, helping the system
remain efficient and reliable under greater pressure.

Viewport Quality (PSNR) Evaluation. As shown in
Figures 7 and 8, LVSUM and COSMN outperform
the other methods. Across all evaluated scenarios, the
performance ranking remains consistent, from lowest
to highest: Multicast All, Multicast Sca, LVSUM, and
COSMN. In addition, the difference in performance
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(a) 45 users of ’More Feature’ videos

(b) 60 users of ’More Feature’ videos

Figure 8. The performance between the proposed methods and
the others (RBs = 250 kRBs) in terms of Viewport Quality (dB)

between LVSUM and COSMN is approximately 0.1 dB
in both cases. Especially, the overall results for the ’Less
Feature’ video content are higher compared to those for
the ’More Feature’ content. This can be explained by
the fact that, at the input stage, the viewport quality
of ’Less Feature’ videos is already superior than that of
the ’More Feature’ videos. Therefore, the quality of the
input data plays a crucial role in content delivery.

6. Conclusions
In this paper, we have presented a new approach –
COSMN – that addresses the challenges associated
with streaming 360-degree video over mobile networks.
Through the use of Scalable High-Efficiency Video
Coding (SHVC), COSMN leverages a layered encoding
structure with base layer (BL) and enhancement layer
(EL) that allows for adaptive video quality based on
available network resources. This method facilitates
flexible scalability and ensures efficient resource allo-
cation under diverse and changing network conditions.
Therefore, as the experimental results show, COSMN
significantly improves Quality of Experience (QoE) by
efficiently allocating resources based on users’ regions
of interest (ROI), through clustering users with the

same quality level of tiles within each cluster. More-
over, the model ensures that bandwidth constraints are
respected while maintaining high video quality for the
most relevant content.

In terms of future work, a potential direction
for future research is to incorporate user feedback
parameters, such as user interaction frequency and
viewport switching rate, as these factors can help the
system more accurately identify regions of interest
(ROI) and allocate resources more efficiently. Due to
the challenges of collecting and processing real-time
feedback data from multiple users simultaneously,
these parameters have not yet been considered in
this work. Furthermore, some other factors could be
considered for next research, such as varying priority
levels across video content or the integration of
viewport estimation to optimize the clustering strategy.
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