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Abstract

Stream-based intrusion detection is a growing problem in computer network security environments. Many
previous researches have applied machine learning as a method to detect attacks in network intrusion
detection systems. However, these methods still have limitations of low accuracy and high false alarm rate. To
improve the quality of classification, this paper proposes two solutions in the data preprocessing stage, that
is, the solution of feature selection and resampling of the training dataset before they are used for training the
classifiers. This is based on the fact that there is a lot of class imbalanced data in the training dataset used for
network intrusion detection systems, as well as that there are many features in the dataset that are irrelevant
to the classification goal, this reduces the quality of classification and increases the computation time. The
data after preprocessing by the proposed algorithms is used to train the classifiers using different machine
learning algorithms including: Decision Trees, Naive Bayes, Logistic Regression, Support Vector Machines, k
Nearest Neighbor and Artificial Neural Network. The training and testing results on the UNSW-NB15 dataset
show that: as with the Reconnaissance attack type, the proposed feature selection solution for F-Measure
achieves 96.31%, an increase of 19.64%; the proposed oversampling solution for F-Measure achieves 96.99%,
an increase of 3.17% and the proposed undersampling solution for F-Measure achieves 94.65%, an increase of
11.42%.
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1. Introduction

Internet is the trend of the times, the internet plays an 
increasingly important role in all areas of social life. On 
that internet platform, e-commerce is growing strongly, 
it is an indispensable part of business activities. Besides 
the benefits of the internet, businesses also face negative 
aspects of the internet, one of which is the problem of 
cyber attacks. Cyber attack is all forms of unauthorized 
intrusion into a computer system, website, database, 
network infrastructure, equipment of individuals and 
businesses through the internet for illegal purposes. 
The target of a cyber attack is very diverse, it can be a 
data breach (stealing, altering, encrypting, destroying), 
it can also target the integrity of the system (disruption, 
service obstruction), or take advantage of the victim’s 
resources (displaying ads, malicious code, mining 
virtual currency, ...). To protect the network, one of the

systems used by network administrators today is the 
network intrusion detection system (NIDS).

NIDS has the function of monitoring network traffic 
to detect abnormalities and illegal activities intruding 
the network of agencies and enterprises. NIDS can 
detect anomalies based on specific signatures of known 
threats or by comparing current network traffic with 
system benchmarks. There are three methods to detect 
attacks: (1) Signature-based detection; (2) Anomaly-
based detection and (3) Hybrid-based detection.

Signature-based detection is designed to detect 
known attacks using the signatures of those attacks. 
This is an effective m ethod t o d etect k nown attacks 
stored in the NIDS database. Therefore, it is much 
more accurate in identifying a penetration attempt 
of a known attack. However, with new or variant 
attacks, NIDS cannot detect because the signature of
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the attack is not stored. To solve the problem, anomaly-
based detection compares current user activities with
predefined profiles for intrusion detection. Anomaly-
based detection is effective against unknown attacks or
zero-day attacks without any updates to the system.
However, these methods, mainly machine learning
(ML) still face challenges in improving accuracy,
reducing false alarm rate (FAR) and detecting new
attacks [1].

In ML, data preprocessing is an important stage. The
main objective comes from data preprocessing which
has a major impact on the accuracy and capability of
NIDS. With the increasing traffic of network data, ML
techniques need a lot of time to train and classify the
data. Using big data techniques for NIDS can solve
many challenges such as speed and computational
time as well as develop accurate NIDS [2]. This paper
deals with improving the quality of classification (QoC)
of NIDS through two data preprocessing techniques:
feature selection and dataset resampling.

2. Related works
2.1. Feature selection
Feature selection is a method to remove irrelevant or
noisy features and select the most suitable features
to better classify instances belonging to various attack
types. According to the researchers, this needs to be
done because:

(1) A single selection strategy is not sufficient
to obtain consistency across multiple datasets, since
network traffic behavior is constantly changing [3].

(2) A suitable subset for each attack type must be
determined, since a common subset is not sufficient to
represent all of the various attacks [3].

(3) Feature selection can greatly improve not only
the detection accuracy but also the computational
efficiency, where:

- Irrelevant or noisy features can lead to poor
detection rates, so reducing them can increase detection
accuracy [4–6].

- Having more features results in higher computa-
tional cost and complexity. Reducing extraneous fea-
tures increases computational efficiency [3, 7].

(4) Finally, some known types of attacks have become
challenging to identify because they are too isolated
and can be mislabeled as normal data. Researches and
experiments have shown that: feature selection can
solve this problem by defining a subset of features that
adapt to the behavior of each attack type [5–7].

2.2. Resampling dataset
For many years, the problem of imbalanced data
has been one of the important issues and received
the attention of many researchers [8]. A dataset is

said to be imbalanced when the number of instances
belonging to one class label is much smaller than
that of other class labels. To solve the problem,
resampling techniques have been proposed, there are
two main approaches used: removing some instances
from the majority class, called undersampling (US),
and cloning some of the instances from the minority
class, is called oversampling (OS). Both oversampling
and undersampling aim to change the ratio between
majority and minority classes [9]. It is also possible to
combine both techniques at the same time to create a
more balanced dataset. In this way, resampling allows
various classes to have relatively similar influence
on the results of the classification model. Researches
show that resampling the training dataset improves the
accuracy of NIDS [10, 11].

One of the commonly used oversampling techniques
is SMOTE (Synthetic Minority Over-Sampling Tech-
nique) [12]. The implementation of SMOTE is described
as follows: Take a instance a⃗ from the minority class of
the dataset and randomly select one instance b⃗ from
among the k nearest neighbors of the same class a⃗ (in
the feature space). A new synthetic data instance x⃗ =
a⃗ + w(⃗b − a⃗) is created and added to the dataset, where
w is the random weight in the interval [0, 1].

Based on SMOTE, several various techniques have
been built and developed. The first is the Cluster
SMOTE technique [12]. In this technique, the training
data is first classified into k clusters using the k-
Means algorithm, for each cluster the imbalance ratio
is calculated:

IR = Number of minority class instances in the cluster
Number of majority class instances in the cluster

Then, use SMOTE to clone the number of minority
class instances in clusters with imbalance ratio IR > 1.

Next is the Adaptive Synthetic Sampling technique
(ADASYN), which is built by shifting the importance
of classification boundaries to difficult minority classes.
ADASYN uses a weighted distribution for minority
class instances that vary according to training difficulty,
where more synthetic data is generated for more
difficult minority class instances to learn [13].

Another SMOTE-based innovation is Borderline-
SMOTE, Borderline-SMOTE there are two variants
Borderline-SMOTE1 and Borderline-SMOTE2. This
method oversample of minority instances only near
the boundary and nearest neighbors of the same
type. The difference between the two versions is that
Borderline-SMOTE2 uses both positive and negative
nearest neighbor. Compared to conventional SMOTE,
Borderline-SMOTE does not clone synthetic instances
for noise, but concentrates its efforts near the boundary,
thereby helping the decision function to create better
boundaries between classes. In terms of performance,
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Borderline-SMOTE has also been reported to perform
better than SMOTE [14].

The first known undersampling technique is Tomek
Link which is defined as follows: provide a pair
of objects (xi , xj ), here where xi ∈ Smin, xj ∈ Smax and
d(xi , xj ) is the distance between xi and xj , then the
pair (xi , xj ) is called a Tomek Link if there is no xk
satisfy d(xi , xk) < d(xi , xj ) or d(xj , xk) < d(xi , xj ). In this
way, if two instances form a Tomek Link, either of these
instances is noisy or both are near the contour. So one
can use Tomek Link to clean up the overlap between.
By removing overlapping instances, one can establish
well-defined clusters in the training dataset and lead to
improved classification quality.

Another approach is the Neighborhood Cleaning
Rule (NCR) can be described as follows: for each
instance Ei in the training dataset of the binary
classification problem, its three nearest neighbors are
found. If Ei belongs to the majority class and the
class given by its three nearest neighbors contradicts
the original class Ei, then Ei is deleted. If Ei belongs
to the minority class and the three nearest neighbors
misclassify Ei, then the nearest neighbors belonging to
the majority class are discarded [9].

Similarly Tomek Link is an Edited Nearest Neighbors
algorithm (ENN). ENN tend to remove more instances
than Tomek Links, so it should provide more in-
depth data cleaning. Different from NCR which is a
method of undersampling, ENN is used to remove
instances from both classes. Therefore, any instance
that is misclassified by its three nearest neighbors will
be removed from the training dataset [15].

Several researches have been carried out on the basis
of comparing the oversampling and undersampling
methods to deal with the class imbalance problem.
Douzas and Bacao [16] developed a method to estimate
the distribution of real data and clone data for minority
classes of various imbalanced datasets. Douzas et al [17]
have presented an oversampling method based on k-
Means and SMOTE clustering to avoid generating noise
and overcome imbalances between classes.

Amin et al [18] have investigated several well-known
oversampling techniques: Mega-trend Diffusion Func-
tion (MTDF), SMOTE, ADASYN, Top-N and k-nearest
neighbor (TRkNN) inversion, Weighted Minority Over-
sampling Technique (MWMOTE) and Immune Cen-
troids Oversampling Technique (ICOTE). The research
showed that the overall prediction performance of
MTDF and genetic algorithm-based rule generation per-
formed best compared to the rest of the oversampling
augmentation methods.

2.3. Dataset and evaluation metrics
The dataset is a main component in training classi-
fiers to detect attacks. Choosing the right dataset is

important to ensure proper model building. Statisti-
cally the most used datasets in the researches are:
KDDCup99, NSL-KDD, ISCX2012 and UNSW-NB15.
In which, the UNSW-NB15 dataset was chosen to be
used in the experiments of this paper, because it has
some advantages when compared with other datasets:
(1) It contains composite attack activities nowadays; (2)
The probability distributions of the training and testing
datasets are similar; (3) It consists of a set of features
from the packet’s payload and header to reflect the
effective network packet, and (4) The dataset contains
many complex data samples [19].

The selection of evaluation metric plays an important
role when building and evaluating NIDS models. In this
paper, the evaluation metric F1 Score (F-Measure with
β = 1) was chosen to evaluate the classification quality
of NIDS, for the following reasons: (1) Dataset used
for training the NIDS is inherently imbalanced; (2) In
the NIDS, positive class is the class of instances labeled
attack plays an important role; (3) The false positive or
negative alerts are equally important and (4) A normal
access is interpreted as an attack or conversely an attack
is interpreted as a normal access, both are important.

2.4. Shortcomings and Challenges
It is becoming increasingly important to protect
computer systems using NIDS for intrusion detection.
The above section has detailed related works on the
methodology and technology of data preprocessing.
Here are the shortcomings and challenges that need to
be research:

(1) The use of old datasets such as: KDDCup99
and NSL-KDD can lead to static progress in NIDS,
while intrusion attacks are constantly evolving with
new technologies and user behaviors. It is therefore
important to use a new dataset that is representative of
the current environment, both software and hardware.

(2) Researches also show the effectiveness of reducing
the features of the training datasets, which not only
increases the accuracy of the ML algorithm, but also
reduces the training time and cost. A subset of suitable
features for each attack type should also be determined.

(3) And finally, like most imbalanced data sources
in other fields, the improvement of algorithms for
data resampling to improve the classification quality of
NIDS should also be researched.

3. PROPOSED SOLUTIONS
3.1. Solution of feature selection (FS)
The proposed feature selection solution here uses ML as
an fitness function to determine the best-suited subset
of features for each attack type on all feature subsets
of the training dataset. Because the training datasets
used in NIDS are often very large and have many
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irrelevant or noisy features, which causes difficulties
such as: taking a long time to train and test, reduce
the classification accuracy and increase the FAR. So the
goal here is to find the features that are important to
the classification results, eliminate irrelevant or noisy
features, thereby reducing the time to train and test the
classifier; At the same time, it helps to improve accuracy
and reduce FAR.

Backward Feature Elimination Algorithm. The Backward
Feature Elimination (BFE) algorithm [20] is proposed
on the basis of the assumption that the features of
the dataset are independent of each other, presented
in Algorithm 1. In this algorithm, at each iteration, a
classification model is selected to train a dataset of n
input features. Then we eliminate one input feature
at a time and train the same model on n-1 remaining
input features n times. The input feature whose removal
produces the smallest increase in error rate is discarded,
leaving us with n-1 remaining input features. The
classification is then repeated on n-2 features, . . . In
the kth iteration, the model is trained on n-k features
and has an error rate e(k). Choosing the maximum
acceptable error rate, we determine the minimum
number of features needed to achieve classification
accuracy with the chosen ML algorithm.

Proposition 1: Algorithm 1 has a time complexity of
O(N !), N is the number of features of the dataset.

Proof:
Let T (N ) be the time complexity of the algorithm.

According to the lines from (12) to (19), we have due
to the recursion of the algorithm:

T (N ) = N × T (N − 1)

From here infer

T (N ) = N × (N − 1) × T (N − 2)

Or

T (N ) = N × (N − 1) × . . . × T (1) = N ! × T (1)

So

T (N ) = O(N !)

Forward Feature Construction Algorithm. The Forward
Feature Construction (FFC) algorithm [20] is also
proposed on the basis of the assumption that the
features of the dataset are independent of each other,
presented in Algorithm 2. This is the reverse process
of the BFE algorithm. We start with a feature, then
increment one feature at a time, the feature that
produces the highest quality will be selected to be
added to the resulting feature set. Both algorithms,
BFE and FFC, are time consuming and computationally

Algorithm 1 Feature selection using BFE
Input

D - Dataset
C - Classifier using ML
δ - Minimum error rate

Output
A subset of selected features

1: begin
2: Initialize:
3: S ← Set of all features of the dataset D
4: R← ∅ ▷ Set of features to remove
5: FindNoise(S,D, C)
6: return S \ R
7: end
8: procedure FindNoise(S,D, C) ▷ Find noisy features
9: N ← Number of features ∈ S

10: Train C with features ∈ S on the dataset D
11: e← Error rate of classifier C when testing
12: for i ← 1 to N do
13: S1 = S \ {si}
14: Train C with features ∈ S1 on the dataset D
15: if Error rate of classifier C < e + δ then
16: R← R ∪ {si}
17: FindNoise(S1, D, C)
18: end if
19: end for
20: end procedure ▷ End of FindNoise

expensive. They actually only apply to datasets with a
low number of features [20].

Proposition 2: Algorithm 2 has a time complexity of
O(N !), N is the number of features of the dataset.

Proof:
Let T (N ) be the time complexity of the algorithm.

According to lines from (11) to (22), we have due to the
recursion of the algorithm:

T (N ) = N × T (N − 1)

From here infer

T (N ) = N × (N − 1) × T (N − 2)

Or

T (N ) = N × (N − 1) × . . . × T (1) = N ! × T (1)

So

T (N ) = O(N !)

Proposed feature selection algorithm (pFSA). As shown
above, for a dataset with N features, if BFE or FFC
is used to select the optimal set of features, the time
complexity of the algorithm will be O(N!) (according to
Proposition 1 and Proposition 2). This is not suitable
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Algorithm 2 Feature selection using FFC
Input

D - Dataset
C - Classifier using ML

Output
R - Selected subset of features

1: begin
2: Initialize:
3: S ← Set of all features of the dataset D
4: R← ∅ ▷ Selected best set of features
5: bq← 0 ▷ the best QoC
6: FindBest(S,D, C)
7: return R
8: end
9: procedure FindBest(S,D, C) ▷ Find best features

10: best ← ∅
11: for each si ∈ {S \ R} do
12: R1 ← R ∪ {si}
13: Train C with features ∈ R1 on the dataset D
14: if the QoC of C > bq then
15: bq← the QoC of C
16: best ← si
17: end if
18: end for
19: if best , ∅ then
20: R← R ∪ best
21: FindBest(S,D, C)
22: end if
23: end procedure ▷ End of FindBest

for datasets with a large number of features. Moreover,
BFE and FFC are effective only when the features of
the dataset are independent of other features. However,
with some features that are not independent and they
only really work when combined, in this respect BFE
and FFC are limited. To address the stated limitations
of the BFE and FFC, we propose 3 contents:

(1) Combine BFE and FFC with feature ranking to
reduce calculation time and cost, which is especially
suitable for large datasets;

(2) Consider the correlation between features when
adding or removing a feature. This is intended to
address the limitations of BFE and FFC with datasets
whose features are not independent of other features;

(3) The order of adding or removing a feature is based
on the feature’s rank, which is based on the relevance of
the feature to the class label. Various reasearches [21]
have suggested various metrics of the importance and
relevance of features. In this paper, we propose to use
the metrics: Information Gain (IG), Gain Ratio (GR) and
Correlation Attribute (CA) to rank features.

The this paper proposes two algorithms: The first
algorithm is denoted by pFFC, which is an algorithm
that uses the improved wrapping model from the FFC

algorithm combined with feature ranking, and at the
same time considers the correlation between features.
The algorithm starts from an empty set of features, then
the features will, in turn, be selected for addition if
the addition of that feature improves the classification
quality of the NIDS. In addition, features that are
correlated with the selected feature for inclusion
in the selected set of features are also considered
to be removed if such removal also improves the
classification quality. Features with higher importance
will be selected to be added first. The importance of
features used here includes: IG, GR and CA.

The second algorithm, denoted pBFE, is an algorithm
that uses the improved wrapping model from the
BFE algorithm combined with feature ranking, while
considering the correlation between features. The
algorithm starts from the full set of 42 features, then
the features will be selected for removal in turn if
the removal of that feature improves the classification
quality. In addition, before removing the selected
feature, the features that correlate with the selected
feature in the previously selected set of features are
also calculated and evaluated to choose the best feature
to remove. Features with lower importance will be
selected for removal first. The feature importance used
here also includes: IG, GR and CA.

The pseudocode of the first algorithm pFFC is shown
in Algorithm 3. Accordingly, first the importance of 42
features in the UNSW-NB15 dataset is calculated and
sorted in descending order. Important of the Features
(IoF) used include: IG, GR and CA. Initially, Sopt has
a feature, the F-Measure is achieved when training
and testing on the UNSW-NB15 dataset with a feature,
which is the starting value for the journey to find better
F-Measure in the next 41 iterations. At each iteration in
the next step, the features si ∈ S is in turn added to Sopt
to form S1, the more important features (with a larger
metric of information) are added first. Next, the data
with features in S1 is used to train and test the classifiers
using various ML techniques. The results of evaluation
of the classifiers are performed on the independent
testing dataset in the UNSW-NB15. The classification
quality of the classifiers is shown by the F-Measure. If
the F-Measure of the classifier is trained with features
in S1 better than Sopt , which is the set of features for
the previously stored best F-Measure, then the si feature
will be recorded. Then, the features correlating with
si ∈ Sopt are considered for removal if such removal
improves the F-Measure. The final obtained feature set
will be assigned to Sopt . Otherwise, the si feature will be
dropped, because adding this feature does not improve
the classification quality. This process will be repeated
until all the features have been added in turn to find the
set of features Sopt for the best F-Measure.
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Proposition 3: Algorithm 3 has a time complexity of
O(N × (N − 1)/2), N is the number of features of the
dataset.

Proof:
Let T (N ) be the time complexity of the algorithm.

According to the lines from (6) to (21), we have:

T (N ) = T (1) + 2 × T (1) + . . . + (N − 1) × T (1)

From here infer

T (N ) = N × (N − 1)/2 × T (1)

So

T (N ) = O(N × (N − 1)/2)

The pseudocode of the second algorithm is shown
in Algorithm 4. Accordingly, first the importance of
42 features in the UNSW-NB15 dataset is calculated
and sorted in descending order. The importance of the
features used includes: IG, GR and CA. The initial Sopt
includes all 42 features of the dataset, the F-Measure
is achieved when training and testing on the UNSW-
NB15 dataset with 42 features, which is the starting
value for the journey to find better F-Measure in the
next 41 iterations. At each iteration in the next step,
the features si , in turn, are considered to be removed
from Sopt to form S1, and the less important features
(with a smaller information metric) will be considered
to be eliminated first. Next, the data with features
in S1 is used to train and test the classifiers using
various ML techniques. The results of evaluation of
the classifiers are also performed on the independent
testing dataset in the UNSW-NB15. The classification
quality of the classifiers is shown by the F-Measure. If
the F-Measure of the classifier is trained with features
in S1 is better than Sopt , which is the set of features for
the previously stored best F-Measure, then the si feature
will be considered for elimination. Then, features that
are correlated with si and have less importance than s
in Sopt will be considered for removal instead of si if
the removal improves the classification quality (shown
by F-Measure). The final obtained set of features will
be assigned to Sopt . In contrast, the removed feature
is recovered, because removing this feature does not
improve the classification quality. This process will be
repeated until all the features have been eliminated
in turn to find the set of features Sopt for the best F-
Measure.

Proposition 4: Algorithm 4 has a time complexity of
O(N × (N − 1)/2), N is the number of features of the
dataset.

Proof:
Let T (N ) be the time complexity of the algorithm.

According to the lines from (6) to (21), we have:

T (N ) = ((N − 1) + (N − 2) + . . . + 1) × T (1)

From here infer

T (N ) = N × (N − 1)/2 × T (1)

So

T (N ) = O(N × (N − 1)/2)

Algorithm 3 pFFC feature selection algorithm
Input

D - Dataset
N - Number of features of the dataset

Output
Sopt - Subset of optimal features

1: begin
2: Initialize:
3: Calculate importance of features on dataset D
4: S ← All features sorted in descending of IoF
5: Sopt ← First feature of S
6: for i ← 2 to N do
7: S1 ← Sopt ∪ {si}
8: if the QoC of S1 better than Sopt then
9: Best← the QoC of S1

10: for each sca in Sopt do
11: if sca correlates with si then
12: S2 ← Sopt ∪ {si} \ {sca}
13: if the QoC of S2 > Best then
14: S1 ← S2
15: Best ← the QoC of S2
16: end if
17: end if
18: end for
19: Sopt ← S1
20: end if
21: end for
22: return Sopt
23: end

3.2. Solution of dataset resampling
The second proposed solution to improve the classifi-
cation quality of the NIDS: the training dataset resam-
pling solution. As shown, the training dataset UNSW-
NB15 is quite imbalanced, attack types are account-
ing for a very small proportion in the dataset such
as: Worms accounting for 0.05%, Shellcode account-
ing for 0.46%, Backdoor accounting for 0.71%, Anal-
ysis accounting for 0.82%, . . . Such imbalance of data
between classes leads to a situation where minority
classes have a low influence on the results of the
classification model and thereby reduce the quality of
classification.

However, because the training datasets used in NIDS
are often very large and have many irrelevant or
noisy features, this adversely affects data resampling
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Algorithm 4 pBFE feature selection algorithm
Input

D - Dataset
N - Number of features of the dataset

Output
Sopt - Subset of optimal features

1: begin
2: Initialize:
3: Calculate IoF of all features on the dataset D
4: S ← All features sorted in descending of IoF
5: Sopt ← S
6: for i ← 1 to N do
7: S1 ← Sopt \ {si}
8: if the QoC of S1 better than Sopt then
9: Best← the QoC of S1

10: for each sca in Sopt do
11: if sca correlates and has IoF < si then
12: S2 ← Sopt \ {sca}
13: if the QoC of S2 > Best then
14: S1 ← S2
15: Best ← the QoC of S2
16: end if
17: end if
18: end for
19: Sopt ← S1
20: end if
21: end for
22: return Sopt
23: end

techniques (which is based on the Euclidean distance
between the features) by: cloning the bad instances of
the minority class and eliminating the good instances
of the majority class. To improve, this paper proposes
not to use irrelevant or noisy features when calculating
to resample the dataset.

Solution of proposed oversampling. The above oversam-
pling techniques all rely on k nearest neighbors to create
the synthetic data instances with the participation of all
features. The problem is, there are irrelevant or noisy
features when calculating the distance to determine
the k nearest neighbors, that can affect the quality
of the oversampling. To eliminate these irrelevant or
noisy features, this paper proposes to use 2 solutions
presented in Algorithm 5 and Algorithm 6.

The first algorithm (Algorithm 5) uses the solution
proposed by Algorithm 3 (the pFFC algorithm) to
determine the best-fit features participating in the
distance calculation when determining the k nearest
neighbors used in oversampling. Algorithm 5 is
implemented specifically as follows: First, the Smax
consisting of 42 features of the dataset UNSW-
NB15 is calculated and sorted in descending order
of importance, the importance of features has can

Algorithm 5 Oversampling combined with pFFC
Input

D - Training Dataset
Output

Sopt - The optimal subset of features using OS
1: begin
2: Initialize:
3: Calculate IoF of all features on the dataset D
4: Smax ← All features sorted in descending of IoF
5: Smin ← The features obtained from pFSA
6: Sopt ← Smin
7: Sadd = Smax \ Smin
8: OS on training dataset D using features ∈ Sopt
9: for i ← 1 to len(Sadd) do

10: s← Sadd [i -1]
11: S1 = Sopt ∪ {s}
12: OS on the dataset D using the features ∈ S1
13: if QoC of S1 is better than Sopt after OS then
14: Best ← the QoC of S1 after OS
15: for each sca in Sopt do
16: if sca correlates with s then
17: S2 = Sopt ∪ {s} \ {sca}
18: if QoC of S2 after OS > Best then
19: S1 ← S2
20: Best ← the QoC of S2 after OS
21: end if
22: end if
23: end for
24: Sopt ← S1
25: end if
26: end for
27: return Sopt
28: end

be IG, GR or CA. Smin is the initial minimum set
of features, these are the features obtained for each
type of attack through the feature selection algorithms
presented in Section 3.1 (see the feature selection
results in Table 2. S1 is the set of features to be
evaluated, S1 has an initial value of Smin. At each loop,
the remaining features (Smax \ Smin) are added to S1
in turn, the more important features (with a larger
information metric) are added first. Then, oversampling
techniques such as: SMOTE, ADASYN, Cluster SMOTE
and Borderline SMOTE are respectively used to add the
synthetic data instances to the original training dataset
to generate the new training dataset, the difference is
that only the features in S1 are used when calculating
the distance to determine the k nearest neighbors in
the oversampling algorithms. New training datasets
with additional synthetic instances used to train
classifiers using ML techniques. Evaluation results of
classifiers are performed on the testing dataset, which
is an independent dataset in the UNSW-NB15. The
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classification quality of the classifiers is shown by the
F-Measure. If the F-Measure of the classifier is trained
with features in S1 better than Sopt , which is the set of
features for the previously stored best F-Measure, then
the added instance (denoted s) will be recorded. Next,
we will find the features sca that correlates with s in Sopt ,
and perform the removal of sca and add s to Sopt if such
removal improves the F-Measure. Otherwise, the added
feature will be dropped, because adding this feature
does not improve the classification quality. This process
will be repeated until all the remaining features other
than Smin are added in turn to find the set of features
Sopt for the best F-Measure.

Proposition 5: Algorithm 5 has a time complexity of
O(N × (N − 1)/2), N is the number of features of the
dataset.

Proof:
Let T (N ) be the time complexity of the algorithm.

According to the lines from (9) to (26), we have:

T (N ) = T (1) + 2 × T (1) + . . . + (N − 1) × T (1)

From here infer

T (N ) = N × (N − 1)/2 × T (1)

So

T (N ) = O(N × (N − 1)/2)

The second algorithm (Algorithm 6) uses the solution
proposed by Algorithm 4 (the pBFE algorithm) to
determine the best-fit features participating in the
distance calculation when determining the k nearest
neighbors used in oversampling algorithms. Algorithm
6 is implemented specifically as follows: First, the
set Smax consisting of 42 features of the UNSW-NB15
dataset is also calculated and sorted in descending order
of importance. The importance of features has can be
IG, GR or CA. Smin is the initial set of minimal features,
which are also features obtained for each attack
type through feature selection algorithms presented in
Section 3.1 (see the results of feature selection in Table
2). S1 is the set of features to be evaluated, S1 has an
initial value of Smax including all 42 features. At each
iteration, the features to be considered (Smax \ Smin)
are in turn considered to be removed from S1, and
the less important features (with a smaller information
metric) will be considered before. Next, oversampling
techniques such as: SMOTE, ADASYN, Cluster SMOTE
and Borderline SMOTE are also respectively used to add
synthetic data instances to the original training dataset
to generate the new training dataset, the difference is
that only the features in S1 are used when calculating
the distance to determine the k nearest neighbors in
the oversampling algorithms. New training datasets
with additional synthetic instances used to train

classifiers using ML techniques. Evaluation results of
classifiers are performed on the testing dataset, which
is an independent dataset in the UNSW-NB15. The
classification quality of the classifiers is shown by the
F-Measure. If the F-Measure of the best classifier of
the above trained classifiers is better than the best
F-Measure generated from Sopt , which is the set of
features for the previously stored best F-Measure, then
the feature (denoted by s) will be considered for
removal. Next, we will find the features sca that is
correlated with s and has less importance than s in
Sopt . The removal of textits will be replaced by the
removal of sca in Sopt if that replacement improves
the F-Measure. Otherwise, the removed feature will be
recovered, because removing this feature will degrade
the classification quality. This process will be repeated
until all remaining features other than Smin are removed
in turn to find the set of features Sopt for the best F-
Measure.

Algorithm 6 Oversampling combined with pBFE
Input

D - Training Dataset
Output

Sopt - The optimal subset of features using OS
1: begin
2: Initialize:
3: Calculate IoF of all features on the dataset D
4: Smax ← All features sorted in ascending of IoF
5: Smin ← The features obtained from pFSA
6: Sopt ← Smax
7: Sdel = Smax \ Smin
8: OS on training dataset D using features ∈ Sopt
9: for i ← 1 to len(Sdel) do

10: s← Sdel [i -1]
11: S1 = Sopt \ {s}
12: OS on the dataset D using the features ∈ S1
13: if QoC of S1 is better than Sopt after OS then
14: Best ← the QoC of S1 after OS
15: for each sca in Sopt do
16: if sca correlates and has IoF < s then
17: S2 = Sopt \ {sca}
18: if QoC of S2 after OS > Best then
19: S1 ← S2
20: Best ← the QoC of S2 after OS
21: end if
22: end if
23: end for
24: Sopt ← S1
25: end if
26: end for
27: return Sopt
28: end

8
EAI Endorsed Transactions on 

Context-aware Systems and Applications 
Vol. 9 (2023)



The data preprocessing in improving the classification quality of network intrusion detection systems

Proposition 6: Algorithm 6 has a time complexity of
O(N × (N − 1)/2), N is the number of features of the
dataset.

Proof:
Call T (N ) is the time complexity of the algorithm.

According to the lines from (9) to (26), we have:

T (N ) = ((N − 1) + (N − 2) + . . . + 1) × T (1)

From here infer

T (N ) = N × (N − 1)/2 × T (1)

So

T (N ) = O(N × (N − 1)/2)

Solution of proposed undersampling. The undersampling
techniques also rely on k nearest neighbors to
remove unwanted overlap between classes with all
features involved. The problem is, there are irrelevant
or noisy features when calculating the distance to
determine k nearest neighbors, that can affect the
quality of removing data instances at majority class
of undersampling. To eliminate these irrelevant or
noisy features, this paper proposes to use 2 solutions
presented in Algorithm 7 and Algorithm 8.

The first algorithm (Algorithm 7) uses the solution
proposed by Algorithm 3 (the pFFC algorithm)
to determine the best-fit features participating in
the distance calculation when determining the k
nearest neighbors used in undersampling algorithms.
Algorithm 7 is implemented specifically as follows:
First, the Smax consisting of 42 features of the dataset
UNSW-NB15 is calculated and sorted in descending
order of importance, the importance of features has
can be IG, GR or CA. Smin is the initial minimum set
of features, these are the features obtained for each
type of attack through the feature selection algorithms
presented in Section 3.1 (see the feature selection
results in Table 2). S1 is the set of features to be
evaluated, S1 has an initial value of Smin. At each
loop, the remaining features (Smax \ Smin) are added
to S1 in turn, the more important features (with
a larger information metric) are added first. Then,
undersampling techniques such as: TML, NCR, ENN
are respectively used to remove noisy and overlapping
data instances from the original training dataset to
generate a new training dataset. The difference is that
only the features in S1 are used when calculating
the distance to determine the k nearest neighbors in
the undersampling algorithm. New training datasets
with eliminated data instances are used to train
classifiers using ML techniques. Evaluation results of
classifiers are performed on the testing dataset, which
is an independent dataset in the UNSW-NB15. The
classification quality of the classifiers is shown by the

F-Measure. If the F-Measure of the above classifier is
better than the best F-Measure generated from Sopt ,
which is the set of features for the previously stored
best F-Measure, then the added instance (denoted s)
will be recorded. Next, we will find the features sca
that correlates with s in Sopt , and perform the removal
of sca and add s to Sopt if such removal improves
the F-Measure. Otherwise, the added feature will be
dropped, because adding this feature does not improve
the classification quality. This process will be repeated
until all remaining features other than Smin are added
in turn to find the set of features Sopt for the best F-
Measure.

Proposition 7: Algorithm 7 has a time complexity of
O(N × (N − 1)/2), N is the number of features of the
dataset.

Proof:
Let T (N ) be the time complexity of the algorithm.

According to the lines from (9) to (26), we have:

T (N ) = T (1) + 2 × T (1) + . . . + (N − 1) × T (1)

From here infer

T (N ) = N × (N − 1)/2 × T (1)

So

T (N ) = O(N × (N − 1)/2)

The second algorithm (Algorithm 8) uses the
solution proposed by Algorithm 4 (pBFE algorithm) to
determine the best-fit features participating in distance
calculation when determining k nearest neighbors
is used in oversampling algorithms. Algorithm 8 is
implemented specifically as follows: First, the set Smax
consisting of 42 features of the UNSW-NB15 dataset
is also calculated and sorted in descending order of
importance, the feature importances can also be IG, GR
or CA as in Algorithm 7. Smin is the initial minimum
set of features, which are also features obtained for
each attack type through feature selection algorithms
presented in Section 3.1 (see the results of feature
selection in Table 2). S1 is the set of features to be
evaluated, S1 has an initial value of Smax including
all 42 features. At each iteration, the features to be
considered (Smax \ Smin) are in turn considered to be
removed from S1, and the less important features (with
a smaller information metric) are considered first. Next,
undersampling techniques such as: TML, NCR, ENN
are respectively used to remove noisy and overlapping
data instances from the original training dataset to
create a new training dataset. Another point is that
only features in S1 are used when calculating distances
to determine k nearest neighbors in undersampling
algorithms. New training datasets with eliminated data
instances used to train classifiers using ML techniques.
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Algorithm 7 Undersampling combined with pFFC
Input

D - Training Dataset
Output

Sopt - The optimal subset of features using US
1: begin
2: Initialize:
3: Calculate IoF of all features on the dataset D
4: Smax ← All features sorted in descending of IoF
5: Smin ← The features obtained from pFSA
6: Sopt ← Smin
7: Sadd = Smax \ Smin
8: US on training dataset D using features ∈ Sopt
9: for i ← 1 to len(Sadd) do

10: s← Sadd [i -1]
11: S1 = Sopt ∪ {s}
12: US on the dataset D using the features ∈ S1
13: if QoC of S1 is better than Sopt after US then
14: Best ← the QoC of S1 after US
15: for each sca in Sopt do
16: if sca correlates with s then
17: S2 = Sopt ∪ {s} \ {sca}
18: if QoC of S2 after US > Best then
19: S1 ← S2
20: Best ← the QoC of S2 after US
21: end if
22: end if
23: end for
24: Sopt ← S1
25: end if
26: end for
27: return Sopt
28: end

Evaluation results of classifiers are performed on the
testing dataset, which is an independent dataset in
the UNSW-NB15. The classification quality of the
classifiers is shown by the F-Measure. If the F-Measure
of the above trained classifier is better than the best
F-Measure generated from Sopt , which is the set of
features for the previously stored best F-Measure,
then the feature (denoted by s) will be considered
for removal. Next, we will find the features sca that
is correlated with s and has less importance than s
in Sopt . The removal of s will be replaced by the
removal of sca in Sopt if that replacement improves
the F-Measure. Otherwise, the removed feature will be
recovered, because removing this feature will degrade
the classification quality. This process will be repeated
until all remaining features other than Smin are removed
in turn to find the Sopt for the best F-Measure.

Proposition 8: Algorithm 8 has a time complexity of
O(N × (N − 1)/2), where N is the number of features of
the dataset.

Proof:
Let T (N ) be the time complexity of the algorithm.

According to the lines from (9) to (26), we have:

T (N ) = ((N − 1) + (N − 2) + . . . + 1) × T (1)

From here infer

T (N ) = N × (N − 1)/2 × T (1)

So

T (N ) = O(N × (N − 1)/2)

Algorithm 8 Undersampling combined with pBFE
Input

D - Training Dataset
Output

Sopt - The optimal subset of features using US
1: begin
2: Initialize:
3: Calculate IoF of all features on the dataset D
4: Smax ← All features sorted in ascending of IoF
5: Smin ← The features obtained from pFSA
6: Sopt ← Smax
7: Sdel = Smax \ Smin
8: US on training dataset D using features ∈ Sopt
9: for i ← 1 to len(Sdel) do

10: s← Sdel [i -1]
11: S1 = Sopt \ {s}
12: US on the dataset D using the features ∈ S1
13: if QoC of S1 is better than Sopt after US then
14: Best ← the QoC of S1 after US
15: for each sca in Sopt do
16: if sca correlates and has IoF < s then
17: S2 = Sopt \ {sca}
18: if QoC of S2 after US > Best then
19: S1 ← S2
20: Best ← the QoC of S2 after US
21: end if
22: end if
23: end for
24: Sopt ← S1
25: end if
26: end for
27: return Sopt
28: end

4. EXPERIMENTAL RESULTS
4.1. Solution of feature selection
The training and testing datasets are the full training
and testing datasets of the UNSW-NB15. The features
on the UNSW-NB15 dataset are numbered sequentially
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Table 1. Features of UNSW-NB15 dataset

ID Features ID Features ID Features
1 label 2 dur 3 proto
4 service 5 state 6 spkts
7 dpkts 8 sbytes 9 dbytes
10 rate 11 sttl 12 dttl
13 load 14 dload 15 loss
16 dloss 17 sinpkt 18 dinpkt
19 sjit 20 djit 21 swing
22 stcpb 23 dtcpb 24 dwin
25 tcprtt 26 synack 27 ackdat
28 smeansz 29 dmeansz 30 trans_depth
31 response_body_len 32 ct_srv_src 33 ct_state_ttl
34 ct_dst_ltm 35 ct_src_dport_ltm 36 ct_dst_sport_ltm
37 ct_dst_src_ltm 38 is_ftp_login 39 ct_ftp_cmd
40 ct_flw_http_mthd 41 ct_src_ltm 42 ct_srv_dst
43 is_sm_ips_ports

Table 2. Results of using pFSA for each attack type

Attack Selected Features pFSA

Worms
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43

pBFE-IG

Shellcode
2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20,
21, 22, 23, 24, 28, 29, 30, 31, 33, 34, 35, 36, 37,
38, 39, 40, 42, 43

pBFE-GR

Backdoor
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32,
33, 34, 36, 37, 38, 39, 40, 41, 42, 43

pBFE-CA

Analysis
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43

pBFE-CA

Reconnais
3, 4, 5, 7, 9, 10, 11, 12, 13, 17, 18, 19, 20, 21,
24, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43

Ridge

DoS
2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19,
21, 24, 26, 29, 32, 33, 35, 36, 37, 38, 39, 40, 41,
42, 43

pBFE-CA

Fuzzers
2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32,
33, 34, 36, 37, 39, 40, 43

pBFE-IG

Exploits
2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33,
34, 35, 37, 38, 39, 40, 41, 42, 43

pBFE-CA

Generic 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, 16, 17, 18, 19,
20, 21, 24, 27, 28, 29, 31, 33, 37, 38, 39, 42, 43 pBFE-IG

as shown in Table 1. The results of feature selection
using pFFC and pBFE with consideration of the
correlation of features are shown in Table 2. For each
type of attack, the selected features are different in
features and quantity. The classifier is mainly used as
a decision tree. Figure 1 shows the improvement of
classification quality in each attack type when using the
proposed feature selection algorithms.

Figure 1. The F-Measure before and after using pFSA

From the experimental results, some conclusions are
drawn as follows:

(1) Evaluation results on the UNSW-NB15 dataset
show that this dataset has many complex instances,
especially Generic and Fuzzers attack types.

(2) The use of feature selection techniques not only
reduces the computational cost and time (according to
Proposition 3 and Proposition 4) but also improves the
classification quality in IDS.

(3) The use of pBFE-IG, pBFE-GR and pBFE-CA
algorithms for better feature selection than other
known algorithms.

(4) For each different type of attack, different features
and ML algorithms will be selected to best improve the
classification quality of the intrusion detection system.

4.2. Solution of dataset resampling
Regarding the oversampling techniques: SMOTE,
ADASYN, Cluster SMOTE, Borderline SMOTE1 and
Borderline SMOTE2 are used. Regarding the undersam-
pling techniques: TML, ENN and NCR techniques are
used. The selection of the features participating in the
Euclidean distance to find the nearest neighbors in the
oversampling and undersampling techniques has also
been done with the pFFC and pBFE algorithms.

Oversampling the Dataset. As mentioned in the proposal,
the oversampling techniques are based on the kNN
algorithm to create a synthetic data instances with the
participation of all features. The removal of irrelevant
or noisy features when calculating distances to
determine k nearest neighbors can improve the quality
of oversampling techniques. In the experiments, both
proposed solutions, pFFC and pBFE, were performed.
The oversampling techniques used include: ADASYN,
SMOTE, Cluster SMOTE, Borderline SMOTE1 and
Borderline SMOTE2.

The results of using oversampling in combination
with feature selection are presented in Table 3. The
line with symbol G is the evaluation result obtained
when not using oversampling; the line with the symbol
O is the evaluation result obtained when using the
oversampling on all 42 features; line with symbol
F is the evaluation result obtained when using the
oversampling in combination with pFFC; line with
symbol B is the evaluation result obtained when using
the oversampling in combination with pBFE. The line
in bold is the line that gives the best F-Measure for each
attack type.

Table 4 is a summary of the results obtained by using
the oversampling in combination with feature selection
for each attack type. The Selected Features column has
the features numbered in order as shown in Table 1.
The Techniques Used column shows the oversampling
technique, the feature selection technique and the
number of features left for the best results for each
type of attack. Thereby, it is shown that the technique
of oversampling in combination with feature selection
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Table 3. Detailed results using OS combined with pFSA

Attack Type OS Sensitivity Specificity Precision F-Measure
Worms G 0.7077 0.9998 0.8679 0.7797

O 0.7692 0.9996 0.8130 0.7905
F 0.8462 0.9995 0.7914 0.8178
B 0.7923 0.9997 0.8655 0.8273

Shellcode G 0.5605 0.9985 0.8819 0.6854
O 0.8067 0.9954 0.7792 0.7927
F 0.7520 0.9978 0.8721 0.8076
B 0.6805 0.9989 0.9256 0.7843

Backdoor G 0.8803 0.9973 0.9089 0.8944
O 0.9330 0.9976 0.9229 0.9279
F 0.9273 0.9977 0.9273 0.9273
B 0.9198 0.9987 0.9560 0.9375

Analysis G 0.7055 0.9948 0.8285 0.7621
O 0.6985 0.9999 0.9957 0.8210
F 0.7135 0.9997 0.9875 0.8284
B 0.7140 0.9996 0.9828 0.8271

Reconnaissance G 0.6287 0.9979 0.9823 0.7667
O 0.9142 0.9935 0.9634 0.9382
F 0.9669 0.9945 0.9705 0.9687
B 0.9635 0.9956 0.9764 0.9699

DoS G 0.9430 0.9797 0.9106 0.9265
O 0.9516 0.9901 0.9544 0.9530
F 0.9486 0.9938 0.9708 0.9596
B 0.9611 0.9909 0.9584 0.9597

Fuzzers G 0.0270 0.9755 0.4407 0.0509
O 0.6193 0.8845 0.6351 0.6271
F 0.7276 0.8842 0.6711 0.6982
B 0.6489 0.9010 0.6803 0.6642

Exploits G 0.9328 0.9798 0.9650 0.9486
O 0.9584 0.9784 0.9636 0.9610
F 0.9433 0.9661 0.9431 0.9432
B 0.9584 0.9784 0.9636 0.9610

Generic G 0.2284 0.9711 0.7197 0.3468
O 0.9966 0.9886 0.9842 0.9904
F 0.9958 0.9967 0.9954 0.9956
B 0.9959 0.9964 0.9950 0.9954

Table 4. Summary of results using OS combined with pFSA

Attack Type Selected Features Techniques Used

Worms

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43

Borderline_SMOTE1
pBFE
40 features left

Shellcode

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
15, 16, 18, 19, 20, 21, 22, 23, 24, 28,
29, 30, 31, 33, 34, 35, 36, 37, 38, 39,
40, 42, 43

Borderline_SMOTE1
pFFC
35 features left

Backdoor

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43

ADASYN
pBFE
41 features left

Analysis

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43

ADASYN
pFFC
41 features left

Reconnais

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 24, 25,
26, 27, 28, 29, 30, 31, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43

Cluster SMOTE
pBFE
39 features left

DoS

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43

Cluster SMOTE
pBFE
42 features left

Fuzzers
2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 24, 25, 27, 28,
29, 31, 33, 34, 37, 38, 39, 40, 42, 43

Cluster SMOTE
pFFC
32 features left

Exploits

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43

ADASYN
No
42 features left

Generic

2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 23, 24, 25,
26, 27, 28, 29, 30, 32, 33, 34, 36, 37,
39, 40, 43

Borderline_SMOTE2
pFFC
35 features left

helps to improve the classification quality in all types
of attacks. But there will be cost for feature selection

Table 5. Detailed results using US combined with pFSA

Attack Type US Sensitivity Specificity Precision F-Measure
Worms G 0.7077 0.9998 0.8679 0.7797

U 0.7308 0.9998 0.8962 0.8051
F 0.7769 0.9997 0.8559 0.8145
B 0.7769 0.9997 0.8559 0.8145

Shellcode G 0.5605 0.9985 0.8819 0.6854
U 0.6196 0.9986 0.8966 0.7328
F 0.6664 0.9985 0.9010 0.7661
B 0.6796 0.9990 0.9322 0.7861

Backdoor G 0.8803 0.9973 0.9089 0.8944
U 0.9192 0.9971 0.9073 0.9132
F 0.8963 0.9980 0.9332 0.9144
B 0.8935 0.9980 0.9336 0.9131

Analysis G 0.7055 0.9948 0.8285 0.7621
U 0.7020 0.9984 0.9404 0.8039
F 0.7110 0.9998 0.9903 0.8277
B 0.7105 0.9999 0.9965 0.8295

Reconnaissance G 0.6287 0.9979 0.9823 0.7667
U 0.7231 0.9973 0.9802 0.8323
F 0.9138 0.9962 0.9781 0.9449
B 0.9169 0.9961 0.9780 0.9465

DoS G 0.9430 0.9797 0.9106 0.9265
U 0.9317 0.9941 0.9719 0.9514
F 0.9459 0.9935 0.9697 0.9576
B 0.9410 0.9942 0.9725 0.9565

Fuzzers G 0.0270 0.9755 0.4407 0.0509
U 0.3051 0.9670 0.7499 0.4337
F 0.3609 0.9646 0.7678 0.4910
B 0.3516 0.9550 0.7173 0.4719

Exploits G 0.9328 0.9798 0.9650 0.9486
U 0.9530 0.9765 0.9603 0.9566
F 0.9438 0.9910 0.9843 0.9636
B 0.9421 0.9914 0.9850 0.9630

Generic G 0.2284 0.9711 0.7197 0.3468
U 0.2284 0.9711 0.7197 0.3468
F 0.9958 0.9971 0.9959 0.9959
B 0.9947 0.9975 0.9965 0.9956

with time complexity of O(N × (N − 1)/2) (according to
Proposition 5 and Proposition 6).

Undersampling the Dataset. Similar to oversampling,
the undersampling techniques also rely on the kNN
algorithm to remove the overlapping data between
classes and the noisy data with the participation of all
features. The removal of irrelevant or noisy features
when calculating distances to determine k nearest
neighbors can improve the quality of undersampling
techniques.

In the experiments, both proposed solutions mFF and
pBFE were used. The undersampling techniques used
include: TML, NCR, ENN.

The results of using undersampling in combination
with feature selection are presented in Table 5. The
line with symbol G is the evaluation result obtained
without using undersampling; the line with the symbol
U is the evaluation result obtained when using the
undersampling on all 42 features; line with symbol
F is the evaluation result obtained when using the
undersampling in combination with pFFC; The line
with symbol B is the evaluation result obtained when
using the the undersampling in combination with
pBFE. The line in bold is the line that gives the best F-
Measure for each attack type.

Table 6 is a summary of the results obtained
by using undersampling techniques combined with
feature selection for each attack type. The columns
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Table 6. Summary of results using US combined with pFSA

Attack Selected Features Techniques

Worms
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43

ENN
pFFC
40 features left

Shellcode
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43

NCR
pBFE
40 features left

Backdoor
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 20, 31

NCR
pFFC
40 features left

Analysis
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43

ENT
pBFE
41 features left

Reconnais
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17,
18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 31, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43

ENN
pBFE
37 features left

DoS
2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19,
21, 24, 26, 29, 32, 33, 35, 36, 37, 38, 39, 40, 41,
42, 43, 5, 17

ENT
pFFC
32 features left

Fuzzers
2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32,
33, 34, 36, 37, 39, 40, 43, 22, 31

NCR
pFFC
37 features left

Exploits
2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33,
34, 35, 37, 38, 39, 40, 41, 42, 43, 8, 31

ENT
pFFC
37 features left

Generic
2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, 16, 17, 18, 19,
20, 21, 24, 27, 28, 29, 31, 33, 37, 38, 39, 42, 43,
5, 23, 32, 40

ENT
pFFC
32 features left

of Selected Features are numbered features according
to Table 1. Thereby, it shows that the technique of
undersampling combined with feature selection greatly
improves the classification quality. It also helps to
remove many noisy instances and overlap between
classes in the majority class. But there will be cost for
feature selection with time complexity of O(N × (N −
1)/2) (according to Proposition 7 and Proposition 8).

5. CONCLUSION
Experimental results have demonstrated that the
proposed solutions to improve the classification quality
of NIDS include:

(1) Propose techniques to improve feature selection
of training datasets used in NIDS.

(2) Propose techniques to improve the handling of
imbalanced data sources inherent in NIDS, through
the improvement of oversampling and undersampling
techniques.

In the experiments, the UNSW-NB15 dataset was
used for training and testing, which is a dataset
with many contemporary synthetic attack instances
that have not been used by many researchers. The
paper proposes to use the F-Measure to evaluate the
classification quality of NIDS. This is to contribute to
improving the effectiveness of the evaluation.

Besides the obtained results, the research results
of the paper also leave the following shortcomings,
limitations and future development orientations:

(1) The correct combination of data preprocessing
algorithms and classifiers to build a hybrid, multi-label
and real-time response classifier is an issue that needs
to be further researched.

(2) The system’s ability to process data as well as
compute plays an important role in exploiting ML
algorithms. The improvement of processing efficiency
in the direction of parallel processing as well as
the selection and optimization of parameters for ML
techniques is still an open issue.
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