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Abstract

This systematic review investigates the use of max-min aggregation in fuzzy systems and interpretable
machine learning. Rooted in fuzzy set theory and triangular norms, max-min aggregation offers a
transparent and mathematically simple approach to modeling uncertainty and decision-making. We
examine theoretical foundations, practical applications, evaluation methods, and comparative taxonomies.

The review identifies key challenges such as scalability and integration with learning algorithms, and
highlights future directions for improving transparency in Al Our findings underscore the relevance
of max-min aggregation in developing interpretable and responsible Al systems.
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1. Introduction

Max-min aggregation has played a pivotal role in the
evolution of fuzzy systems and their applications across
artificial intelligence (AI), decision making, and compu-
tational linguistics. As foundational operations in fuzzy
logic, max (t-conorm) and min (t-norm) operators offer
a robust framework for modeling imprecise, vague,
or linguistically expressed information {17, 18]. These
operators form the basis for more complex constructs
such as fuzzy inference systems, fuzzy integrals, and
aggregation functions [3, 11].

The recent surge in demand for interpretable and
explainable models in Al has renewed interest in fuzzy
logic-based systems [6, 12]. In particular, the integra-
tion of linguistic variables and aggregation mechanisms
has enabled more human-aligned reasoning in systems
that support decision-making under uncertainty [1, 8].
These approaches have been increasingly applied in
areas such as expert systems, medical diagnosis [2], and
interpretable machine learning pipelines [15].

*Corresponding author. Email: nguyenvanhan@tlu.edu.vn

To ensure scientific rigor and transparency, the devel-
opment of systematic reviews in this domain must
follow established guidelines such as the PRISMA state-
ment [13, 14] and evidence-based software engineering
methodologies [9]. These frameworks support repro-
ducible and comprehensive syntheses of the literature,
which are essential for mapping the conceptual land-
scape and identifying emerging trends.

Structure of the paper. The remainder of this
paper is organized as follows: Section 2 outlines
the methodology adopted in this systematic review.
Section 3 reviews theoretical foundations of max-
min aggregation in fuzzy linguistic systems. Section
4 analyzes applications in Al and machine learning.
Section 5 discusses ongoing challenges and future
directions. Finally, Section 6 concludes the review and
highlights key takeaways.

2. Methodology

This systematic review adheres to the guidelines
established by the PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) 2009 and
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2020 statements [13, 14], as well as the methodology
recommended in software engineering by Kitchenham
and Charters [9]. The methodological process is
composed of the following key phases: planning,
search strategy, inclusion and exclusion criteria, study
selection, quality assessment, data extraction, and
synthesis.

2.1. Review Objectives

The main objective of this systematic review is to
analyze the evolution, usage, and applications of
Max-Min aggregation operators within fuzzy linguistic
systems and machine learning contexts. Specific
questions addressed include:

¢ What are the dominant trends and themes in Max-
Min aggregation research?

* How is Max-Min aggregation employed in fuzzy
linguistic models and Al applications?

* What gaps and challenges exist in the current
literature?

2.2. Search Strategy

We developed a comprehensive search strategy to iden-
tify relevant studies across the following databases:
Scopus, Web of Science, IEEE Xplore, and ACM Digital
Library. The search terms combined key phrases such
as: “Max-Min aggregation”, “fuzzy logic”, “linguistic mod-
eling”, “aggregation operators”, and “machine learning”.
Boolean operators and truncations were used to expand
the search scope, e.g., (“fuzzy*” AND “max-min” AND

“aggregation*”).

2.3. Inclusion and Exclusion Criteria

We applied clear inclusion and exclusion criteria. To be
eligible, studies had to:

* Be written in English;

* Be published in peer-reviewed journals or top-tier
conferences between 2000 and 2024;

* Discuss Max-Min aggregation in the context of
fuzzy logic, linguistic modeling, or Al

Excluded were:

* Non-peer-reviewed articles, book reviews, and
short abstracts;

* Studies not addressing the theoretical or applied
aspects of Max-Min aggregation.

2.4. Study Selection Process

The study selection process was performed in two
stages: (1) title and abstract screening and (2) full-
text review. Two independent reviewers assessed
each article. Disagreements were resolved through
discussion or adjudication by a third reviewer. The
selection process is documented following PRISMA
standards [13, 14].

2.5. Quality Assessment and Data Extraction

Quality assessment criteria were adapted from [9],
including clarity of objectives, methodological rigor,
and contribution to the field. Each study was scored
using a predefined checklist. Data extraction involved
collecting metadata (e.g., authorship, publication year),
methods, application domains, and results related to
Max-Min aggregation.

2.6. Data Synthesis

We employed both quantitative and qualitative synthe-
sis methods. Descriptive statistics summarized publica-
tion trends, while thematic analysis was used to iden-
tify research patterns and conceptual developments in
fuzzy linguistic systems and Al leveraging Max-Min
aggregation operators.

3. Theoretical Foundations

Max-min aggregation plays a fundamental role in
fuzzy logic systems, especially in modeling human-like
reasoning through linguistic variables and approximate
inference. This section outlines the theoretical basis
of fuzzy set theory, aggregation functions, and the
relevance of the max-min operator in interpretability
and modeling.

3.1. Fuzzy Set Theory and Linquistic Variables

The concept of fuzzy sets was first introduced by
Zadeh to handle the imprecision inherent in many
real-world problems [17]. Fuzzy set theory allows
gradual membership rather than crisp classification,
thereby supporting reasoning with vague or imprecise
concepts. This framework is particularly powerful
when linguistic terms (e.g., “high,” “low,” “moderate”)
are used to model expert knowledge.

Linguistic variables, another essential innovation by
Zadeh, form the basis for expressing knowledge in
fuzzy systems. Each linguistic variable is associated
with a set of linguistic terms, which are represented by
fuzzy sets. These constructs have been widely applied
in decision support, control systems, and knowledge-
based inference.
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3.2. Aggregation Operators in Fuzzy Systems

Aggregation functions are used to combine multiple
fuzzy inputs into a single output, and their selection
critically influences the behavior and interpretability of
a fuzzy system. Among them, the max-min operator is
one of the most intuitive and computationally simple
methods. It is based on two fundamental operations:
maximum (used for union-type aggregation) and
minimum (used for intersection-type aggregation) [18].

The study of triangular norms (t-norms) and
triangular conorms (t-conorms) provides a formal
mathematical foundation for fuzzy aggregation. T-
norms are used to generalize the logical conjunction in
fuzzy logic, while t-conorms generalize the disjunction.
Klement et al. provided a comprehensive overview of
various t-norms and their properties [10].

3.3. Max-Min Aggregation and Interpretability

Max-min aggregation is especially appealing for inter-
pretable models because of its simplicity and align-
ment with human reasoning patterns. For instance,
in rule-based systems, the antecedent part often uses
the minimum (AND) operator to assess the degree of
rule activation, while the consequent aggregation may
involve the maximum (OR) operator.

According to Beliakov et al., selecting appropriate
aggregation functions is a balance between mathemati-
cal properties (e.g., associativity, commutativity, mono-
tonicity) and application-specific interpretability [3].
Max-min aggregation meets many of these require-
ments and is computationally efficient, making it suit-
able for real-time decision systems.

Furthermore, the uncertainty modeling in fuzzy
systems can be enhanced using type-2 fuzzy sets
and rule-based reasoning schemes. Mendel explored
how rule-based fuzzy logic systems could incorporate
uncertainty using advanced aggregation techniques
[11].

3.4. Summary

To summarize, max-min aggregation sits at the heart
of interpretable fuzzy logic systems. Its theoretical
grounding in fuzzy set theory, linguistic variables,
and t-norm frameworks makes it a strong candidate
for building transparent and computationally feasible
decision-making models. The next sections will build
upon this foundation by examining how max-min
aggregation has been applied and evaluated in real-
world interpretable machine learning systems.

4. Applications in Interpretable Machine Learning

As the demand for interpretable artificial intelligence
(AI) systems grows, max-min aggregation has found
renewed interest due to its transparency, alignment

with human reasoning, and simplicity. This section
presents the main application domains and model
architectures in which max-min aggregation has been
effectively employed for interpretable machine learning
(IML).

4.1. Fuzzy Rule-Based Systems

Fuzzy rule-based systems (FRBSs) have long employed
max-min aggregation to model rule antecedents and
aggregate fuzzy outputs. These systems leverage the
minimum operator to evaluate the degree of fulfillment
of antecedent clauses and the maximum operator
to combine multiple rule outputs. The inherent
interpretability of FRBSs stems from their linguistic
rule representations and transparent reasoning process.

Mendel [11] emphasized that max-min aggregation
offers both computational simplicity and interpretabil-
ity in designing fuzzy inference systems, especially in
Mamdani-type architectures. These models have been
used in medical diagnosis, risk assessment, and control
systems due to their ability to provide clear explana-
tions.

4.2. Fuzzy Decision-Making and Classification

In decision-making scenarios, fuzzy systems with max-
min aggregation provide explainable outputs in group
decision support and multi-criteria evaluation contexts.
Herrera et al. [8] and Alonso et al. [1] illustrated the
use of fuzzy linguistic models—underpinned by max-
min operators—to handle subjective and imprecise
preference information in group decision-making
settings.

For classification tasks, fuzzy classifiers leveraging
max-min operations offer interpretable decision bound-
aries. Casillas et al. [4] showed how fuzzy rules with
simple aggregation operators such as min and max
could be effectively learned using boosting techniques,
leading to interpretable yet accurate classifiers.

4.3. Medical and Healthcare Applications

Explainable models are critical in healthcare applica-
tions, where trust and transparency are essential. Barro
and Marin [2] reviewed how fuzzy models, especially
those utilizing max-min aggregation, are well-suited for
clinical decision support systems (CDSS). Their ability
to mimic expert reasoning and output human-readable
decisions enhances trust and usability in medical envi-
ronments.

Recent systematic reviews, such as the one by
Tran et al. [15], highlight that fuzzy logic remains
one of the most prominent techniques in explainable
Al for healthcare, particularly when combined with
interpretable rule extraction.
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4.4. XAl and Socially Grounded Explanations

Fuzzy aggregation, including max-min methods, also
supports explainability in machine learning by gen-
erating natural-language-like explanations. Miller [12]
argues that effective explanations in AI should fol-
low human expectations derived from social science
insights. Since fuzzy rule systems with max-min logic
generate explanations using linguistic rules, they align
well with these expectations.

Ghosh et al. [6] surveyed the intersection of fuzzy
logic and explainable AI (XAI), identifying aggregation
functions as central components for constructing
interpretable models. They show that integrating
fuzzy aggregation into deep learning and ensemble
architectures improves both transparency and post-hoc
explainability.

4.5. Challenges and Research Gaps

Despite these successes, several limitations remain.
First, traditional max-min aggregation may struggle
with high-dimensional data unless combined with fea-
ture selection or fuzzy partitioning. Second, inter-
pretability may sometimes come at the cost of accuracy
in complex tasks. Third, integrating max-min aggrega-
tion into neural-symbolic systems or generative archi-
tectures remains an open challenge.

Future research directions include combining max-
min aggregation with recent developments in inter-
pretable neural networks, generative models, and
hybrid neuro-fuzzy architectures.

5. Evaluation Approaches and Benchmarks

Evaluating the performance and interpretability of
max-min aggregation models in fuzzy systems and
interpretable machine learning requires a combination
of quantitative accuracy measures and qualitative
explainability assessments. This section surveys the
key evaluation frameworks, metrics, and benchmark
datasets employed in the literature.

5.1. Quantitative Evaluation Metrics

The performance of fuzzy systems using max-min
aggregation is often evaluated wusing traditional
machine learning metrics such as classification
accuracy, precision, recall, and Fl-score. In regression
tasks, mean squared error (MSE) and root mean
squared error (RMSE) are standard. These metrics
are typically used to compare max-min fuzzy models
with alternative fuzzy aggregation techniques (e.g.,
weighted averaging, fuzzy integrals).

Grabisch and Sugeno [7] compared different fuzzy
integrals for classification tasks, noting that max-min
aggregation can perform competitively when rule bases
are well-tuned. However, they also emphasized that

fuzzy integrals offer greater flexibility when interaction
between attributes is critical.

5.2. Interpretability and Explainability Measures

Interpretability in fuzzy models can be assessed by
the number of rules, the length of each rule, and
the complexity of the fuzzy sets involved. Max-min
aggregation supports high interpretability due to its
use of simple logical operators (max and min) and its
compatibility with linguistic expressions [8, 11].

Ghosh et al. [6] proposed explainability evaluation
frameworks that include transparency (how the model
works), simulatability (whether a human can mentally
simulate the model), and decomposability (whether
each component has an intuitive interpretation).
Max-min aggregation performs well across all these
dimensions due to its rule-based, modular structure.

5.3. Benchmark Datasets

Several standard datasets have been used in empirical
studies to benchmark max-min aggregation models.
These include:

» Iris Dataset: A classical classification dataset
frequently used for demonstrating fuzzy rule-
based models.

* Wine Quality and Breast Cancer datasets: Used
in explainable classification scenarios.

* Medical Diagnosis Datasets: Barro and Marin
[2] employed medical datasets such as heart
disease and diabetes diagnosis to validate the
effectiveness of max-min fuzzy systems in real-
world applications.

* Synthetic Rule-Based Datasets: For controlled
experiments assessing interpretability, some stud-
ies generate synthetic datasets with known deci-
sion boundaries and rule structures.

These datasets allow researchers to test both
predictive accuracy and model interpretability, often
through user studies or expert evaluation.

5.4. Comparative Studies and Hybrid Models

Comparative evaluations between max-min models and
other fuzzy aggregation operators—such as Ordered
Weighted Averaging (OWA) [16], fuzzy integrals
[7], or T-norm-based systems [l0]—are essential
to understanding trade-offs. In some cases, hybrid
models that combine max-min rules with optimization
or learning algorithms (e.g., boosting, evolutionary
algorithms) are evaluated to balance performance and
simplicity 4, 5].
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5.5. Limitations in Evaluation Methodologies — Medical Decision Support: Commonly used
for diagnostic classification with high inter-

Despite widespread use, challenges remain in sys- pretability [2].

tematically evaluating explainability. Tran et al. [15]

noted the lack of unified benchmarks and metrics for — Industrial Control and Robotics: Employed in
explainable AI in healthcare, which also applies to real-time systems where rule transparency
fuzzy models. Furthermore, explainability is context- and deterministic behavior are critical.

dependent—what is interpretable in a medical system
may not be so in a financial application.

There is a growing need for standardized explain-
ability benchmarks and human-in-the-loop evaluation ) o )
methodologies, where domain experts assess the qual-  0.2. Comparative Analysis with Other Aggregation
ity of explanations produced by max-min aggregation ~ Operators
models in real-world tasks.

— Interpretable AI Models: Used as explainable
modules within hybrid Al systems [6].

6. Taxonomy and Comparative Analysis Table 1. Comparison of Aggregation Operators in Fuzzy Systems

This section presents a structured taxonomy of max- Aggregation Operator ExpressivenessInterpretability
min aggregation models used in fuzzy systems and

interpretable machine learning. It also provides a com- Max-Min Aggregation Medium High

parative analysis between max-min aggregation and

other fuzzy aggregation strategies, focusing on criteria OWA (Yager, 1988) [16] High Medium

such as expressiveness, interpretability, computational
complexity, and application domains.

Fuzzy Integrals (Sugeno, | Very High Low-Medium

6.1. Taxonomy of Max-Min Aggregation Models Choquet) [7]

T-norms and T-conorms | High Medium
Max-min aggregation models can be categorized based [10]
on the following dimensions: Weighted Averaging Medium Low

* Type of Fuzzy Inference: Mamdani-type fuzzy

systems use linguistic rules with max-min oper-
ators for both rule evaluation and aggregation

[17]. In contrast, Takagi-Sugeno models typically {3 Strengths of Max-Min Aggregation
use weighted averages and are less common with

strict max-min operators. Max-min aggregation is particularly effective when
simplicity and transparency are prioritized. Its reliance
* Rule Learning Strategy: on basic logical operations makes it suitable for systems

where human interpretability is essential, such as in
safety-critical environments. The compositional nature
of max and min operators also simplifies theoretical
analysis and hardware implementation [18].

— Expert-defined rules: Traditional fuzzy sys-
tems rely on domain experts to define rules
and membership functions [18].

— Data-driven rules: Recent approaches lever-

age algorithms such as boosting and evolu-  §4 [imitations and Challenges
tionary computation to optimize rule bases

and membership functions [4, 5]. While interpretable, max-min aggregation can be
limited in handling attribute interaction or modeling

* Model Architecture: smooth transitions between decision regions. In such
cases, fuzzy integrals or learning-based aggregation

— Flat rule-based systems: Each rule is indepen-  fynctions may outperform in accuracy but at the cost

dent, and aggregation is performed at the  5f reduced transparency [6, 7].
output layer using max-min operators. Additionally, expert-designed max-min systems may
— Hierarchical fuzzy systems: Max-min logic is  face scalability challenges in high-dimensional spaces

used recursively at multiple levels, improv-  or large rule bases. Recent efforts to integrate
ing scalability for complex domains [11]. optimization methods such as boosting [4] and genetic
algorithms [5] help mitigate these challenges while

e Application Domain: preserving interpretability.

EAI Endorsed Transactions

Q @ 5 on Context-aware Systems and Applications
p | Volume 10 | 2024 |



Nguyen Van Han

6.5. Future Integration in Hybrid Systems

There is a growing trend toward embedding max-
min aggregation modules within larger interpretable
pipelines, including fuzzy neural networks, neuro-
symbolic architectures, and explainable decision trees
[6]. Such integration leverages the strengths of max-min
logic while compensating for its limitations in flexibility
and adaptation.

7. Challenges and Future Directions

Despite their simplicity and interpretability, max-min
aggregation methods in fuzzy systems and interpretable
machine learning face several challenges that limit
their scalability and flexibility in modern AI contexts.
This section outlines these limitations and discusses
potential directions for advancing the research and
deployment of such models.

7.1. Challenges

1. Scalability to High-Dimensional Data. Max-min aggre-
gation techniques are inherently rule-based, requiring
exhaustive rule enumeration or combinatorial expan-
sion when dealing with high-dimensional inputs. This
leads to an exponential growth in rule base size, known
as the “curse of dimensionality” [5]. Although hierar-
chical fuzzy systems [11] and modular designs have
alleviated some of these issues, further improvement is
required to maintain interpretability while enhancing
scalability.

2. Limited Adaptability and Learning. Traditional max-
min systems often rely on expert-defined rules and
membership functions. These handcrafted components,
while interpretable, may lack the flexibility to adapt
to dynamic environments or noisy data. While hybrid
models combining fuzzy systems with machine learn-
ing algorithms have been proposed [4], these models
often sacrifice transparency to achieve better perfor-
mance.

3. Inadequate Handling of Feature Interactions. Max-min
aggregation lacks the expressiveness required to cap-
ture complex feature interactions. Unlike fuzzy inte-
grals such as Choquet or Sugeno measures [7], which
allow modeling of interdependencies among input vari-
ables, max-min methods assume independent rule eval-
uation. This may lead to suboptimal performance in
tasks requiring context-sensitive reasoning.

4. Benchmarking and Standardization. A significant chal-
lenge in comparing fuzzy aggregation methods lies
in the lack of standardized datasets and evaluation
protocols. Although some benchmarking efforts exist
in the context of interpretable machine learning [6],
there is a pressing need for reproducible experimental
frameworks and explainability-specific metrics tailored
to fuzzy rule-based systems.

7.2. Future Directions

1. Integration with Neuro-Symbolic Architectures. One
promising direction is the incorporation of max-
min operators into neuro-symbolic models. These
hybrid systems aim to combine the learning capacity
of neural networks with the logical structure of
symbolic reasoning [6]. Embedding max-min logic at
the symbolic layer can enhance interpretability while
enabling deep learning-based feature extraction.

2. Learning-Enhanced Max-Min Systems. Future research
should focus on developing learning algorithms specif-
ically tailored for max-min aggregation. For instance,
using differentiable fuzzy logic layers [12] or reinforce-
ment learning to adjust membership functions could
make traditional fuzzy systems more adaptive while
preserving their interpretability.

3. Explainability Benchmarks and Visualization Tools. The
creation of explainability benchmarks for fuzzy rule-
based systems, along with tools that visualize rule
activations and decision boundaries, could bridge the
gap between model transparency and user trust [6, 12].
Tools like PRISM or ExpliClass can be adapted to
evaluate and display fuzzy inference chains in real-time
applications.

4. Cross-Domain Applications and Multimodal Integra-
tion. Finally, applying max-min aggregation in novel
domains—such as multimodal reasoning (text, image,
audio), personalized recommendation, and human-in-
the-loop systems—could demonstrate the broader rele-
vance of interpretable fuzzy models. Such deployments
would benefit from the inherent transparency of max-
min logic while stimulating interdisciplinary innova-
tion.

8. Conclusion

This systematic review explored the role of max-min
aggregation within fuzzy systems and its application
to interpretable machine learning. We began by
establishing the theoretical underpinnings of max-min
logic, rooted in classical fuzzy set theory [17], triangular
norms [10], and rule-based reasoning frameworks
[11, 18]. These foundations offer simplicity and high
interpretability, making them particularly suited for
domains where transparency is paramount.

Applications in interpretable machine learning have
demonstrated how max-min aggregation can yield
rule-based models that are both comprehensible and
competitive in performance [6, 8]. From healthcare
to decision support systems, the integration of fuzzy
linguistic modeling [1] and aggregation operators |3,
16] highlights the relevance of max-min strategies in
building trustworthy Al systems.
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We analyzed evaluation methodologies and bench-
mark frameworks, noting that while performance met-
rics such as accuracy and Fl-score are common, spe-
cialized explainability metrics remain underdeveloped
for fuzzy systems. This signals a need for domain-
specific, interpretable AI benchmarks [15] that can
effectively assess the transparency of fuzzy logic-based
approaches.

The taxonomy presented in this review compared
max-min aggregation to other methods such as
fuzzy integrals [7] and weighted averaging operators,
emphasizing the trade-offs between interpretability,
modeling complexity, and computational cost.

Lastly, we outlined critical challenges including scal-
ability, adaptability, and standardization, and proposed
future directions involving learning-enhanced fuzzy
systems, integration with neuro-symbolic architectures,
and the development of visualization tools to support
model transparency [12].

In summary, max-min aggregation remains a vital
and interpretable mechanism in fuzzy systems and
machine learning. By addressing current limitations
and aligning with emerging trends in explainable
Al, future research can further solidify its role in
the broader landscape of transparent and responsible
artificial intelligence.

References

[1] S. Alonso, E. Herrera-Viedma, F. Chiclana, and F. Her-
rera. Handling preference information in group decision
making through fuzzy linguistic modeling. Expert Sys-
tems with Applications, 33(3):880-889, 2007.

S. Barro and R. Marin. Fuzzy logic in medicine. Studies

in Fuzziness and Soft Computing, 49:237-268, 2000.

Gleb Beliakov, Ana Pradera, and Tomasa Calvo.

Aggregation Functions: A Guide for Practitioners. Springer,

2007.

Jorge Casillas, Oscar Cordén, Francisco Herrera, and

Luis Magdalena. Learning fuzzy rules using boosting

algorithms. Fuzzy Sets and Systems, 141(1):59-81, 2004.

Oscar Cordon, Francisco Herrera, Frank Hoffmann, and

Luis Magdalena. A review on the application of

evolutionary fuzzy systems. International Journal of

Approximate Reasoning, 52(2):145-172, 2001.

[6] Sourya Ghosh, Mita Basu, and Sankar K Pal. Fuzzy logic-

based explainable artificial intelligence: A survey. IEEE

Transactions on Fuzzy Systems, 30(8):3068-3081, 2022.

Michel Grabisch and Michio Sugeno. Fuzzy integrals for

classification and feature extraction. European Journal of

Operational Research, 96(1):168-175, 1996.

Francisco Herrera, Luis Martinez, and Enrique Herrera-

Viedma. Linguistic decision analysis: Steps for solving

decision problems under linguistic information. Fuzzy

Sets and Systems, 115(1):67-82, 2000.

[9] Barbara Kitchenham and Stuart Charters. Guidelines
for performing systematic literature reviews in software
engineering. Technical report, EBSE Technical Report
EBSE-2007-01, Keele University and University of
Durham, 2007.

2

3

—

(4

[5

—

(7

—

(8

[10] E. P. Klement, R. Mesiar, and E. Pap. Triangular norms.
Trends in Logic, 8, 2000.

[11] Jerry M Mendel.  Uncertain Rule-Based Fuzzy Logic
Systems: Introduction and New Directions. Prentice Hall
PTR, 2001.

[12] Tim Miller.  Explanation in artificial intelligence:
Insights from the social sciences. Artificial Intelligence,
267:1-38, 2019.

[13] David Moher, Alessandro Liberati, Jennifer Tetzlaff,
Douglas G Altman, and PRISMA Group. Preferred
reporting items for systematic reviews and meta-
analyses: the prisma statement. PLoS Medicine,
6(7):e1000097, 2009.

[14] Matthew ] Page, Joanne E McKenzie, Patrick M Bossuyt,
Isabelle Boutron, Tammy C Hoffmann, Cynthia D
Mulrow, Larissa Shamseer, Jennifer M Tetzlaff, Elie A
AKkl, Mark Brennan, et al. The prisma 2020 statement:
an updated guideline for reporting systematic reviews.
BM]J, 372:n71, 2021.

[15] Tuan Tran, Ramakanth Kavuluru, Nigam H. Shah, and
Fei Wang. Systematic literature review of explainable
ai for healthcare: Trends, challenges and opportunities.
Journal of Biomedical Informatics, 113:103655, 2021.

[16] Ronald R. Yager. On ordered weighted averaging
aggregation operators in multicriteria decision making.
IEEE Transactions on Systems, Man, and Cybernetics,
18(1):183-190, 1988.

[17] Lotfi A Zadeh. The concept of a linguistic variable and
its application to approximate reasoning—i. Information
Sciences, 8(3):199-249, 1975.

[18] Hans-Jurgen Zimmermann. Fuzzy Set Theory and Its
Applications. Kluwer Academic Publishers, 1991.

EAI Endorsed Transactions
on Context-aware Systems and Applications
| Volume 10| 2024 |

2 EA 7



	1 Introduction
	2 Methodology
	2.1 Review Objectives
	2.2 Search Strategy
	2.3 Inclusion and Exclusion Criteria
	2.4 Study Selection Process
	2.5 Quality Assessment and Data Extraction
	2.6 Data Synthesis

	3 Theoretical Foundations
	3.1 Fuzzy Set Theory and Linguistic Variables
	3.2 Aggregation Operators in Fuzzy Systems
	3.3 Max-Min Aggregation and Interpretability
	3.4 Summary

	4 Applications in Interpretable Machine Learning
	4.1 Fuzzy Rule-Based Systems
	4.2 Fuzzy Decision-Making and Classification
	4.3 Medical and Healthcare Applications
	4.4 XAI and Socially Grounded Explanations
	4.5 Challenges and Research Gaps

	5 Evaluation Approaches and Benchmarks
	5.1 Quantitative Evaluation Metrics
	5.2 Interpretability and Explainability Measures
	5.3 Benchmark Datasets
	5.4 Comparative Studies and Hybrid Models
	5.5 Limitations in Evaluation Methodologies

	6 Taxonomy and Comparative Analysis
	6.1 Taxonomy of Max-Min Aggregation Models
	6.2 Comparative Analysis with Other Aggregation Operators
	6.3 Strengths of Max-Min Aggregation
	6.4 Limitations and Challenges
	6.5 Future Integration in Hybrid Systems

	7 Challenges and Future Directions
	7.1 Challenges
	7.2 Future Directions

	8 Conclusion



