
EAI Endorsed Transactions
on Context-aware Systems and Applications Review Article

A Survey of Quantum Type Theory: From Linearity
to Formal Verification
Nguyen Van Han

Faculty of Information Technology, Thuyloi University. 175 Tay Son - Dong Da District - Hanoi City, Vietnam.
nguyenvanhan@tlu.edu.vn

Abstract

Quantum Type Theory (QTT) provides a formal system that combines ideas from quantum mechanics, type
theory, and logic to support reliable quantum programming. Since quantum information cannot be copied or
deleted like classical data, QTT uses linear types to ensure that quantum operations follow the laws of physics.
This paper reviews the main concepts in QTT, such as linear functions, tensor products, and dependent types,
and explains how they help programmers write safe and correct quantum code.

Received on 03 July 2025; accepted on 03 July 2025; published on 16 July 2025

Keywords: Quantum Type Theory, Linear Logic, Dependent Types, Quantum Programming Languages, Type Systems

Copyright © 2025 Nguyen Van Han, licensed to EAI. This is an open access article distributed under the terms of the CC
BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any
medium so long as the original work is properly cited.

doi:10.4108/eetcasa.9669

1. Introduction to Core Concepts and Their
Implications

Quantum Type Theory (QTT) provides a foundational
framework that extends classical type systems to align
with the non-classical logic of quantum mechanics.
Traditional type theories, which rely on principles like
unrestricted copying and deletion of data, are incom-
patible with quantum phenomena such as the no-
cloning and no-deleting theorems [2, 8]. As a result,
new logical constructs—especially those derived from
linear logic [4]—are necessary to enforce resource sen-
sitivity and to model quantum computation accurately.

In the following section, we introduce the core con-
cepts and definitions central to QTT, including lin-
ear and dependent types, tensor and sum types, and
categorical semantics. These constructs serve not only
as theoretical tools but also as practical mechanisms
for ensuring correctness and safety in quantum pro-
gramming. Each concept is illustrated with represen-
tative examples and tied to key developments in the
literature, such as the quantum lambda calculus [8],
linear-nonlinear models [9], and categorical quantum
mechanics [1, 7].

∗ Corresponding author. Email: nguyenvanhan@tlu.edu.vn

Following the formal presentation, the discussion
section evaluates the implications of these core concepts
for language design, verification, and programming
practice. We explore how QTT principles have been
instantiated in quantum programming languages like
Silq [3], QWire [5], and Proto-Quipper [6], highlighting
the growing impact of QTT on the development of safe
and expressive quantum software.

2. Literature Review

Quantum Type Theory (QTT) emerges at the intersec-
tion of logic, programming languages, and quantum
computation. The literature spans foundational theo-
retical work and practical implementations in quantum
programming languages. In this section, we review key
contributions across several thematic categories.

2.1. Foundational Logic and Linearity

Linear logic, introduced by Girard [4], provides the
logical basis for QTT by enforcing resource sensitivity,
which is critical in quantum computation due to
the no-cloning and no-deleting theorems. Benton [2]
offered a syntactic and semantic treatment of linear
logic that influenced early type systems for quantum
computation.

1
EAI Endorsed Transactions

on Context-aware Systems and Applications
| Volume 10 | 2024 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:<nguyenvanhan@tlu.edu.vn>

Nguyen Van Han

Staton [9] further refined this foundation by
showing how linear types can express quantum effects
algebraically, bridging logic and operational semantics.

2.2. Quantum Lambda Calculi
One of the most influential formalisms in QTT is
the quantum lambda calculus developed by Selinger
and Valiron [8]. Their work introduces a linear type
system that distinguishes between classical control and
quantum data, enabling safe manipulation of quantum
variables within functional programming paradigms.
Van Tonder [11] similarly proposed a quantum lambda
calculus, offering a syntactic foundation for quantum
programming with explicit treatment of quantum data
and entanglement.

2.3. Categorical Semantics
Categorical models, particularly symmetric monoidal
categories and dagger compact closed categories,
have been instrumental in formalizing quantum
processes. Abramsky and Coecke [1] introduced
categorical semantics for quantum protocols, providing
a high-level abstract framework to represent quantum
operations diagrammatically. Selinger [7] extended
this work with the theory of dagger compact closed
categories and completely positive maps, giving
a semantic foundation for mixed-state quantum
computations.

2.4. Type-Theoretic Language Design
Several quantum programming languages have been
developed based on QTT principles. Proto-Quipper,
designed by Ross and Selinger [6], is a functional
language with a linear type system derived from
intuitionistic linear logic. It is tailored for constructing
quantum circuits with guaranteed correctness.

QWire, introduced by Paykin, Rand, and
Zdancewic [5], embeds quantum circuit definitions in
the Coq proof assistant using dependent types. This
enables formal verification of quantum programs and
reasoning about circuit equivalence and resource usage.

Silq, a more recent language from ETH Zurich, offers
high-level abstractions with automatic uncomputation
and strong type safety [3]. It demonstrates how linear
and dependent types can be leveraged to simplify
quantum algorithm development while preserving
correctness.

2.5. Formal Verification and Quantum Logic
Formal methods for quantum program verification have
been advanced through the development of quantum
Hoare logic and relational reasoning. Unruh [10]
proposed a quantum relational Hoare logic capable

of reasoning about cryptographic properties and
correctness of quantum protocols, further supporting
the role of type theory in quantum software verification.

2.6. Summary
These contributions collectively establish QTT as
a robust framework that integrates logical founda-
tions, semantic modeling, and practical implementa-
tion strategies for quantum programming. The field
continues to evolve, with ongoing work exploring richer
type systems, verification techniques, and high-level
abstractions for emerging quantum hardware plat-
forms.

3. Core Concepts and Definitions in Quantum Type
Theory
Quantum Type Theory (QTT) extends classical type
theory to accommodate the principles of quantum
mechanics. It integrates concepts like linearity, resource
sensitivity, and categorical semantics into the type-
theoretic foundation of quantum programming.

3.1. Function Types and Linearity
In classical type theory, functions are typed as A→
B, meaning a function consumes input of type A and
produces output of type B. In QTT, linear functions
use A ⊸ B, ensuring each input is used exactly once,
aligning with quantum mechanics’ no-cloning property
[8].

Example 1. • Classical (Allowed): dup x = (x, x)

• Quantum (Disallowed): dup q = (q, q) (violates
no-cloning)

• Quantum (Allowed): applyHadamard q = H q

3.2. Linear Types
Linear types require each variable to be used exactly
once, thereby reflecting the no-cloning and no-
deleting theorems in quantum mechanics. They ensure
correctness by enforcing usage constraints at compile
time [2, 4, 9].

Example 2. • Invalid: f q = (q, discard q)

• Valid: g q = measure q

3.3. Tensor Product Types
In QTT, classical product types A × B are replaced by
the tensor product A ⊗ B, which describes composite
quantum systems [1].

Example 3. • H ⊗ I(|00⟩) creates a superposition
on the first qubit while leaving the second
unchanged.

2
EAI Endorsed Transactions

on Context-aware Systems and Applications
| Volume 10 | 2024 |

A Survey of Quantum Type Theory: From Linearity to Formal Verification

3.4. Sum Types and Quantum Measurement
Sum types (A + B) are used to represent classical
alternatives resulting from quantum measurements [8].

Example 4. measure And Branch q =

match measure q with

| 0 -> applyX q’

| 1 -> applyZ q’

3.5. Dependent Types
Dependent types allow type expressions to depend on
terms. They are particularly useful for parameterizing
quantum circuits by size, gate arity, or measurement
outcomes [5].

Example 5. Gate : nat → Type

H : Gate 1

CNOT : Gate 2

3.6. Categorical Semantics
QTT is grounded in categorical models of quantum
mechanics, particularly dagger compact closed cate-
gories and symmetric monoidal categories, which for-
malize quantum processes and entanglement [1, 7].

Example 6. The teleportation protocol is described
diagrammatically using morphisms in a compact closed
category.

3.7. Quantum Programming Languages
Several programming languages implement QTT-
inspired type systems:

• Silq: High-level language with automatic uncom-
putation [3]

• Proto-Quipper: Based on intuitionistic linear
logic [6]

• QWire: Embedded in Coq for verified quantum
programming [5]

Example 7. (Silq)

def teleport(q: Qubit): Qubit {

let (q1, q2) = createEntangledPair()

let m = measure(q \otimes q1)

return applyClassicalControl(m, q2)

}

4. Discussion
Quantum Type Theory (QTT) provides a formal frame-
work that aligns type theory with the foundational
principles of quantum mechanics. A major contribution
of QTT is its incorporation of linear types, which are
critical in reflecting quantum mechanical constraints

such as the no-cloning and no-deleting theorems. In
contrast to classical function types A→ B, QTT adopts
linear function types A ⊸ B, where each input must be
used exactly once. This enforces strict resource usage
and prevents the duplication of quantum data, as for-
malized in the quantum lambda calculus by Selinger
and Valiron [8].

The notion of linear types originates from Girard’s
linear logic [4], and it has since been extended to
quantum computational settings by Benton [2] and
Staton [9]. These works demonstrate how linearity
enforces discipline over variable usage, ensuring that
quantum data is neither duplicated nor discarded
arbitrarily. This level of control is essential for
constructing semantically correct quantum programs.

Another foundational construct in QTT is the
tensor product type A ⊗ B, which replaces the classical
Cartesian product A × B. This construct represents
composite quantum systems and models entangled
states within symmetric monoidal categories. The work
of Abramsky and Coecke [1] rigorously develops
this interpretation using categorical semantics, which
allows for compositional and diagrammatic reasoning
about quantum protocols.

Quantum measurements, which yield probabilistic
outcomes, are handled in QTT using sum types (A +
B). These types model classical alternatives resulting
from quantum observations. Selinger and Valiron [8]
integrate sum types into their quantum lambda calculus
to describe control flow based on measurement results,
providing a structured method for combining classical
and quantum operations.

Dependent types—types that depend on values—are
a powerful feature for quantum programming. They are
particularly useful for defining parameterized quantum
circuits where behavior depends on inputs like circuit
size or gate arity. Paykin, Rand, and Zdancewic [5]
employ dependent types in the QWire language
embedded in Coq, enabling formal verification of
quantum circuits and reasoning about equivalence and
correctness.

Categorical semantics play a critical role in ground-
ing QTT. Dagger compact closed categories and sym-
metric monoidal categories provide mathematical mod-
els for entanglement, unitary operations, and informa-
tion flow in quantum systems. The categorical perspec-
tive advanced by Abramsky and Coecke [1] and further
refined by Selinger [7] has influenced both theoretical
and practical developments in quantum programming
languages.

These theoretical foundations are not purely abstract.
Practical languages inspired by QTT have emerged
to bridge theory and implementation. For instance,
Silq [3] provides high-level abstractions and automatic
uncomputation, reducing quantum resource usage.
Proto-Quipper [6] is built upon intuitionistic linear

3
EAI Endorsed Transactions

on Context-aware Systems and Applications
| Volume 10 | 2024 |

Nguyen Van Han

logic and allows for expressive and safe quantum circuit
descriptions. QWire [5], embedded in the Coq proof
assistant, supports verified quantum programming and
circuit optimization.

In conclusion, QTT unifies logical, computational,
and physical principles in a type-theoretic framework
that ensures correctness and safety in quantum
programming. Through constructs like linear types,
tensor products, and dependent types, and grounded in
categorical semantics, QTT provides a foundation for
formally verified quantum software. Its integration into
modern quantum programming languages illustrates
its growing practical relevance and its potential to
guide future research in quantum computation, formal
verification, and language design.

5. Conclusion and Future Work
Quantum Type Theory (QTT) provides a rigorous
and expressive framework for modeling quantum
computation using the principles of type theory, linear
logic, and category theory. Through its foundations
in linear type systems and categorical semantics,
QTT ensures correctness by construction—preventing
common quantum errors such as cloning and unsafe
measurement through static type checking.

We reviewed the core concepts of QTT, including
function and tensor types, sum types for quantum mea-
surement, and dependent types for parametric reason-
ing. We highlighted major contributions, including the
quantum lambda calculus by Selinger and Valiron [8],
categorical models by Abramsky and Coecke [1], and
language implementations such as Silq [3], Proto-
Quipper [6], and QWire [5]. These developments col-
lectively advance the theoretical and practical frontiers
of quantum programming.

Despite the progress, several challenges remain.
First, the integration of dependent types into practical
quantum languages is still limited, and further research
is needed to balance expressiveness with usability
and compilation efficiency. Second, bridging the gap
between type-theoretic models and quantum hardware
constraints—such as noise, decoherence, and qubit
connectivity—remains an open problem. Third, there is
growing interest in extending QTT to support hybrid
quantum-classical interaction, as seen in emerging
quantum control languages.

Future work may also explore the intersection of QTT
with quantum machine learning, quantum artificial
intelligence, and verified quantum cryptography. As
quantum devices scale and diversify, the need for
robust, type-safe, and formally verified software will
become increasingly critical.

In conclusion, Quantum Type Theory stands as
a promising framework at the intersection of logic,
semantics, and quantum programming. Continued

interdisciplinary research is essential for making QTT
not only foundational but also practical for next-
generation quantum software systems.

References
[1] Samson Abramsky and Bob Coecke. A categorical

semantics of quantum protocols. Proceedings of the 19th
Annual IEEE Symposium on Logic in Computer Science
(LICS), pages 415–425, 2004.

[2] Nick Benton. A mixed linear and non-linear logic:
Proofs, terms and models. Technical Report UCAM-CL-
TR-352, University of Cambridge, Computer Laboratory,
1994.

[3] Benjamin Bichsel, Michael Baader, Timon Gehr, and
Martin Vechev. Silq: A high-level quantum language
with safe uncomputation and intuitive semantics. In
Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI), pages 286–300. ACM, 2020.

[4] Jean-Yves Girard. Linear logic. Theoretical Computer
Science, 50(1):1–101, 1987.

[5] Jennifer Paykin, Robert Rand, and Steve Zdancewic.
Qwire: a core language for quantum circuits. In
Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL), pages 846–
858. ACM, 2017.

[6] Neil J. Ross and Peter Selinger. Quantum programming
using the proto-quipper language. In Lecture Notes in
Computer Science (TQC 2014), volume 8401, pages 119–
132. Springer, 2014.

[7] Peter Selinger. Dagger compact closed categories and
completely positive maps. Electronic Notes in Theoretical
Computer Science, 170:139–163, 2007.

[8] Peter Selinger and Benoît Valiron. A lambda
calculus for quantum computation with classical control.
Mathematical Structures in Computer Science, 16(3):527–
552, 2006.

[9] Sam Staton. Algebraic effects, linearity, and quantum
programming languages. In LICS ’15: 31st Annual
ACM/IEEE Symposium on Logic in Computer Science,
pages 1–9. IEEE, 2015.

[10] Dominique Unruh. Quantum relational hoare logic.
Logical Methods in Computer Science, 16(4):1–48, 2020.

[11] André van Tonder. A lambda calculus for quantum
computation. SIAM Journal on Computing, 33(5):1109–
1135, 2004.

4
EAI Endorsed Transactions

on Context-aware Systems and Applications
| Volume 10 | 2024 |

	1 Introduction to Core Concepts and Their Implications
	2 Literature Review
	2.1 Foundational Logic and Linearity
	2.2 Quantum Lambda Calculi
	2.3 Categorical Semantics
	2.4 Type-Theoretic Language Design
	2.5 Formal Verification and Quantum Logic
	2.6 Summary

	3 Core Concepts and Definitions in Quantum Type Theory
	3.1 Function Types and Linearity
	3.2 Linear Types
	3.3 Tensor Product Types
	3.4 Sum Types and Quantum Measurement
	3.5 Dependent Types
	3.6 Categorical Semantics
	3.7 Quantum Programming Languages

	4 Discussion
	5 Conclusion and Future Work

