
EAI Endorsed Transactions
on Context-aware Systems and Applications Review Article

A Review of Quantum Lambda Calculi: Linearity,
Semantics, and Programming Models
Tran Ngoc Dan*, Nguyen Thi Kim Phung, Nguyen Thi Hong Tu, Nguyen Van Han

Faculty of Information Technology, Thuyloi University. 175 Tay Son - Dong Da District - Hanoi City, Vietnam.
Email: tranngocdan @tlu.edu.vn

Abstract

Quantum lambda calculi extend classical lambda calculus to model quantum computation by integrating
linear types, quantum operations, and classical control. This paper surveys key calculi—including QΛ, QLC,
Proto-Quipper, and QML—highlighting their design principles, type systems, and semantic foundations. By
comparing their approaches to handling quantum data, control flow, and circuit construction, we provide
insights into the current state and future directions of quantum programming language research.

Received on 03 July 2025; accepted on 04 July 2025; published on 17 July 2025

Keywords: Quantum Lambda Calculus, Quantum Programming Languages, Quantum Circuits, Formal Semantics

Copyright © 2025 Tran Ngoc Dan et al., licensed to EAI. This is an open access article distributed under the terms of the
CC BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in
any medium so long as the original work is properly cited.

doi:10.4108/eetcasa.9668

1. Introduction

Quantum computing promises to solve certain classes
of problems exponentially faster than classical algo-
rithms, thanks to phenomena such as superposition,
entanglement, and interference [7]. However, program-
ming quantum systems remains a significant challenge
due to the delicate nature of quantum states and the
constraints imposed by quantum mechanics—such as
the no-cloning theorem and the irreversible nature
of measurement. To address these challenges, formal
models and type systems have been proposed that can
express quantum operations while ensuring correctness
through structural constraints.

One prominent approach in this direction is the
development of quantum lambda calculi, which extend
the classical lambda calculus to incorporate quantum
features. These calculi integrate quantum data and
operations into the functional paradigm, allowing rig-
orous reasoning about quantum computations. Foun-
dational works, such as van Tonder’s QΛ calculus [14],
Selinger and Valiron’s quantum lambda calculus with
classical control [12], and circuit-centric models like
Proto-Quipper [6], each demonstrate distinct strategies

∗Corresponding author. Email: tranngocdan@tlu.edu.vn

for representing and manipulating quantum informa-
tion while enforcing critical constraints through type
systems.

This paper surveys these quantum lambda calculi,
focusing on their syntactic constructs, type disciplines,
and operational semantics. We illustrate how each cal-
culus formalizes core quantum programming concepts
and contributes to the ongoing effort to build safe,
expressive, and verifiable quantum programming lan-
guages [1, 2, 10]. Our discussion highlights the trade-
offs and design decisions in each approach, laying the
groundwork for future research in quantum program-
ming language theory.

2. Literature Review
The development of quantum lambda calculi has
been significantly influenced by the intersection of
quantum computation and the theory of programming
languages. This section reviews the foundational and
contemporary literature that has shaped this field.

Early efforts in modeling quantum computation
using functional paradigms stem from the observation
that the no-cloning and no-deletion theorems of
quantum mechanics resemble constraints enforced by
linear logic [16]. Benton’s mixed linear and non-
linear logic [4] provided a theoretical foundation for
combining classical and quantum data handling, which
was later adapted in quantum programming contexts.

1
EAI Endorsed Transactions

on Context-aware Systems and Applications
| Volume 10 | 2024 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:<tranngocdan@tlu.edu.vn>

Nguyen Van Han et al.

Van Tonder’s QΛ calculus [14] represents one of the
earliest formal lambda calculi that includes quantum
data types, unitary operations, and measurement. QΛ

maintains strong syntactic correspondence with tradi-
tional lambda calculus while enforcing quantum lin-
earity constraints through a type system. It formalizes
quantum computation using a syntax that makes quan-
tum and classical operations explicit and separate.

Selinger and Valiron introduced a quantum lambda
calculus with classical control [12], addressing the
hybrid nature of quantum programs where classical
control governs quantum operations. Their calculus
provides a denotational semantics using category
theory, and the authors prove key properties such
as subject reduction and confluence. This model
later influenced the semantics for functional quantum
languages like Quipper [6].

Quipper [6] emerged as a scalable, practical quan-
tum programming language rooted in a functional
paradigm. Although Quipper is implemented in
Haskell and designed for quantum circuit generation,
it draws heavily from quantum lambda calculus prin-
ciples. Its design includes powerful abstractions for
manipulating quantum circuits and supports advanced
features like hierarchical circuits and automatic gate
synthesis.

Another major contribution is the QML language
[3], which builds a strongly typed functional language
using linear logic to model quantum control structures.
QML emphasizes totality and compositional semantics,
allowing formal reasoning and supporting a categorical
interpretation.

In addition to these syntactic approaches, categorical
models of quantum computation, such as those
developed by Abramsky and Coecke [1], and dagger
compact closed categories [11], provide a high-
level structural view. These models underpin the
semantics of many quantum lambda calculi and
support reasoning about entanglement and quantum
protocols through diagrammatic reasoning.

Recent efforts also address the integration of
algebraic effects [13], geometry of interaction [5], and
verified compilation [8], reflecting a growing interest
in practical and verified quantum programming.
Functional approaches to modeling quantum effects
using monads [15] and Haskell-based embeddings
[9] further connect theoretical developments with
implementation concerns.

Overall, the literature reflects a rich interplay
between type theory, semantics, and quantum compu-
tation, with quantum lambda calculi providing a prin-
cipled framework for expressing and reasoning about
quantum programs.

3. Core Concepts and Definitions in Quantum
Lambda Calculi [2, 6, 12, 14]
Quantum lambda calculi extend classical lambda calcu-
lus to incorporate principles of quantum computation,
such as superposition, entanglement, and no-cloning
constraints. This section reviews the fundamental con-
cepts, type systems, and operational semantics of four
prominent quantum lambda calculi, illustrating their
main ideas with examples.

3.1. The Quantum Lambda Calculus QΛ (van Tonder,
2004)
Van Tonder’s QΛ calculus is one of the earliest
full quantum lambda calculi integrating classical and
quantum data in a unified syntactic framework with
well-defined operational semantics [14]. Quantum
states are treated as first-class terms, and unitary
transformations are encoded directly in the calculus.

Core Definition: Terms include classical variables,
abstractions, and applications, together with quantum
states represented by vectors in Hilbert space. The
calculus enforces linearity via its operational semantics,
ensuring quantum coherence and respecting the no-
cloning theorem [14].

Example: A qubit in equal superposition is repre-
sented as:

|ψ⟩ =
1
√

2
(|0⟩ + |1⟩),

where |0⟩ and |1⟩ are basis states encoded as constants.
Applying a Hadamard gate H is represented as:

H |0⟩ =
1
√

2
(|0⟩ + |1⟩).

3.2. Classical Control and Linear Types in QLC
(Selinger and Valiron, 2006)
Selinger and Valiron developed QLC to distinguish
classical control flow from quantum data manipulation
while enforcing linearity through a linear type
system [12]. This prevents illegal operations like
copying quantum data, adhering to physical quantum
constraints.

Core Definition: The language separates classical and
quantum data in its syntax. Linear types enforce
resource usage constraints, ensuring that quantum
data is neither duplicated nor discarded unsafely.
Unitary operations and measurements are expressed as
primitives within the calculus [12].

2
EAI Endorsed Transactions

on Context-aware Systems and Applications
| Volume 10 | 2024 |

A Review of Quantum Lambda Calculi

Example: A linear lambda term taking a qubit and
returning a classical measurement outcome:

λq:Qubit. measure(q).

This term represents a function consuming exactly
one quantum bit and producing a classical bit as the
measurement result.

3.3. Practical Quantum Programming with
Proto-Quipper (Green et al., 2013)
Proto-Quipper is designed for practical quantum pro-
gramming by embedding linear types in a higher-order
setting to enable circuit description and manipulation
[6]. It supports the construction and composition of
quantum circuits as first-class objects.

Core Definition: Proto-Quipper’s terms are linear
lambda terms that build circuit data structures instead
of executing quantum operations directly. This enables
meta-programming over circuits, allowing modular and
reusable quantum code [6].

Example: Building a quantum circuit applying a
Hadamard gate to a qubit:

circ = λq. apply H q,

where apply constructs the circuit representation
corresponding to the gate application.

3.4. Quantum Data and Functional Programming in
QML (Altenkirch and Grattage, 2005)
QML integrates quantum data types within a functional
programming paradigm, combining classical control
with quantum data manipulation [2]. It features pattern
matching and a rich type system to handle quantum
effects explicitly.

Core Definition: QML extends the lambda calculus
with quantum data types, classical control structures,
and measurement effects. Its type system tracks
quantum information flow to maintain correctness with
quantum mechanics [2].

Example: A QML function creating a Bell state
entanglement:

bell = λ(). let q1 = |0⟩ in
let q2 = |0⟩ in
apply H q1;

apply CNOT (q1, q2).

This initializes two qubits and applies Hadamard and
controlled NOT gates to produce an entangled pair.

Each calculus approaches the challenge of combining
quantum mechanics with functional programming
from different angles: van Tonder’s QΛ emphasizes
a unified quantum-classical syntax [14]; Selinger
and Valiron’s QLC focuses on linear typing and
classical control [12]; Proto-Quipper prioritizes circuit
construction with linear types [6]; and QML blends
quantum data types with classical control and pattern
matching [2].

This diversity highlights the rich design space of
quantum lambda calculi and their foundational role in
quantum programming language research.

4. Discussion
The development of quantum lambda calculi reflects
the diverse theoretical and practical requirements of
quantum programming languages. Each system—QΛ,
QLC, Proto-Quipper, and QML—prioritizes different
aspects of quantum computation, from operational
semantics to circuit construction and type safety.

Van Tonder’s QΛ calculus [14] was among the earliest
efforts to build a fully quantum lambda calculus with
operational semantics inspired by classical functional
languages. It serves as a foundational formal model but
is not designed for practical programming. Its main
contribution lies in demonstrating how superposition,
entanglement, and unitary operations can be encoded
directly in a lambda calculus while enforcing linear
constraints through evaluation rules.

In contrast, QLC by Selinger and Valiron [12] takes
a hybrid approach that separates classical control
structures from quantum data. The introduction of
a linear type system ensures safe usage of quantum
resources, aligning the language with physical laws
such as the no-cloning theorem. This design choice
emphasizes control-flow correctness, making QLC an
important step toward the integration of logic and type
theory in quantum computing.

Proto-Quipper [6] focuses on circuit generation
rather than direct quantum computation. By treating
circuits as first-class objects and using linear types
to manage qubit usage, it bridges the gap between
theoretical models and implementable tools. It reflects
a shift from pure semantics to practical compiler design
and circuit representation, which is crucial for the
development of scalable quantum software.

QML, developed by Altenkirch and Grattage [2],
integrates quantum effects into a functional language
with pattern matching and classical control. Its
semantics make quantum states and operations explicit,
allowing programmers to reason about entanglement
and measurement within a familiar programming
paradigm. It also reflects an early attempt to merge
type theory with quantum state evolution in a fully
compositional way.

3
EAI Endorsed Transactions

on Context-aware Systems and Applications
| Volume 10 | 2024 |

Nguyen Van Han et al.

Together, these systems highlight the tension between
expressiveness, semantic rigor, and implementability.
While QΛ and QLC are more focused on formal
semantics and foundational logic, Proto-Quipper and
QML emphasize usability and programmability in
real-world quantum computing contexts. The use of
linear logic across all systems reflects a consensus
on the necessity of tracking quantum resource usage
precisely—an idea originally advocated by linear type
theorists like Wadler [16].

Further, the growing interest in categorical and effect-
based semantics, as seen in works like Abramsky and
Coecke’s categorical models [1] and Staton’s algebraic
effects [13], suggests that future quantum lambda
calculi may benefit from a richer integration of category
theory and effect systems to reason about quantum
control and measurement.

Overall, these calculi provide crucial building
blocks for both the theoretical underpinnings and
the practical realizations of quantum programming
languages, paving the way toward verified, modular,
and expressive quantum software.

5. Conclusion and Future Work
Quantum lambda calculi provide a principled frame-
work for integrating the abstract reasoning capabilities
of lambda calculus with the unique features of quantum
computation, such as superposition, entanglement, and
no-cloning. Through various formulations, including
QΛ [14], the Selinger-Valiron calculus [12], and prac-
tical implementations like Quipper [6], these models
have demonstrated the expressive power and theoreti-
cal clarity needed to reason about quantum programs
with classical control and quantum data.

The incorporation of linear logic and categorical
semantics has ensured consistency with the physical
constraints of quantum mechanics, while also opening
avenues for compositional semantics and formal
verification. Moreover, languages like QML [3] and
models based on algebraic effects [13] suggest that
quantum lambda calculi can serve not only as
theoretical artifacts but also as practical foundations for
emerging quantum programming platforms.

Looking ahead, several challenges and opportunities
remain. One key area for future research is the
development of type systems that can statically capture
resource usage, entanglement, and classical/quantum
separation in a more expressive manner. Another is the
formal verification of quantum programs, including the
correctness of quantum compilers and optimizers [8].

Furthermore, integrating quantum lambda calculi
with contemporary quantum hardware toolchains, as
well as expanding their expressiveness to model noisy
intermediate-scale quantum (NISQ) computations and
quantum error correction, remains largely unexplored.

There is also growing interest in unifying the
semantic insights of categorical quantum mechanics [1]
with operational quantum lambda calculi, potentially
leading to more robust and formally grounded
quantum software frameworks.

In summary, quantum lambda calculi remain a
fertile area of research at the intersection of quantum
computing, type theory, and programming language
semantics. Their continued development is critical to
advancing both the theory and practice of quantum
programming.

References

[1] Samson Abramsky and Bob Coecke. A categorical
semantics of quantum protocols. Proceedings of the 19th
Annual IEEE Symposium on Logic in Computer Science,
pages 415–425, 2004.

[2] Thorsten Altenkirch and James Grattage. A functional
quantum programming language. In Proceedings of
the 20th Annual IEEE Symposium on Logic in Computer
Science (LICS), pages 249–258. IEEE, 2005.

[3] Thorsten Altenkirch, James Grattage, and Amr Sabry.
Qml: Quantum functional programming. Mathematical
Structures in Computer Science, 21(2):233–246, 2011.

[4] Nick Benton. A mixed linear and non-linear logic:
Proofs, terms and models. Logic in Computer
Science, 1994. LICS’94. Proceedings., Ninth Annual IEEE
Symposium on, pages 121–130, 1994.

[5] Dan R. Ghica and Aleksandar Smith. Geometry
of interaction for a quantum programming language.
Logical Methods in Computer Science, 16(2), 2020.

[6] Alexander S. Green, Peter L. Lumsdaine, Neil J. Ross,
Peter Selinger, and Benoît Valiron. Quipper: A scalable
quantum programming language. ACM SIGPLAN
Notices, 48(6):333–342, 2013. https://arxiv.org/abs/
1304.3390.

[7] Michael A. Nielsen and Isaac L. Chuang. Quantum
Computation and Quantum Information. Cambridge
University Press, 10th anniversary edition edition, 2010.

[8] Neil J. Ross. Verified compiling for a functional quantum
language. PhD thesis, Dalhousie University, 2015. https:
//dalspace.library.dal.ca/handle/10222/73503.

[9] Amr Sabry. Modeling quantum computing in haskell.
Proceedings of the 8th ACM SIGPLAN International
Conference on Functional Programming (ICFP), pages
100–112, 2003.

[10] Peter Selinger. Towards a quantum programming
language. Mathematical Structures in Computer Science,
14(4):527–586, 2004.

[11] Peter Selinger. Dagger compact closed categories and
completely positive maps. Electronic Notes in Theoretical
Computer Science, 170:139–163, 2007.

[12] Peter Selinger and Benoît Valiron. A lambda calculus for
quantum computation with classical control. Mathemat-
ical Structures in Computer Science, 16(3):527–552, 2006.
https://arxiv.org/abs/quant-ph/0603065.

[13] Sam Staton. Algebraic effects for quantum computation.
Electronic Proceedings in Theoretical Computer Science,
195:357–374, 2015.

4
EAI Endorsed Transactions

on Context-aware Systems and Applications
| Volume 10 | 2024 |

https://arxiv.org/abs/1304.3390
https://arxiv.org/abs/1304.3390
https://dalspace.library.dal.ca/handle/10222/73503
https://dalspace.library.dal.ca/handle/10222/73503
https://arxiv.org/abs/quant-ph/0603065

A Review of Quantum Lambda Calculi

[14] Andris van Tonder. A lambda calculus for quantum
computation. PhD thesis, University of Oxford, 2004.
https://arxiv.org/abs/quant-ph/0401147.

[15] Juliana K Vizzotto, Thorsten Altenkirch, and Amr Sabry.
Structuring quantum effects: superoperators as monads.

Electronic Notes in Theoretical Computer Science, 176:303–
319, 2006.

[16] Philip Wadler. Linear types can change the world!
Programming Concepts and Methods, pages 561–581,
1993.

5
EAI Endorsed Transactions

on Context-aware Systems and Applications
| Volume 10 | 2024 |

https://arxiv.org/abs/quant-ph/0401147

	1 Introduction
	2 Literature Review
	3 Core Concepts and Definitions in Quantum Lambda Calculi vantonder2004lambda, selinger2006lambda, green2013quipper, altenkirch2005functional
	3.1 The Quantum Lambda Calculus Q (van Tonder, 2004)
	3.2 Classical Control and Linear Types in QLC (Selinger and Valiron, 2006)
	3.3 Practical Quantum Programming with Proto-Quipper (Green et al., 2013)
	3.4 Quantum Data and Functional Programming in QML (Altenkirch and Grattage, 2005)

	4 Discussion
	5 Conclusion and Future Work

