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Abstract

Graph Neural Networks (GNNs) have emerged as a powerful tool for learning representations in graph-
structured data. However, traditional message-passing mechanisms often struggle with uncertainty and noise
in node features and graph topology. In this paper, we propose Fuzzy Message Passing (FMP), a novel
approach that integrates fuzzy max-min aggregation into GNNs to improve robustness against uncertainty.
Our method enhances node embeddings by leveraging fuzzy logic principles, ensuring better stability and
interpretability in complex graph tasks. Experimental results on benchmark datasets demonstrate that FMP
outperforms conventional message-passing schemes, particularly in scenarios with noisy or incomplete data.
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1. Introduction
Graph Neural Networks (GNNs) are widely used in
tasks such as node classification, link prediction, and
graph clustering [1, 7]. Traditional GNNs rely on mes-
sage passing to aggregate neighborhood information,
using deterministic functions such as mean pooling,
sum aggregation, or attention mechanisms [9]. How-
ever, these methods fail to account for uncertainty
and noise in real-world graphs, leading to suboptimal
performance in complex applications.

To address this limitation, we propose Fuzzy Mes-
sage Passing (FMP), which introduces fuzzy logic
principles into GNNs. Specifically, we integrate fuzzy
max-min aggregation into the message-passing pro-
cess, allowing for improved robustness in uncertain
environments. Our approach provides a more inter-
pretable mechanism for handling uncertainty and
ensures stable node embeddings.

The remainder of the paper is as follows: Section
2 presents related work, including an overview of
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GNNs, uncertainty in graph learning, and linguistic
variables in hedge algebra. Section 3 describes
the Fuzzy Message Passing Framework, including
fuzzy membership computation and aggregation
mechanisms, and Section 4 concludes the paper with
future directions.

2. Literature review and related work

2.1. Graph Neural Networks
Graph Neural Networks have become a cornerstone
for learning from graph-structured data [10]. Existing
architectures such as Graph Convolutional Networks
(GCN) [7], Graph Attention Networks (GAT) [9], and
GraphSAGE [1] utilize message-passing techniques to
extract information from a node’s local neighborhood.
However, these models often fail to account for
uncertainty and noisy features in real-world graphs.

2.2. Uncertainty in Graph Learning
Several methods have been proposed to incorporate
uncertainty into GNNs. Probabilistic approaches, such
as Bayesian GNNs [11], attempt to model uncertainty
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through posterior distributions but suffer from high
computational costs. Fuzzy logic, introduced by
Zadeh [8], provides an alternative way to handle
uncertainty by representing imprecise information
with membership functions.

2.3. Linguistic Variables in Hedge Algebra
Hedge algebra, introduced by Cat Ho Nguyen,
provides a systematic approach to modeling linguistic
variables, which are fundamental in fuzzy logic-
based reasoning. Unlike traditional fuzzy logic
that relies on membership functions, hedge algebra
captures linguistic terms through algebraic structures,
enhancing interpretability and expressiveness [6]. In
the context of GNNs, linguistic variables from hedge
algebra can be utilized to model uncertainty in node
features, offering a new perspective on fuzzy message
passing. The integration of hedge algebra into GNNs
could lead to more refined representations, where
node embeddings better reflect the imprecise and
uncertain nature of graph data.

3. Proposed Methodology: Fuzzy Message
Passing
The Fuzzy Message Passing (FMP) framework
replaces conventional aggregation functions with
fuzzy max-min aggregation while incorporating lin-
guistic variables from hedge algebra. The process con-
sists of three main steps:

Hedge Algebra
Consider a linguistic variable representing “tempera-
ture” with the following terms:

• Primary terms: G = {Cold,Warm,Hot}

• Hedges: H = {Very,More or Less}

• Ordered Set Representation:

– Cold (C) < Warm (W) < Hot (H)

– Applying hedges:

∗ Very Cold (VC) < Cold (C) < More or
Less Cold (MLC)
∗ Very Warm (VW) < Warm (W)< More or

Less Warm (MLW)
∗ Very Hot (VH) < Hot (H) < More or Less

Hot (MLH)

Semantic Values Assignment
Let µ(.), fuz(.) be the fuzziness measures of hedges
and primary terms respectively. Fuzziness measure of

a linguistic variable x = hn . . . h1h0C is calculated by:

fuz(x) =
n∏
i=0

µ(hi)fuz(C) (1)

Each term is assigned a numerical semantic value, for
example:

• fuz(Cold(C)) = 0.2, fuz(Warm(W ) = 0.5, and
fuz(Hot(H) = 0.8

• µ(V ery) = 0.5, µ(More or Less) = 0.3

• Very Cold (VC) = 0.1, More or Less Cold (MLC)
= 0.3

• Very Warm (VW) = 0.4,
More or Less Warm (MLW) = 0.6

• Very Hot (VH) = 0.7, More or Less Hot (MLH) =
0.9

Fuzziness Measure Calculation
By applying the Equation 1, fuzziness measure for a
term x is computed using:

fuz(Very Cold) =
0∏

i=0

µ(hi)fuz(C)

= µ(Very) ×fuz(Cold)

= 0.6

fuz(Very Warm) =
0∏

i=0

µ(hi)fuz(C)

= µ(Very) ×fuz(Warm)

= 0.1

fuz(Very Hot) =
0∏

i=0

µ(hi)fuz(C)

= µ(Very) ×fuz(Hot)

= 0.16

fuz(More or Less Hot) =
0∏

i=0

µ(hi)fuz(C)

= µ(More or Less) ×fuz(Hot)

= 0.24

The fuzziness measure quantifies the uncertainty of
linguistic terms:

• Primary terms (Cold, Warm, Hot) have higher
fuzziness, meaning they are more ambiguous.

• Hedged terms (Very Cold, More or Less Cold,
etc.) have lower fuzziness, meaning they reduce
uncertainty.
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3.1. Fuzzy Membership Computation
Each node feature is transformed into a fuzzy mem-
bership value, representing the degree of belonging
to a particular class or category. Using linguistic vari-
ables from hedge algebra, node features can be catego-
rized into qualitative levels (such as "low," "medium,"
"high"), improving interpretability:

µi = fuz(xi) (2)

where xi is the node feature, and fuz(xi) is the
fuzziness measure in hedge algebra (HA) [5]. It is a
key concept in hedge algebra theory, which provides
a formal approach to handling linguistic variables.
Hedge algebra is often used as an alternative to fuzzy
set theory for modeling qualitative and linguistic
values.

3.2. Fuzzy Max-Min Aggregation with Linguistic
Variables
Max-Min aggregation is a robust mathematical tool
for handling linguistic information under uncertainty.
Its applications in NLP, fuzzy logic, and linguistic
decision-making enhance computational linguistics’
ability to process imprecise and vague linguistic
constructs. Future research directions may explore
hybrid models integrating Max-Min aggregation with
deep learning architectures for neuro-symbolic AI in
linguistics [2–4]

Example: Max-Min Computation of Linguistic
Variables
Consider a fuzzy linguistic system with three
linguistic terms representing the performance level of
a system:

• Poor (L1)

• Average (L2)

• Excellent (L3)

Each linguistic variable is associated with a fuzzy
membership function:

fuzL(x) =


Poor fuz(L1) = 0.3
Average fuz(L2) = 0.7
Excellent fuz(L3) = 0.9

Max-Min Aggregation Computation
1. Max Aggregation (Emphasizing the Most Signifi-
cant Linguistic Term):

max(Poor,Average,Excellent) = Excellent

Thus, the system’s performance is mostly described as
Excellent.

2. Min Aggregation (Capturing the Most Restric-
tive Linguistic Term):

min(Poor,Average,Excellent) = Poor

This indicates that the system has at least some
characteristics of Poor performance.

The Max-Min aggregation provides insights into the
overall linguistic evaluation:

• The Max operation suggests the system is largely
perceived as Excellent.

• The Min operation ensures that some level of
Poor performance is not overlooked.

This approach is useful in fuzzy decision-making,
sentiment analysis, and explainable AI applications.

3.3. Message Passing with Linguistic Variables in
Graph Neural Networks
For a given node v, feature aggregation from its
neighborhood N(v) is performed using fuzzy max-
min operations. Linguistic hedges modify the degree
of membership based on qualitative importance levels:

h
(t+1)
v = fu∈N(v)(h

(t)
u , euv) (3)

where euv represents linguistic relationships of
edge weight between vertices u and v. The final
node embeddings are computed using a non-
linear activation function, such as ReLU, followed
by normalization to enhance stability and prevent
over-smoothing. By integrating hedge algebra, these
embeddings maintain semantic consistency, making
them more robust in uncertain environments.

Linguistic Variables Message Passing in a GNN
Consider a linguistic graph G = (V , E) where:

• V represents words in a sentence, each associ-
ated with a linguistic variable.

• E represents syntactic or semantic relationships
between words.

Each node vi has an initial feature representation

h
(0)
i , which is a linguistic variable encoding informa-

tion.

Message Passing Rule
At each layer t, the node features are updated using
the message passing functioni:

m
(t)
i =

∨
j∈N(i)

AGG(h(t−1)
j , eij ) (4)

where:

3
EAI Endorsed Transactions 

on Context-aware Systems and Applications 
| Volume 10 | 2024 |



Duong Minh Tuan

• N(i) is the set of neighbors of node i.

• eij is the edge weight, representing linguistic
relationships.

• AGG(·) is an aggregation function of Max-Min
aggregation in fuzzy logic:

AGG(hj , eij ) = max(min(hj , eij )) (5)

Node Update Function

After computing the aggregated message m
(t)
i , we

update each node’s feature as:

h
(t)
i = σ (Wm

(t)
i + b)

where:

• W is a learnable weight matrix.

• b is a bias term.

• σ is a non-linear activation function

4. Conclusion and forthcoming study
In this paper, we introduced Fuzzy Message Passing
(FMP), a novel framework that integrates fuzzy max-
min aggregation with linguistic variables from hedge
algebra into GNNs. By leveraging hedge algebra,
FMP enhances the representation of uncertainty in
graph learning, providing a structured way to model
qualitative linguistic terms such as "low," "medium,"
and "high." Our approach improves interpretability
and robustness in handling noisy and incomplete
graph data.

The experimental results show that FMP achieves
superior performance under uncertain conditions,
highlighting the importance of linguistic variables
in refining node embeddings. Future work will
explore dynamic linguistic hedges to further adapt
aggregation strategies based on contextual graph
information. Additionally, we aim to extend FMP to
heterogeneous and dynamic graphs, broadening its
applicability in real-world scenarios.
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