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1. Introduction
Assessment of task difficulty and cognitive load are key 
factors in the improvement of visual operation per- 
formance during human-computer interaction (HCI), and 
in the usability of HCI systems. In particular, temporal 
measurements are imperative for evaluation of the 
operational procedures of these systems. Bio- logical 
measurements are the metrics often used to observe 
changes in responses during task operation and 
performance. Since eye tracking and pupillary metrics 
of attention or cognitive load can be observed visu- 
ally, these metrics are frequently used to examine the 
suitability of user interfaces [1, 2]. As a typical eye 
tracking metric, microsaccades (MSs) are often referred 
to as an index of high level cognition [3, 4]. Also, pupil 
response indicates cognitive activity, and in some studies 
pupil sizes are measured synchronously using eye 
tracking measurements [5, 6]. Pupil response has 
∗Corresponding author. Email: nakayama@ict.e.titech.ac.jp 

some latency in reacting to the source of influence, and 
thus simultaneous analysis using other ocular metrics 
may not be easy [7]. If the same source affects these ocular 
responses, their relationships and mechanisms should be 
investigated and analysed [8]. Recent mod- elling 
techniques may be able to extract latent activity, so that 
the relationship between task performance, the level of 
task difficulty, and factors of the visual image presented 
can be analysed. 

In this paper, visual search task performance is 
analysed using observed temporal MS frequency and 
pupillary changes, by comparing these with 
participant’s ratings of the level of cognitive load [9, 
10]. The changes in ocular metrics and correlation with 
ratings of cognitive load are evaluated during each 
stage of the experiment. The contribution of the 
experimental settings is extracted using a state-space 
modelling technique, and chronological task activity is 
monitored [11–13]. 

The possibility of evaluating temporal changes in cognitive workloads during a visual search task is examined 
using microsaccade (MS) rates and pupillary changes. The experimental task was designed as a search for a 
specific figure, where task difficulty and reaction accuracy during the trials were controlled. Individual 
cognitive workloads were measured after the experimental sessions were conducted, using NASA-TLX scale 
ratings. Temporal changes in the cognitive load were identified using metrics of oculomotors during two 
stages of task processing, by comparing cognitive loads with individual ratings on a scale. Since the source 
of the load may be a common one, changes in latent attention resources required for the task were estimated 
with a designated state-space model, using the observation data in order to synthesise measurement of MS 
rates and pupillary changes. The predicted levels of attention resources correspond to the activity during the 
performance of the experimental tasks during the trials, and reflected some of the rating scores for workload 
scales. Also, the ranges of confidence intervals for attention resources correlate significantly with the ratings 
for information processing at the stage where visual stimulus is presented during tasks. 
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    The following topics will be addressed in this chapter. 
• Changes in ocular metrics in response to the level

of cognitive load during two stages of a visual
search task are examined.

• Levels of cognitive workload during search tasks
is estimated using a state-space modelling
technique with microsaccade rates and pupil
diameters.

• The temporal changes in workload are analysed
using experimental factors which may affect
responses.

• Factors of cognitive workload can be extracted
based on their comparison with the ratings for the
conventional measurement of workloads, which
in this case are NASA-TLX scales.

The remainder of the paper is structured as follows. 
Section 2 reviews related works regarding this topic. 
Section 3 presents the experimental method, including 
the task and procedures. Results of the metrics 
measured are summarised in Section 4. Estimation 
of latent activity during the task using modelling 
techniques is discussed in Section 5. An overall 
discussion is presented in Section 6, and the conclusions 
of this paper are summarised in Section 7. 

2. Related works

2.1. Cognitive load and ocular metrics

Generally, human information processing requires 
attention or cognitive load to perform any task. If the 
workload amount is above the processing capacity, this 
may lead to the failure of the task or its incomplete 
processing, such as when accidents occur while driving if 
motorists miss visual objects on the road like obstacles 
or potholes. 

However, most assessments are based on subjective 
human reports or on psychometric scales. One of the 
major scales is the National Aeronautics and Space 
Administration Task Load Index (NASA-TLX) [14]. This 
scale has been developed for various tasks by adjusting 
the weights of 6 of the factor ratings of the index [15, 
16]. This technique is intended to evaluate the usability 
of a developed system, using specialised assessment 
techniques developed for this purpose [2]. In these 
applications, ocular metrics are also employed [1]. As 
ocular metrics can be measured temporally, 
chronological assessment regarding task processing 
may be possible [17–19]. Therefore, the metrics of 
microsaccades (MSs) and pupil response have often 
been used [4, 20]. In particular, MS frequency and 
MS characteristics are often used to analyse high level 
information processing, such as with indicators of the 

covert orienting of attention [21, 22]. 
While these metrics may respond to cognitive load, they 

are not well synchronised [5], and cause response 
latencies as a result. The two metrics respond to cognitive 
load factors, but the conditions or the characteristics of 
responses may be different [23]. Therefore, overall 
cognitive load or attention levels should be estimated 
using these measurements. 

2.2. Modelling approach 
Biological responses can be observed as peripheral 
reactions, and include ocular activities. Cognitive load 
may occur as a form of latent behaviour. Even if 
observed metrics show different tendencies, they may 
be due to common factors such as the latent behaviour. 
As the latent activity can not be measured directly, an 
estimation technique may aid in the recognition of the 
chronological change. 

Recently, the Bayesian inference approach has 
provided some advantages to obtaining solutions to 
phenomena having insufficient data, such as where only 
a limited number of measurements are available [24–26]. 
There are also several calculation platforms which allow 
the introduction of various types of data [27–29]. In 
regards to this approach, the conventional experimental 
paradigms have been reanalysed and new evidence of 
mental mechanisms has been extracted [30, 31]. 

Temporal changes during the observation of eye 
tracking, including eye movement and pupillary changes, 
can be analysed using this approach [11, 32]. 

3. Experimental Method
Oculo-motor metrics such as eye movement and pupil 
diameter were measured during a visual search task 
designed for this purpose [9, 10]. A presentation diagram 
is shown in Figure 1. A visual search task is presented 
after the fixation of the eyes on the centre of the display 
(“Ready” stage). During a task (the “Go- task” stage), a set 
of figures was presented. The visual search task consisted 
of the counting of a targeted shape in a series of images 
which contained 7 different kinds of line-drawing figures, 
such as circles, triangles, squares, pentagons, and other 
shapes. 

3.1. Procedure 
The stimuli of line drawn figures were presented in the 
centre of a 87mm circle (visual angle: 10 deg.) with a 
white background, and presented on a 27-inch LCD 
screen (Eizo, EV2736WZ) which was positioned 
530mm away from the observer. Since the stimuli were 
illustrated using line drawn shapes, the level of 
luminance of the display background and the 
brightness of room remained constant, even as the 
number of shapes increased. 
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Figure 2. Scores of NASA-TLX 

Figure 1. Sequence of experimental stimuli 

Experimental stimuli were presented in the following 
order, as shown in Figure 1. 

1. An instruction regarding the subsequent trial was
presented

2. Fixation on a central point for 1.0 second

3. A blank image or “refresh” was displayed for 0.7
seconds (not illustrated)

4. A stimulus was presented and 3 alternative
responses were provided

An experimental program was created using MATLAB 
and Psychtoolbox-3 and presented to participants of the 
experiment. 

Each participant completed a set of 20 tasks twice 
(20 tasks × 2 sets, for a total of 40 tasks) with a short 
break in between sets so that participants could refresh 
themselves. Some participants took part in their two 
sessions on different days. 

The participants were 10 undergraduate university or 
graduate students (5 male and 5 female with a mean age 
of 21.9 years [SD=0.85]) who possessed sufficient visual 
acuity (both eyes above 0.8 [styled as 20/25 in some 
countries] with the naked eye or with corrected vision). 
Prior to the experiment, a complete explanation of the 
content of the experiment was given and formal consent 
was obtained (Institutional approval: #2019052). 

3.2. Experimental conditions 
The “bottom-up factor” for eye movement as a feature 
of visual stimuli displayed was evaluated using the 
following metrics. 

• Task difficulty and rate of correct responses
The visible size of stimuli decreased as the trial
sequence proceeded, and the increase in task
difficulty of detecting the target was controlled as
a part of the design of the experimental. The 

responses to stimuli were classified into two levels 
of difficulty based on correct reaction times and 
cluster analysis [9]. 

• Saliency of visual stimuli
Since the quantity of figures presented increased
during the trials, visual complexity also increased
gradually, along with task difficulty. Complexity
was evaluated using the saliency of the visual
image stimuli, and saliency was computed using
OpenCV and StaticSaliency [10, 33].

3.3. Measurement of ocular metrics 
Microsaccade rate and pupil diameter. Both eye movement 
and pupil diameters were tracked using a ViewPoint 
EyeTracker (ArringtonResearch: BCU400, 400Hz) with 
a chin rest. Microsaccade rates were extracted using MS 
ToolBox [21, 34, 35]. Pupil sizes of each participant were 
standardised using a mean pupil sizes measured during 
the 1.2s before stimuli were shown. Also, pupil diameters 
during blink were removed, resulting in a 
vertical/horizontal aspect ratio of less than 0.7. 

Cognitive workload. The workload of each participant was 
evaluated using a visual analogue scale (VAS) on the 
NASA-TLX [15, 16]. The NASA-TLX is commonly used as 
a subjective assessment scale to measure the cognitive 
load of various workloads. In order to adapt this to a 
specialised task, the overall score was calculated using 
appropriated weights of the following 6 factors [14]. In 
this work, the inverted rank order of mean ratings was 
used. This consisted of 6 factors: Mental demand(MD), 
Physical Demand (PD), Time Demand (TD), Performance 
(OP), Effort (EF) and Frustration (FR). Overall workload 
was estimated as AWWL (Adaptive Weighted Workload) 
using 6 scores and their weights [14, 36]. 

4. Results of Responses

4.1. Participant assessment of own cognitive load
For each session the cognitive workload during the 
experimental task was measured using 6 dimensional 
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Figure 3. MS frequency and Relative Pupil size during two 
stages. 

NASA-TLX scales. The rated responses are summarised 
as box plots in Figure 2. The scores of “0: AWWL” on 
the left side of the figure show the results of the overall 
degree of cognitive load, which is based on the other 6 
item ratings of the 20 trials in total (2 trials × 10 
subjects). Ratings for mental demand (MD) and time 
demand (TD) are higher than for the other items, and 
physical demand (PD) is rated the lowest. These results 
confirm that the high requirement for mental demand 
(MD), time demand (TD) and effort (EF) represent 
aspects of the experimental task. 

4.2. Temporal changes in ocular metrics and levels of 
cognitive load 
Overall means of MS frequency and relative pupil 
size during two experimental stages are summarised in 
Figure 3. MS frequency was suppressed significantly 
between the “Go-task” stage and the “Ready” stage 
(t(4626) = 3.64, p < 0.01; Cohen’s d=0.10), while pupil 
size increased significantly between the “Ready” and 
the “Go-task” stages (t(4130) = 5.89, p < 0.01; Cohen’s 
d=0.17). These results show that the workload 
necessary for completing tasks affects both ocular 
metrics. 

MS Frequency and Pupil size. In order to extract factors of 
the changes in metrics, correlation analysis was 
conducted using NASA-TLX measurements in order to the 
evaluate contribution of participant’s perceptive 
workload during the task. Correlation analysis was 
conducted to assess workload levels at two levels of task 
difficulty using the above mentioned extracted data. Two 
typical cases are summarised. In the first case, the 
correlation coefficients of the Performance rating (OP) 
and the ocular metrics of the two stages are summarised 
in Figure 4. Pupil sizes remain correlated with the OP 
ratings of both stages, though coefficients of MS frequency 
remain around 0. There is little difference in 

Ready Go-task 
Stage 

Figure 4. Correlation of features of oculomotors with Performance 
rating (OP). 

Ready Go-Task 
Stage 

Figure 5. Correlation of features of oculomotors with Frustration 
rating (FR). 

the difficulty of the task. In the other case, correlation 
coefficients of the Frustration rating (FR) in Figure 5 
are summarised. In this figure, MS frequency remains 
correlated with the FR ratings of both stages, while 
pupil sizes correlate with FR ratings in the “Go-task” 
stage. These results suggest that the two ocular metrics 
may reflect a specific aspect of the workload. 

Correlation analysis. Correlation analysis was con- 
ducted on all ratings of cognitive load factors of the two 
levels of task difficulty. 

Correlation coefficients for Low task difficulty are 
summarised in Table 1, and the values for High task 
difficulty are summarised in Table 2. In these tables, 
only significant coefficients are displayed. As the tables 
show, pupil size during the “Go-task” stage correlates 
with some of the factors of workload even at a low level 
of task difficulty. As all coefficients are negative, smaller 
pupil sizes affect the higher ratings of workload factors. 
For high levels of task difficulty, some of the factor 
ratings correlate with MS frequency. Factor ratings of 
frustration (FR) correlate with MS frequency at both 
levels of task difficulty, as shown in Figure 5. 
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Table 1. Correlation between NASA-TLX Items and Microsac- 8 

cade Frequency, Pupil Diameter. (Low Difficulty)(N=20) 
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Table 2. Correlation Coefficient between NASA-TLX Items 
and Microsaccade Frequency, Pupil Diameter. (High Diffi- 
culty)(N=20) 
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Figure 6. Temporal change in MS rates for correct and incorrect 
responses. 

1.1 

4.3. Discussion 
Ocular metrics of MS frequency and pupillary changes 
were measured in response to visual search task which 
controlled the difficulty of the task in trials. 
Participant’s overall cognitive workload was measured 
using a rating scale of 6 factors of cognitive load based 
on NASA-TLX. In order to focus on the change of 
experimental stages, such as from the “Ready” stage 
while awaiting stimuli to the “Go-task” stage for the 
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response to the visual search task, the measured metrics 
were compared. 

Both metrics of MS frequency and pupil size changed 
significantly between the two stages, since the 
experimental task affects ocular activity in response to 
the cognitive load. The contribution of these activities on 
the ratings of measured perceptive cognitive load was 
analysed using correlation analysis. There are some 
significant correlation relationships between the two 
levels of task difficulty. Both ocular metrics correlate with 
some of the factor ratings, however the correlation 
relationship between the two metrics is different. 
Therefore, the two metrics may represent different 
aspects of cognitive load. 

In response to the cognitive load of the experimental 
tasks, 6 factors are extracted for use as a measurement 
scale [14]. Cognitive workload levels are then extracted 
from the metrics using these scales, which is the central 
purpose of this work. As the experimental stages are not 
independent activities, the cause of the changes should 
also be explained. A new analytical approach will be 
introduced in the next section in order to extract and 
analyse the metrics of this temporal processing activity. 

5. Modelling with microsaccade rate and pupil size

Figure 7. Pupillary change for correct and incorrect responses. 

5.1. Observed data 

A modelling technique used for estimating attention 
levels in a previous study of ours [11] is applied to 
the attention level measurements using a state-space 
model based on both the MS rate and pupil size. Both 
metrics were measured continuously during the 
experimental session. The observation period is focused 
on the 0.5∼4.5 second duration of each trial in regards to 
the distribution of a participant’s reaction time. Mean 
reaction time for the task was 2.75 seconds after stimulus 
onset. Mean metrics for MS rates during this period are 
summarised in Figure 6 and for relative pupil size in 
Figure 7. In these figures, mean temporal changes with a 
95% confidence interval between correct and incorrect 
responses are compared. There are some differences 
between them, but after 3 seconds they become 
synchronised. 

5.2. Model structure 
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MS frequency Pupil size 

Ready Go-task Ready Go-task 
AWWL - - - -0.45 

TD - - -0.36 -0.39 
OP - - -0.58 -0.52 
FR -0.78 -0.57 - -0.53 

Items 
MS frequency Pupil size 

Ready Go-task Ready Go-task 
MD -0.36 -0.52 - -0.36 
PD - 0.40 - -
OP - - -0.55 -0.38 
FR -0.72 -0.67 -0.33 -0.54 
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The model is designed as follows [27, 28]. The 
estimated “Attention resource (Attn)” of each 
participant isdefined in equation (1) as a summation 
of the level of attention during a task (S_level) as noted 
in equation (2), and the intercept for each consists of 
the response correctness (Correctness in two 
dimensions: correct and incorrect), the task difficulty (T 
askD in two dimensions: High and Low), individual 
factors (rID times 2 for 10 participants: 20 
dimensions) and the stimulus order factor (rPN in 
20 dimensions). As a hypothesis in the observation 
model, the change in observed MS rates is noted using 
a Poisson distribution because of the frequency of the 
occurrences, and the change in pupil size around an 
average is noted using a Normal distribution and its 
deviation [11, 12]. The tendency for pupillary changes 
in response to the level of attention is the opposite of 
the change in MS rate, as inverse transform is applied 
to the pupil responses [11]. 

Attn = S_level + Correctness + T askD + rID + rPN 

(1) 
State Model: 

(2) S_leveli ∼ Normal(S_leveli−1, σs) 

Observation Model: 
munoise ∼ Normal(Attn, σnoise) 

λ = exp(µnoise) 
MStimes ∼ Poisson(λ) 

rID[1] 
rID[2] 
rID[3] 
rID[4] 
rID[5] 
rID[6] 
rID[7] 
rID[8] 
rID[9] 

rID[10] 
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Figure 8. Latent attention levels 

0 0 1 

Pupilsize ∼ Normal(Attn, σp) 

All model parameters were estimated with the 
observation data and random sampling values using 
the MCMC (Markov Chain Monte Carlo) technique, 
which generates random values (4000 iterations with 
4 chains and a burn-in of 500). Conversion of model 
parameters is confirmed as Rˆ < 1.1, with the number of 
states controlled to extract optimum conditions such as 
(i = 1 . . . N , N = 4, . . . , 16) using R and Stan packages. A 
possible conversion solution shows that the model can 
estimate a latent level using the estimated parameters 
and the observation data. From the optimisation results, 
the number of states is set at 16. In addition, individual 
factors (rID) were assigned to different participants in 
the 1st and 2nd sessions because some participants 
participated as two separate individuals in two sessions. 

5.3. Results 
Estimated parameters. Estimated parameters are sum- 
marised in order to evaluate the model. Common latent 
attention levels during tasks can be represented in 
equation (2) as a series of parameters (S_level), which are 
sources of attention changes in the previously men- 
tioned equation (1). These posterior distributions are 
illustrated in Figure 8. The horizontal axis represents time 
bins (1∼16) in 0.25 second/bin increments. The vertical 
axis represents attention activity. The red band 

Figure 9. Individual factors of experiment participants 
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Figure 10. Attention levels of correct and incorrect responses. 

represents a confidence interval of 95%. The highest 
level of estimation is at 2.25 seconds (time bin=7) after 
stimulus onset at 1.7 seconds. The level of estimation 
decreases from its highest (2.25 seconds) to its lowest 
around 4 seconds. An additional estimated parameter 
of individual factors (rID) is summarised in Figure 9. 
Participants are divided into two columns. A pair of 
horizontally displayed distributions of (rID) from two 
trials by the very same participant show deviations, 
which means that some participants produced different 
distributions, such as for “rID[4]” and “rID[14]”, during 
each of their sessions. Therefore, individual factors of 
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Figure 11. Comparison of saliency (L,H) of visual stimuli 

all who participated in the two sessions are designated as 
factors of separate individuals. This is the reason why 
participants measurements are recorded separately in 
each of their two sessions, as mentioned above. 

The estimated attention resource (Attn) for correct and 
incorrect responses which are affected by another 
parameter (Correctness) is illustrated in Figure 10, where 
the blue line represents cases which are correct, and the 
green line represents cases which are incorrect, with a 
95% confidence interval. Overall, the estimated levels 
(Attn) for correct responses are significantly higher than 
the levels for incorrect responses (p < 0.05, Cohen d > 
0.24), though the value of the difference in (Correctness) 
is small. For incorrect responses, attention resources are 
more suppressed due to the requirement to perform 
complicated task processing. The overall trend shows that 
the level of attention resources is the smallest at 2.25 
seconds, time bin=7, 0.5 seconds after stimulus onset at 
1.7 seconds. The differences between the two responses 
are larger around just after stimulus onset (1.7 ∼ 2.45 
seconds; p < 0.01). 

Another estimated parameter of task difficulty (T 
askD) also affects attention resources (Attn), and their 
temporal changes are similar to the results of response 
correctness in Figure 10. 

When the contribution of individual factors to attention 
resources is considered, the factor for correct response is 
not significant. The factor for task difficulty at 1.95 
seconds just after stimulus onset (1.7 seconds) 
contributes to the decrease of the resource. The task 
difficulty may affect the change in attention resources. 

Contribution of saliency of visual stimuli. In addition to 
comparing the levels of attention resources of the 
estimated parameters, the contribution of image 
saliency of visual stimuli is also examined. Values of 
image saliency for 20 visual stimuli are calculated, and 
classified into two levels (High and Low). Temporal 
changes in levels of attention resources are illustrated 
in Figure 11. The minimum resource level at 2.25 
seconds (time bin=7) after stimulus onset also shows 
that the resources are being used for task processing. 
The suppression of resources decreases between the 

Low and High levels. When the level of image saliency 
is high, it may be easier to perceive visual stimulus, as 
suppression is reduced. On the other hand, low image 
saliency requires more attention, so the level of 
resources is wasted or reduced. These changes in 
response to levels of image saliency and to the order 
of the level of attention resources were also confirmed, 
when three levels of image saliency of visual stimuli are 
classified. 

This result shows that even attention resources (Attn) 
respond to external parameters of the model equations 
such as image saliency. 

Impact on cognitive workload. Since the level of estimated 
attention resources may affect individual NASA- TLX 
scale ratings, these correlation relationships are 
examined. The correlation coefficients of the estimated 
parameters and the ratings for NASA-TLX are 
summarised in Table 3. The horizontal column represents 
NASA-TLX scales, and the coefficients for averaged 
attention resources over trials (Attn), individual factor 
(rID), and range of confidence interval for attention 
resources (CId) are calculated. Some significant 
coefficients for attention resources (Attn) are observed 
in columns for time demand (TD), effort (EF), and overall 
value (AWWL). However, because most coefficients are 
positive values, this seems a little bit strange as more 
attention resources correlates with a higher task 
workload. Temporal changes in attention resources show 
a similar tendency. The attention resources (Attn) are 
given as a summation of several factor values shown in 
the equation (1). Though correlation coefficients are 
always positive during temporal changes, the parameter 
known as attention level (S_level) may not contribute to 
the relationship. 

As the ratings for task workload are the responses of 
individuals, the contribution of individual factor (rID) 
is evaluated as a coefficient on the second line of Table 
3. Most coefficients are negative, and absolute values
are comparable with coefficients for attention resources
(Attn). The individual factor (rID) is an intercept
for the equation (1), and it adjusts the change in attention
level (S_level) of each participant. Therefore, the
individual factor (rID) may represent a baseline for
attention resources during a task, so it can constitute the
cognitive workload of each individual.

In addition, temporal changes in attention resources 
show that the range of the confidence intervals is 
minimised during a period of time after stimulus onset. 
The deviation of confident intervals may change with the 
activity of task processing. Then, the range of the 
confidence intervals across trials (CId) is defined in order 
to examine the relationship between the level of 
workload and the change in attention resources (Attn). 
Correlation coefficients between the range of 
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Table 3. Correlation coefficients between NASA-TLX scores and estimated parameters 

est. AWWL MD PD TD OP EF FR 
Attn 0.55 (0.30) (-.05) 0.49 (0.17) 0.46 (0.33) 
rID -.60 (-.36) (0.03) -.56 (-.16) -.46 (-.35) 
CId (-.23) [-.43] (-.15) (-.33) (-.05) (0.01) (0.18) 
N=20 (10 participants × 2 sessions) 

Figure 12. Correlation coefficients between NASA-TLX scores and ranges of confidence intervals 

the confidence interval (CId) and ratings of NASA-TLX 
scales are summarised on the third line of Table 3, 
however the absolute values are relatively small and are 
not significant. 

For further analyses, calculation of the correlation 
coefficient is extended chronologically to every time 
bin. Though overall means of the range of the 
confidence interval (CId) do not contribute to the 
NASA-TLX scale ratings, they react to certain time bins. 
The correlation coefficients of their relationships using 
the 6 factor scales and AWWL are summarised 
chronologically in Figure 12. The horizontal axis 
represents time bins, and the vertical axis represents 
correlation coefficients. Two horizontal dotted lines 
show significant levels of probability for the coefficient 
(p < 0.05). The overall trends of these changes seem 
similar. Negative coefficients for mental demand (MD) 
and time demand (TD) are significant between 2.20 
and 2.45 seconds. This suggests that the range (CId) 
during these periods is reduced when the ratings are 
large. Also, the coefficient for mental demand (MD) 
is significant at a time bin of 4.25 seconds, which is 
as around the mean reaction time for the task. The 
coefficient may reflect the individual’s task response 
times. 

Another coefficient for individual factor (rID) 
changes contrary to the ranges of other values. In 
particular, the coefficient shows the highest at time bin 

7 after stimulus onset and the lowest at time bin 10 in 
response to change in attention levels (S_level). 

These results present the possibility that temporal 
changes in the estimated attention resources (Attn) can 
be used for chronological assessment of the cognitive 
workload. 

6. General Discussion

When correlation analysis was introduced to examine the 
relationships between each ocular metric using the 
experimental stages and individual ratings of cognitive 
load, the results were summarised but were inconsistent, 
though some significant differences were observed. 
These results suggest that every metric may detect 
different aspects of latent activity and their temporal 
changes. These ocular metrics provide information about 
the possibility of evaluating human behaviour and the 
effect of experimental conditions on visual search 
tasks. However, it is not easy to understand well 
nor summarise the changes in cognitive load using the 
results analysed. 

A modelling technique was introduced in order to 
summarise the responses and evaluate the factors of 
the experimental conditions. A modelling technique 
using individual MS rates and pupillary changes 
is introduced in order to estimate the amount of 
attention resources required during task processing. 
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The estimated results show that attention resources are 
reduced by the workload produced when the task has not 
been performed completely. The change in attention 
resources (Attn) is caused by variation of MS rates and 
pupillary changes, in addition to experimental factors 
such as parameters for Correctness and T askD in 
equation (1). So, temporal changes in the estimated 
attention resources (Attn) can be recognised as the 
amount of attention resources provided in order to 
perform the task. 

In regards to the change in MS rates in Figure 6, 
the MS rate is reduced after the release of cognitive 
attention and the dropping off of the stimulus onset. 
Since there are no significant differences in MS rates 
between correct and incorrect responses after 3 seconds, 
the task seems to be completed by around 3 seconds. 
Also, some differences in pupillary changes can be 
observed between stimulus onset and the 3 second 
point in Figure 7. Attention activity in Figure 8 suggests 
a decrease in the level in response to these reactions. In 
considering the mean reaction time of 2.75 seconds, the 
change in attention resources (Attn) may represent a 
processing stimulus during the initial stage of 
perceiving performance. The processing during later 
stages may consist of managing key input selections. 

Figures 10 and 11 show the differences in experi- 
mental conditions before stimulus onset. As Figure 8 
indicates, attention workload is boosted toward stim- 
ulus onset as is clearly presented by the MS rate shown 
in Figure 6. Since task difficulty was set to increase 
gradually, the rate of correct responses and reaction 
time became worse during the second half of the exper- 
imental session. There is the possibility that a previous 
trial might have influenced the beginning of the next 
task. However, the estimated parameter for the factor 
of stimulus order is not influenced by the presentation 
order. Pupil response shows a simple difference during 
task performance. Though the actual factor cannot be 
determined, these composite factors may influence the 
differences in metrics before stimulus onset. 

The estimated attention resources may reflect a level 
of cognitive workload, because both metrics are 
influenced by workload during the performance of the 
task. As an overall assessment, mean attention 
resources (Attn) correlate significantly with ratings for 
time demand (TD), effort (EF) and the summation 
(AWWL) of NASA-TLX scales. In particular, the 
individual factor (rID) is a main component of the 
attention resources and contributes to the correlation 
relationship, as shown in Table 3. For a chronological 
analysis, the range of confidence intervals for attention 
resources (CId) can serve as a mean for measuring 
changes in the cognitive workload level. The range 
of the confidence interval represents the degree of 
deviation in the estimated attention resources, which 
consist of individual responses in MS rate and pupillary 

responses. This means that instability of attention 
resources reflects levels of cognitive workload. Though 
the remaining parameters in equation (1) are constant 
during the experimental task, indicated levels of 
responses to the workload vary over the time course. 
The temporal changes in correlation coefficients in 
Figure 12 show workloads during the progress of 
performing a task. 

The parameters analysed are estimated using a state-
space modelling technique which extracts the latent 
activity necessary in order to perform a task. The 
results were based on individual responses and adapted 
them. As a few differences between individual responses 
during the two sessions were evident, some experimental 
conditions and tasks may affect the ocular reactions. 
These results are based on the specific conditions of the 
experiment. Also, all assessments are based on post 
modelling of the experimental measurements. 
Development of real time analysis and feedback regarding 
latent information processing will be subjects of our 
further study. 

7. Conclusion

Ocular information such as MS rates and pupillary 
changes were observed in order to evaluate cognitive 
load and experimental conditions during the perfor- 
mance of a visual search. Participant’s task reactions 
were analysed by comparing ocular information with 
participant’s ratings of the cognitive load using NASA- 
TLX scales. The responses, which included ocular infor- 
mation and experimental factors, were evaluated sepa- 
rately and their contribution to the cognitive workload 
was discussed. Also, a state-space model which repre- 
sents latent attention resources in response to solving 
the experimental tasks was introduced in order to con- 
duct an overall assessment. 

The following results are summarised. 

1. Both MS frequency and pupillary changes were
summarised in response to the task difficulty and
experimental conditions. The relationship
between ocular metrics and individual ratings of
NASA-TLX scales were analysed. Some significant
correlation relationships were observed, and the
possibility of detecting specific cognitive load was
examined.

2. All parameters of the state-space model which
was developed were estimated using MS rates
and pupillary changes measured during the
experiment. The number of states was optimised.

3. Attention resources were estimated using a
model, and the estimated base value measure- 
ments correspond with the conditions of the
experiment and the progress of task performance.
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4. The estimated attention resources represent some
ratings of cognitive workload, such as time
demand, effort and summation of ratings. In
particular, individual factors directly illustrate
the level of the workload, and individual ranges of
attention resources correlate chronologically with
some workload ratings in response to the progress
of the performance of the task.

Also, the problems which remain are summarised for 
further study. 
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