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Abstract 
 
This paper proposes a novel deep-learning technique that leverages the Efficient Vision Transformer –M5 (Efficient ViT-
M5) model to improve the existing design by offering a more computationally economical version that maintains good 
performance, making it highly suitable for practical applica-tions. The utilization of transfer learning involved leveraging 
pre-trained weights from the ImageNet dataset, substantially enhancing the model's accu-racy and efficiency. The 
proposed method involves training the advanced Effi-cientViTM5 model utilizing three widely recognized facial emotion 
recognition datasets: FER2013+, AffectNet, and RAF-DB. A comprehensive data augmentation pipeline is employed to 
enhance the diversity of the training data and bolster the model's robustness. The trained proposed model proved 
exceptional accuracy rates of 94.28% (FER2013+), 94.69% (AffectNet), and 97.76% (RAF-DB). The results emphasize 
the strength and effectiveness of the proposed model in identifying face emotions in various datasets, showcasing its 
potential for practical use in emotion-aware computing, security, and health diagnostics. The research significantly 
improves facial emotion recognition by introducing a reliable and practical way of recognizing emotions using cutting-
edge deep learning techniques. The results show the possibility of enhancing and flexible interactions between humans and 
computers, highlighting the efficacy of sophisticated deep learning models in addressing complex computer vision 
problems. 
 

Keywords: facial expression, facial emotion detection, face recognition, Vision Transformer (ViT), EffectiveViT-M5 

Received on 08 December 2024, accepted on 20 March 2025, published on 30 April 2025 
 
Copyright © 2025 K. T. Huynh et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-
SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as 
the original work is properly cited. 
 
doi: 10.4108/eetcasa.8101 
 

 
*Corresponding author. Email: hktu@hcmiu.edu.vn 
 

1. Introduction 

Over the last several years, social networks have seen a 
significant surge in popularity, attracting millions of 
members who actively participate regularly. These 
platforms facilitate the exchange of information, sharing 
expertise, and expressing emotions via postings such as 
text, Word, Excel, PDF files, and mainly photos. Out of 
all the means of communication, pictures are particularly 
notable for their exceptional effectiveness in conveying 
emotions and information with heightened clarity and 
vividness. Images can condense long sentences, 

emphasize certain aspects, and provide visual proof in 
different situations. Nevertheless, precisely deciphering 
the emotions represented in photographs, especially facial 
expressions, continues to be an intricate task. 
 Facial expressions play a crucial role in human 
communication since they convey a diverse array of 
emotions that are vital for social relationships. 
Automatically identifying these facial expressions from 
photos has profound consequences in several domains, 
such as human-computer interaction, security, marketing, 
and mental health treatment. The discipline of facial 
emotion recognition has arisen to address this need, 
creating approaches and methodologies to detect and 
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examine facial expressions precisely.  Recent 
technological breakthroughs, particularly artificial 
intelligence, have enhanced the capabilities of Facial 
Emotion Recognition (FER) systems. These technological 
breakthroughs have allowed the creation of advanced 
algorithms capable of accurately analyzing minute face 
movements and expressions. FER systems have several 
applications, such as evaluating consumer happiness in 
retail, tracking emotional well-being in healthcare, 
enhancing user experiences in gaming, and optimizing 
virtual meetings by offering immediate emotional 
feedback. 

Facial emotion recognition is an inherent difficulty in 
precisely identifying emotions from various people and 
situations. Emotion detection accuracy can be affected by 
factors such as cultural disparities, variations in 
illumination, and obstructions. It is necessary to develop 
strong models trained on various datasets and apply their 
knowledge to many situations to overcome these 
difficulties. 
Even with these progressions, FER still encounters 
substantial obstacles. The job's complexity arises from the 
variations in individual face anatomy, the existence of 
occlusions, and the dynamic nature of facial emotions. 
Furthermore, it is of utmost importance to guarantee the 
confidentiality and ethical use of FER technology since it 
encompasses delicate personal information. Current 
research in this domain persistently strives to expand the 
limits to develop FER systems that are more precise, 
dependable, and morally sound.  

Understanding human emotions and improving 
relationships via correct facial expression interpretation 
has become more critical due to the proliferation of social 
networks and digital communication platforms. In fields 
as diverse as entertainment, security, mental health, 
marketing, and human-computer interaction, FER plays a 
crucial role. Due to the complexity and diversity of 
human facial expressions, automated FER faces various 
problems despite its relevance. The efficacy and 
flexibility of traditional techniques for FER are limited 
since they depend on handmade features and heuristic 
approaches, which are only sometimes applicable to real-
world settings and different facial expressions. The 
complexity and intricacy of human emotions, as shown by 
nuanced and complicated facial expressions, provide the 
greatest obstacle to FER. Emotion detection and 
categorization are only possible with accounting for 
cultural variations, occlusions, lighting, and unique face 
shapes. Furthermore, current FER systems may need 
assistance in generalizing, which would result in 
consistent performance across various datasets and 
contexts. 
By autonomously learning hierarchical features from 
massive datasets, deep learning—and CNNs in 
particular—has recently transformed FER. When 
contrasted with more conventional machine learning 
approaches, CNNs greatly enhance the precision and 
reliability of FER systems. Visual tasks are a good fit for 
convolutional neural networks (CNNs) because they 

accurately represent spatial hierarchies in face pictures. 
Notable architectures in FER that have seen remarkable 
performance gains include ResNet, VGG, Inception, and 
MobileNet. In order to extract and categorize features, 
these models often include data augmentation and transfer 
learning methods in addition to convolutional, pooling, 
and fully connected layers. Even with these 
improvements, CNN-based FER systems continue to 
encounter some obstacles. Their dependence on local 
feature extraction is a major flaw since it fails to account 
for global dependencies and contextual information vital 
for correctly identifying complicated emotions. Also, low-
end devices like mobile phones or embedded systems are 
only sometimes the best places to deploy CNN models 
because of how much memory and computing power they 
demand. This limitation makes it harder for FER 
technology to be widely utilized in areas where resources 
are limited. 

Recently, Vision Transformers is a new deep-learning 
architecture that uses self-attention processes to detect 
global correlations in pictures; researchers are using more 
and more to overcome these shortcomings. ViTs are built 
to represent the whole picture context to better interpret 
facial emotions, unlike CNNs that concentrate on local 
feature extraction using convolutional filters. The 
accuracy and generalizability of FER systems have been 
enhanced using this method, which shows promise. 
Among the many ViT variants, EfficientViT stands out as 
a potential example. EfficientViT attempts to maintain 
standard ViTs' outstanding performance while lowering 
their computational and memory overhead to make it 
work on devices with limited resources. Reducing the 
number of parameters and using lightweight procedures 
are two optimization strategies that EfficientViT employs 
to improve computational efficiency. Despite the benefits, 
installing such complex models on low-end devices is still 
tricky because of their processing needs. 

This paper aims to develop a facial emotion 
recognition model using deep learning Vision 
Transformer which is called the adapted EfficientViT-M5 
model. The ultimate goal is to achieve high accuracy in 
emotion recognition while ensuring the model is efficient 
enough to operate. Also, to show how effective the vision 
transformer is for face emotion identification, we 
compared it to other approaches. The paper is organized 
into six sections. Following the Introduction, the 
subsequent sections will cover the following contents of 
Literature review, Proposed model, Implementation and 
results and Conclusion. 

2. Literature review

To ensure full knowledge, an extensive review of
existing literature and research papers in the areas of 
facial emotion recognition, deep learning models, and 
related techniques will be undertaken. This review will 
provide a comprehensive overview of current 
methodologies and highlight any research gaps that can be 
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addressed. Based on the published articles related to FER, 
authors classify the FER methods into five groups as in 
Figure 1. 

 
 

Figure 1. General FER models classification 

CNNs use convolutional layers to automatically extract 
features and hierarchically learn patterns, which improves 
the precision and effectiveness of systems for recognizing 
facial emotions. Several CNN architectures and 
techniques have been proposed for FER, each 
contributing unique advancements to the field. CNNs 
have greatly enhanced the area of FER by offering 
sophisticated methods to decipher intricate human 
emotions. Multiple CNN architectures have been 
suggested, showcasing different degrees of achievement. 
Shekhar Singh and Fatma Nasoz [1] (2020) designed a 
CNN model consisting of six convolutional layers, three 
layers of max pooling, two dropout layers, and two fully 
connected layers. The model attained a test accuracy of 
61.7% without employing any preprocessing or feature 
extraction approaches, emphasizing the capability of 
CNNs even with rudimentary architectures. Ruhi Jaiswal 
[2] (2020) introduced a CNN that uses residual depth-
wise separable convolutions. By integrating data 
preprocessing with HaarCascade for face recognition, the 
model achieved an accuracy of 66%. Recent 
developments in CNN architecture have demonstrated 
even more potential. In 2019, Jie Shao and YongSheng 
Qian [3] presented three models to utilize transfer 
learning, including Light-CNN, Dual-Branch CNN, and 
Pre-trained CNN. These models demonstrated exceptional 
accuracy on several datasets, with Light-CNN achieving a 
maximum accuracy of 95.29% on the FER2013 dataset.. 
Deepak Kumar Jain et al. [4] (2019) emphasized thorough 
preprocessing, including picture normalization and 
intensity normalization through contrastive equalization. 
Their model, which includes a convolutional neural 
network for face detection and residual blocks, obtained 
remarkable results with an accuracy of 95.23% on the 
JAFFE dataset and 93.24% on the CK+ dataset. Karnati 
Mohan et al. [5] (2020) created a Law of Universal 
Gravitation-based edge descriptor in addition to CNN 
architecture, pre-processing, and feature extraction. An 
edge descriptor is proposed based on the Law of 
Universal Gravitation that treats each greyscale pixel as a 
mass and a Dual Convolutional Neural Network (DCNN) 
for FER. The model is tested on five datasets  of 
FER2013, JAFFE, CK+, KDEF, and RAF, and achieves 
98% accuracy for JAFFE and CK+. Wu et al. [6] (2022) 
investigated the combination of facial emotions and 

speech patterns by utilizing Local Binary Patterns from 
Three Orthogonal Planes (LBP-TOP) and spectrograms to 
improve FER. Their Two-Stage Fuzzy Fusion Strategy 
(TSFFS) exhibited exceptional performance, attaining 
identification accuracies of 99.79%, 90.82%, and 50.28% 
on distinct datasets. Jae Young Choi et al. [7] (2023) 
employ the ensemble approach to solve real-world issues 
which generates Deep Convolutional Neural Networks 
(DCNNs) and optimizes their ensemble weights using 
simulated annealing (SA). This method achieved FER 
accuracy of 76.69% on FER2013, 58.68% on SFEW2.0, 
and 87.13% on RAF-DB. Jianghai Lan et al. [8] (2023) 
offer Multi-Regional Coordinate Attention Residuals to 
address a similar issue. MTCNNs are used for face 
identification and alignment. This network enhances 
residual networks with coordinated attention. It separates 
2D global pooling into 1D operations to collect 
directional and positional data better. Study by Sun-Hee 
Kim et al. [9] (2022) supporting this assertion also 
suggested a two-stage emotion detection approach for 
human-machine interaction systems. Their method 
employs a Tiny Face Detector to recognize and extract 
face regions from video frames, then a CNN to extract 
key characteristics. Multi-Level Convolutional Neural 
Networks (MLCNNs) combine connections from several 
levels to analyze retrieved data utilizing local and global 
properties with 74.09% accuracy on the FER2013 dataset. 

Generative Adversarial Network (GANs) combine 
generative and discriminative models to create realistic 
synthetic data, which can be used for data augmentation 
and improving FER. Different GAN architectures focus 
on various aspects of FER, such as identity preservation 
and expression generation. GANs can produce high-
quality synthetic images, enhancing training datasets and 
improving model accuracy. They are particularly useful 
for generating expressions invariant to pose and identity, 
aiding in the robustness of FER systems. GANs provide 
significant advantages in generating high-quality target 
samples, including assisting in identifying facial emotion 
invariant to posture and expanding the diversity of 
training datasets ([10], [11], [12], [13], [14], [15], [16]). 
The limited availability of public datasets, including facial 
expressions, emphasizes the need to use pictures produced 
by GANs to enhance the effectiveness of models. Models 
such as the face-merged GAN, Auxiliary Classifier GAN, 
im-cGAN, and Cyclic-Style GAN, together with specific 
applica-tions like Triple-BigGAN and FAAT, tackle 
different issues related to FER. These developments not 
only boost the accuracy of detecting emotions by 
eliminating interference from irrelevant input but also 
enhance the strength and dependability of emotion 
recognition systems, hence facilitating the improvements 
of more secure and practical applications in real-world 
scenarios. Nevertheless, their capabilities are limited by 
the computing requirements and the data quality they 
provide. This highlights the need for more progress to 
make them suitable for real-world applications. 

Recurrent Neural Networks (RNNs) are used to model 
temporal dependencies in sequential data, such as video 
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frames, for FER. They are effective in capturing the 
dynamic nature of facial expressions over time. RNNs can 
effectively handle sequential data, making them suitable 
for video-based FER. They capture temporal 
relationships, which are crucial for understanding 
expressions over time. Studies have shown their 
effectiveness in various datasets, achieving notable 
accuracy improvements ([17], [18], [19], [20], [21], [22]). 
RNNs can suffer from issues like gradient explosion and 
vanishing gradients, impacting their training efficiency. 
They also require significant computational resources and 
may struggle with real-time processing. Moreover, their 
performance can be affected by data imbalance and 
landmark detection accuracy. Transfer learning utilizes 
models that have been trained on extensive datasets to 
address similar tasks with limited data, reducing training 
complexity. Other methods include hybrid models, 
attention mechanisms, and graph-based approaches to 
enhance FER. Transfer learning allows for efficient model 
training with less data, achieving high accuracy by 
building on pre-existing knowledge. Transfer learning, 
face graphs employing neural networks, and transformer 
models have improved FER accuracy and capture. These 
unique approaches enhance FER by addressing data 
shortages, obstacles, and posture changes 
([23],[24],[25],[26],[27],[28],[29],[30]). However, these 
methods can be computationally intensive and may 
require advanced techniques to handle diverse datasets 
and real-world variations. Imbalanced data and occlusions 
remain significant challenges, impacting the 
generalizability of these models. 

Integrating signal processing algorithms using 
electroencephalogram (EEG) data has significantly 
improved FER. These methodologies converting EEG 
signals into features that can be analyzed using machine 
learning model, offer a solid and dependable alternative to 
traditional image-based strategies. Muzaffer Aslan [31] 
(2022) utilizes the Continuous Wavelet Transform (CWT) 
to convert EEG data into scalogram images and extract 
deep features with a pre-trained GoogLeNet model. The 
attributes are classified using k-NN, SVM, and ELM. On 
the GAMEEMO dataset, the approach achieves high 
accuracy rates of 98.78% using SVM, 98.53% using k-
NN, and 98.41% using ELM. Erhan Ekmekcioglu and 
colleagues [32] (2020) provide a hybrid fusion system 
that combines facial expressions, galvanic skin response 
(GSR), and electroencephalography data. Before feature 
extraction, CNN models like InceptionResnetV2 are 
trained. The use of decision trees for feature-level and 
decision-level fusion enhances recognition accuracy. On 
the DEAP dataset, the method achieved 91.5% accuracy. 
Jun Shao et al. [33] (2022) created a new face-aging 
approach that employs Wavelet Packet Transform (WPT) 
and multi-level GANs. The approach employs a distinct 
multi-level generator with age and gender discriminators. 
A pre-trained module that keeps identification is no 
longer required, resulting in shorter training times and 
better identity preservation. Rabiul Islam et al. [34] 
(2022) classify strategies into deep and superficial 

learning systems. Deep learning models can reach 99.72% 
to more than 80% accuracy. Signal-based techniques for 
FER, particularly those based on EEG data, show promise 
for improving emotion identification accuracy. These 
techniques, which employ advanced deep learning 
algorithms and address computational challenges, can 
dramatically improve the resilience and adaptability of 
FER systems in various disciplines, including human-
computer interaction and emotional computing. However, 
signal-based methods can be computationally demanding 
and require sophisticated preprocessing. The variability in 
EEG data acquisition and preprocessing can affect the 
generalizability of these models. Additionally, they may 
need further research to optimize channel selection and 
processing time. 

3. Proposed Model 

3.1. Methodology 

The research method for FER involves the use of transfer 
learning to leverage a pre-trained EfficientViT-M5 model. 
The research method is depicted in the flow chart in 
Figure 2. 

 

Figure 2. General Process for Facial Emotion 
recognition using deep learning models 

Dataset Preparation 
The dataset used for this study contains images of facial 
emotions categorized into different emotion classes. The 
dataset is divided into three subsets: training, validation, 
and test sets. The images are pre-processed to verify that 
they are formatted and sized correctly for the model.  
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Data augmentation and Pre-processing 
Data augmentation is performed to enhance the training 
sets’ diversity and improve the model's generalization 
ability. The following transformations are applied: 

• Resizing: All images are resized to 224x224 pixels to 
match the input size required by the EfficientViT-M5 
model. 

• Random Horizontal and Vertical Flips: To simulate 
real-world variations, random horizontal and vertical 
flips are applied. 

• Gaussian Blur: This technique helps the model 
become invariant to minor blurring in the images. 

• Normalization: The images are normalized to have 
pixel values in the range [-1, 1] to match the 
normalization applied during the pre-training phase 
of the EfficientViT-M5 model. 

The transformation pipeline ensures that the input 
images are consistent and suitable for training the neural 
network.  

Transfer Learning Setup 
The EfficientViT-M5 model is used as the base model. 
The original classification head of the EfficientViT-M5 
model is removed, and a new classification layer is added 
to match the number of facial expression categories in the 
dataset. The feature extraction layers of the EfficientViT-
M5 model are retained to utilize the detailed feature 
representations obtained from the extensive ImageNet 
dataset. 

Model fine-tuning 
The advanced EfficientViT-M5 model is fine-tuned on the 
facial emotion dataset. The training process involves the 
following steps: 

• Initialization: The weights of the newly added 
classification head are initialized using a standard 
normal distribution, and biases are set to zero. 

• Loss Function: The cross-entropy loss function 
quantifies the difference between the predicted 
probabilities and the true labels. 

• Optimizer: The Adam optimizer is used to adjust the 
model parameters. A learning rate scheduler is used 
to adjust the learning rate dynamically during 
training. 

• Training Loop: The model is trained for a specified 
number of epochs. Each epoch involves using the 
training set to adjust the model parameters, and the 
validation set is used to monitor performance and 
adjust the learning rate if necessary. 

Evaluation and Visualization 
The test set is used to evaluate the efficiency of the 
trained model. The following metrics are calculated: 

• Accuracy: The proportion of correctly classified 
images. 

• Loss: The average cross-entropy loss on the test set. 
• The evaluation results provide insights into the 

model's capacity to generalize the unseen data and its 
overall performance in classifying facial emotions. 

The model's predictions were visualized using a 
separate function that processed individual images, 
performed predictions, and displayed the probabilities of 
different classes alongside the original images. This 
visualization helps in understanding the model's 
effectiveness in recognizing various facial emotions. 

3.2. Proposed model 

The proposed model is improved based on the 
EfficientViT-M5 model by removing the original 
classification head, retaining feature extraction layers, 
adding a custom classification head and parameter 
initialization and fine-tuning. The authors have 
demonstrated that these components contribute to an 
effective FER model. Specifically, the proposed model 
enhances the model's suitability, utilizes intricate feature 
representations, improves the categorization of facial 
expressions, minimizes classification error on the facial 
emotion dataset, accelerates convergence, and quantifies 
the discrepancies between expected results and actual 
labels.  

The initial version of the EfficientViT-M5 model had a 
classification head capable of discerning one thousand 
distinct classes. This head underwent pre-training using 
the ImageNet-1k dataset. Typical facial expression 
identification tests employ fewer categories, such as the 
seven primary emotions: anger, disgust, fear, happiness, 
sorrow, surprise, and neutral. Consequently, this 
classification model is not appropriate for such tasks. We 
eliminated the initial classification head to enhance the 
model's suitability for this specific purpose. This step 
improves the model's capacity to accurately classify each 
expression by incorporating a new component designed to 
handle the target classes of facial emotions. 

We retained the feature extraction layers of the 
EfficientViT-M5 model to utilize the intricate feature 
representations obtained from the ImageNet-1k dataset. 
These layers capture the hierarchical aspects of the input 
pictures. These traits are essential for discerning elaborate 
patterns and subtleties in facial emotions. The model may 
leverage the pre-trained weights' understanding of 
identifying significant visual signals from a large and 
diverse dataset by retaining these layers. The model 
exhibits enhanced training efficiency and superior 
performance when its knowledge is moved from the 
general photo classification task to the specific face 
emotion detection task. 

The proposed model has incorporated a new 
classification head to enhance the categorization of facial 
expressions. This head consists of a flattening layer and a 
fully connected layer. The flattening layer is applied to 
decrease the dimensionality of the feature maps from 
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many dimensions to a single vector, making it easier for 
the fully linked layer to analyze them. The fully 
connected layer generates the probability for each facial 
expression category by mapping these features to the 
target classes. This customized classification head 

properly categorizes each expression based on the specific 
amount of facial expression categories. By including this 
additional head, the model can utilize the high-level 
features extracted by the EfficientViT layers that were 
previously disregarded in layers to identify certain facial 
emotions accurately. 
The weights of the newly added fully connected layer 
were initialized with values drawn from a standard normal 
distribution, which is commonly used for learning 
purposes. All biases were deactivated. Subsequently, the 
emotion recognition dataset was employed to refine the 
whole model, encompassing the pre-existing 
EfficientViT-M5 layers and the newly added 
classification head. The weights of the pre-trained layers 
and the weights of the new classification head were 
adjusted to minimize the classification error on the facial 
emotion dataset. The pre-trained model must follow this 
method to adapt to the distinctive characteristics and 
patterns present in the facial emotion dataset. The Adam 
optimizer, which fine-tunes the learning rate dynamically 
to enhance convergence, was employed for fine-tuning. 
The cross-entropy loss function directed the optimization 
process, which quantified the discrepancies between the 
expected results and the actual labels. The structure of 
EfficientViT-M5 and the advanced EfficientViT-M5 
model are shown in Figure 3 and Figure 4. 

 

Figure 4. The improvement of the advanced 
EfficientViT-M5 model (right-side) vs EfficientViT-M5 

model (left-side) 

Figure 3. The structure of EfficientViT with (a) EfficientViT, (b) Sandwich 
Layout block and (c) Cascaded Group Attention. 
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In the proposed model, the sandwich layout and 
cascaded group attention is calculated as in (1) and (2). 

For spatial integration, a single self-attention layer 
(𝚽𝚽𝒊𝒊

𝐀𝐀) is placed between FFN layers (𝚽𝚽𝒊𝒊
𝐅𝐅). Then, the 

following formulation (1) is applied. 
           𝑋𝑋𝑖𝑖+1 = ∏𝒩𝒩 Φ𝑖𝑖

F �Φ𝑖𝑖
A �∏𝒩𝒩 Φ𝑖𝑖

F(𝑋𝑋𝑖𝑖)��                   (1) 

where 𝑋𝑋𝑖𝑖 is the ith block’s input features. This structure 
improves the memory usage of self-attention layers.  
The attention is calculated as in (2): 

            
𝑋𝑋�𝑖𝑖𝑖𝑖  = Attn �𝑋𝑋𝑖𝑖𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖

Q,𝑋𝑋𝑖𝑖𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖
K,𝑋𝑋𝑖𝑖𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖

V�
𝑋𝑋�𝑖𝑖+1  = Concat �𝑋𝑋�𝑖𝑖𝑖𝑖�𝑖𝑖=1:ℎ

𝑊𝑊𝑖𝑖
P        (2) 

where the jth head performs self-attention computation 
over 𝑋𝑋𝑖𝑖𝑖𝑖, 𝑋𝑋𝑖𝑖 is features of the jth split and expressed in 
terms of 𝑋𝑋𝑖𝑖 = [𝑋𝑋𝑖𝑖1,𝑋𝑋𝑖𝑖2, … ,𝑋𝑋𝑖𝑖ℎ] with h is the sum of heads. 
𝑊𝑊𝑖𝑖𝑖𝑖

Q,𝑊𝑊𝑖𝑖𝑖𝑖
K, and 𝑊𝑊𝑖𝑖𝑖𝑖

V are projection layers that map the input 
features into distinct subspaces and 𝑊𝑊𝑖𝑖

Pis a linear layer. 
The attention map of every head is computed by 

incorporating the output of previous head into the 
subsequent one to improve the feature representations. 
                     𝑋𝑋𝑖𝑖𝑖𝑖′ = 𝑋𝑋𝑖𝑖𝑖𝑖 + �̃�𝑋𝑖𝑖(𝑖𝑖−1),  1 < 𝑗𝑗 ≤ ℎ,              (3) 

where 𝑋𝑋𝑖𝑖𝑖𝑖 is the sum of the jth input split 𝑋𝑋𝑖𝑖𝑖𝑖′  and the 
previous head output �̃�𝑋𝑖𝑖(𝑖𝑖−1). 

This architecture has brought two advantages. The first 
advantage is the improving of the attention map’s   
diversity. The other one is the increasing the depth of 
network. 

4. Implementation and results 

This section will provide a comprehensive account of the 
research's execution, including the pre-processing 
procedures, model training and validation process and 
showcases the acquired outcomes, emphasizing the 
performance measures of the suggested model and 
evaluate the performance of the proposed model. 

4.1. Datasets 

Three public datasets of FER2013Plus, AffectNet and 
RAF-DB are applied. 

• AffectNet Dataset [37]: Images are exactly 96x96 
pixels. The dataset comprises of 26,171 facial 
expression photos, 20,933 for training and test 5,238 
for testing 

• FER2013Plus Dataset [38]: This dataset comprises 
35,269 facial expression photos, 28,221 for training 
and 7,048 for testing. It features seven expressions, 
including angry, disgust, fear, happy, sadness, 
surprise and neutral in grayscale images sized at 48 × 
48 pixels. 

• RAF-DB Dataset [39]: a dataset specifically is 
designed for analyzing and studying facial emotions 

in real-world scenarios. To be more specific, the 
dataset encompasses approximately 15,339 facial 
images with seven basic expressions as in 
FER2013Plus dataset. In this dataset, images are 
originally 100 x 100 pixels and are split into 12,271 
for training and 3,068 for testing. 

 The distribution of 3 datasets and some their samples 
of three datasets are shown in Figure 5 and Figure 6. 

 

 
Figure 5. Distribution of Datasets 

 

 
Figure 6. Samples from Datasets 

Before beginning the training procedure, we 
preprocess the images from the initial AffectNet, 
FER2013Plus, and RAF-DB datasets by resizing them to 
224x224 dimensions for stability and compatibility with 
the model. To enhance the dataset's quality, we apply 
various data augmentation techniques. This includes using 
horizontal and vertical flips to diversify facial orientations 
while Gaussian blur simulates different image qualities. 
We introduce additive Gaussian noise to introduce subtle 
pixel variations and ensure uniform input for improved 
training reliability. 

4.2. Experiment 

The experiment is set up personal computer with 
Windows 10, 64-bit OS, NVDIA Geforce RTX 3060 
GPU, 13th Gen Intel (R) Core (TM) i5-13500 (20CPUs) 
2.5GHz CPU, code is written in python, and deep learning 
environments built by Pytorch. 
In this training setup, several strategies are employed to 
enhance model performance and efficiency. Adam 
Optimizer and Cross Entropy loss function are selected to 
utilize during training process.  Additionally, early 
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Figure 7. AffectNet Training and Validation Loss and Accuracy 

stopping with a patience of 5 epochs helps prevent 
overfitting by halting training if validation loss fails to 
decrease. A learning rate scheduler adjusts the learning 
rate dynamically, decreasing it by a factor of 0.1 every 10 
epochs to aid convergence. For datasets, data 
augmentation is achieved through random subset 
sampling for the initial epochs, promoting model 
robustness by training on varied subsets of the data. 
Multiple model architectures are tested. The best-

performing model state, based on validation loss, is saved 
periodically, ensuring retention of the model with optimal 
performance for future tasks. 

4.3. Evaluation 

The accuracy metric was applied to assess the 
effectiveness of the trained FER model. Accuracy is 

Figure 9. RAF-DB Training and Validation Loss and Accuracy 
 

Figure 8. FER2013+ Training and Validation Loss and Accuracy 
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crucial in classification tasks, indicating the ratio of 
correctly predicted cases to the number of examples 
examined. The accuracy is calculated using the following 
formula. 

Accuracy =  Number of Correct Predictions 
 Total Number of Predictions 

× 100 (4) 

 

where this refers to the number of images where the 
predicted label matches the actual label divided by the 
sum of images evaluated, multiplied by 100 to express the 
result as a percentage. 

The final accuracy is calculated by comparing the 
gathered true and predicted labels using the 
accuracy_score function from the sklearn.metrics library 
after iterating through all batches. The accuracy_score 
function calculates accuracy as in (5). 

accuracy (𝑦𝑦, �̂�𝑦) =
1

𝑛𝑛samples 
∑𝑖𝑖=0
𝑛𝑛samples −1 1(�̂�𝑦𝑖𝑖 = 𝑦𝑦𝑖𝑖) (5) 

where 𝑦𝑦𝑖𝑖 and �̂�𝑦𝑖𝑖, respectively, are the actual and predicted 
label, and n is the sum of samples. The function 
essentially calculates the ratio of correctly predicted labels 
to the sum of labels. 

4.4. Results and Comparison 

The authors tested the advanced EfficientViT-M5 model 
on the AffectNet, FER2013Plus, and RAF-DB datasets. 
Each dataset underwent a 30-epoch training phase, using 
80% of the training data for the first 15 epochs, but for the 
last 15, using the whole training set.  
 

 
 

Figure 10. The training, validation loss and accuracy 
of the proposed method throughout 30 epochs with 

03 datasets AffectNet, FER2013 and RAF-DB 

While minor differences exist across the three datasets, 
the model usually converges around the 25th epoch. 
Training findings demonstrated that the EfficientViT-M5 
model achieved a 94.69% accuracy rate on the AffectNet 
dataset, with a test accuracy rate of 67.22%. Training 

Figure 11. Prediction results on AffectNet dataset 

Figure 12. Prediction results on FER2013+ dataset 
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accuracy was 94.28%, and test accuracy was 70.71% 
using the FER2013Plus dataset. Training accuracy for the 
RAF-DB dataset was 97.76%, while test accuracy was 
77.83%. 
Visual representations of the training and validation loss 
and accuracy throughout 30 epochs are provided in Figure 
7, Figure 8, Figure 9 and Figure 10, respectively. These 
graphs show how well the model did, showing how the 
training and validation metrics changed over time and 
highlighting where the datasets converged. The results 
show that the EfficientViT-M5 model performs 
consistently across different datasets, and its accuracy 
improves noticeably as training progresses. 

The prediction results on sample images from the 
AffectNet, FER2013Plus, and RAF-DB datasets are 
presented in the Figure 11, Figure 12 and Figure 13 and 
prove the effectiveness of the proposed model in 
recognizing and classifying the facial expression. The 
following images demonstrate the predicted emotions, 
providing a visual representation of the model's efficacy. 

The confusion matrices for the AffectNet, FER2013+, 
and RAF-DB datasets (Figures 14, 15, and 16) offer an 
extensive overview of the EfficientViT-M5 model's 
efficacy across several emotion categories, highlighting 
its advantages and shortcomings. The algorithm has 
consistently excellent accuracy across all datasets in 
identifying various emotions, with accuracy rates of 88% 
to 92% for happy and 81% to 89% for neutrality. These 
results demonstrate the model's efficacy in recognizing 
distinct emotions characterized by prominent and 
identifiable facial characteristics. Surprise identification is 
notably robust, with accuracies ranging from 61% to 85%, 
while some misclassifications with fear are seen. 
Nonetheless, the model exhibits persistent difficulties in 
differentiating nuanced and overlapping emotions. Fear is 
often erroneously categorized as surprise, with confusion 
rates of up to 29%, whereas anger and disgust overlap 
significantly, with as much as 19% of rage instances 
misidentified as disgust in the AffectNet dataset. Sadness 
presents challenges, especially in the FER2013+ and 
RAF-DB datasets, where it is frequently misidentified as 
neutral, leading to diminished accuracy. Factors relevant 
to the dataset further affect the model's performance. The 

grayscale and low-resolution characteristics of FER2013+ 
complicate the identification of nuanced emotional 
signals. In contrast, the diversity and real-world 
intricacies of RAF-DB provide obstacles in categorizing 
delicate emotions such as fear and sadness across 
different contexts. These data emphasize the 
EfficientViT-M5 model's proficiency in recognizing 
predominant emotions while indicating the necessity for 
enhanced feature extraction and representation methods to 
mitigate its shortcomings in discerning subtle expressions 
and overlapping facial characteristics. 

 
Figure 14. Confusion Matrix on AffectNet 

 
Table 1 displays the accuracy comparison between the 

proposed model and existing models [6], [22], [25], [35], 
and [36] using the AffectNet dataset. The suggested 
model attains a precision of 94.69%, surpassing the 
previously recorded best precision of Wu Xuemei et al. 
[6] by 4.63%. This substantial enhancement exemplifies 
the efficacy of the suggested methodology. 

Next, the accuracy of the proposed model is evaluated 
in Table 2, where it is compared with other state-of-the-
art algorithms [4], [6], [7], [9], and [36] using the 
FER2013 dataset. The suggested algorithm demonstrates 

Figure 13. Prediction results on RAF-DB dataset 
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a significant performance improvement, obtaining 
accuracy up to 23% higher than the maximum accuracy 
attained by earlier approaches. The significant 
enhancement highlights the strength and excellence of the 
suggested approach on the FER2013 dataset. 

 
Figure 15. Confusion Matrix on FER2013+ 

 
Figure 16. Confusion Matrix on RAF-DB 

 
Table 1. Comparison on AffectNet dataset 

Methods Accuracy (%) 

Mojtaba Kolahdouzi et al. [36] 57.30 

H. Liu et al. [22] 66.90 

Rodriguez et al. [25] 82.97 

Ning Sun et al. [35] 89.40 

Wu Xuemei et al. [6] 90.06 

 Advanced EfficientViT-M5 94.69 

 
Table 2. Comparison on FER2013 dataset 

Methods Accuracy (%) 

Jie Shao et al. [4] 71.14 

Jianghai Lan et al. [9] 74.50 

Wu Xuemei et al. [6] 74.68 

Mojtaba Kolahdouzi et al. [36] 75.80 

Jae Young Choi et al. [7] 76.69 

Advanced EfficientViT-M5 94.28 

 
Finally, Table 3 displays the outcomes of different 

models on the RAF-DB dataset. Despite the dataset's 
reputation for being very competitive, the proposed model 
achieves a fantastic accuracy rate of 97.76%. The 
proposed model demonstrates remarkable accuracy and 
reliability in facial emotion recognition tasks on the RAF-
DB dataset, surpassing the performance of Wu Xuemei et 
al. [6] by 6.95% and Ning Sun et al. [35] by 8.24%. 

 
Table 3. Comparison on RAF-DB dataset 

Methods Accuracy 
(%) 

H. Liu et al. [22] 66.9 

Jae Young Choi et al. [7] 87.13 

Jianghai Lan et al. [9] 88.26 

Ning Sun et al. [35] 89.52 

Wu Xuemei et al. [6] 90.81 

Advanced EfficientViT-M5 97.76 

4.5. Discussion 

Using the AffectNet, FER2013Plus, and RAF-DB 
datasets, the EfficientViT-M5 model was tested, and the 
results show that the Vision Transformer-based method 
for FER has both strengths and weaknesses. The results 
highlight the model's accuracy and stability across 
different datasets, suggesting it could be helpful for 
emotion recognition applications. 

The proposed EfficientViT-M5 model exhibits a 
significant positive impact in advancing facial emotion 
recognition technology. The high accuracy rates achieved 
on benchmark datasets 94.28% (FER2013+), 94.69% 
(AffectNet), and 97.76% (RAF-DB) demonstrate its 
potential for real-world applications. These results 
indicate substantial improvements over previous methods. 
Such advancements are particularly beneficial in 
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applications such as mental health diagnostics, where 
early and accurate emotion recognition can lead to timely 
interventions, or in human-computer interaction systems, 
where understanding user emotions enhances user 
experience. 

Notwithstanding these gains, significant adverse effects 
and problems persist. The model has difficulties 
differentiating visually comparable emotions, such as fear 
and surprise, especially when these emotions exhibit 
overlapping facial characteristics. Moreover, 
environmental factors such as obstructions and fluctuating 
illumination conditions might create forecast 
discrepancies. Moreover, ethical considerations about 
privacy and the possible exploitation of face emotion 
detection systems remain significant concerns. Mitigating 
these constraints necessitates ongoing enhancement of 
datasets and model design, with rigorous compliance with 
ethical standards. 

The advanced EfficientViT-M5 model exhibits a 
notable balance between precision and computational 
efficiency, rendering it well-suited for real-time 
applications. Data enrichment techniques, such as random 
flipping, Gaussian noise and blur, greatly enhance the 
model's capacity to generalize effectively in many 
contexts. In addition, the transfer learning strategy utilizes 
the extensive feature representations acquired from the 
ImageNet dataset to improve the model's effectiveness on 
FER tasks. However, these findings also underscore the 
need for future work to refine the model for greater 
resilience against real-world challenges and to address 
ethical considerations. Improving data representation for 
underrepresented emotions, enhancing robustness to 
environmental factors, and ensuring compliance with 
privacy standards will be essential for maximizing the 
model's potential. 

5. Conclusion 

In this paper, the authors have presented the advanced 
EfficientViT-M5 model, leveraging the advanced features 
of Vision Transformers for facial emotion recognition. 
The model effectively handles diverse facial emotions by 
incorporating transfer learning and an extensive data 
augmentation pipeline, capturing intricate features using 
efficient self-attention mechanisms. The EfficientViT-M5 
model demonstrated exceptional accuracy rates of 
94.28%, 94.69%, and 97.76% on the FER2013+, 
AffectNet, and RAF-DB datasets.  

These results show the model's exceptional 
performance and potential for applications in mental 
health diagnostics, human-computer interaction, and 
security systems. By achieving higher accuracy rates than 
existing models, it offers a robust tool for understanding 
human emotions, which can facilitate advancements in 
areas such as emotional computing and real-time 
behavioral analysis.  

The results of the experiments proved that the model 
could accurately identify typical emotions like happiness 

and sadness. However, its capacity to distinguish visually 
similar emotions, such as fear and surprise, is constrained, 
underscoring the necessity for more improvement. 
Environmental variables, such as fluctuations in 
illumination and obstructions, can influence accuracy. At 
the same time, the ethical dilemmas associated with facial 
expression detection systems, especially about privacy 
and possible exploitation, persist unsolved. Resolving 
these concerns is essential to guarantee that such 
technologies are efficient and ethically implemented. 

While the advanced EfficientViT-M5 model 
represents a significant leap forward in facial emotion 
recognition, its limitations and ethical considerations must 
be carefully managed. Future research will focus on 
improving data selection and refining the model are top 
priorities for subsequent development. One area of 
attention will be amplifying the representation of low-
volume emotions such as disgust and fury. One of the 
remaining and urgent objectives is to conduct a study to 
evaluate FER methods, including the related published 
methods in order to contribute new and increasingly 
effective solutions to the FER problem which can be used 
practically. 
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	In the proposed model, the sandwich layout and cascaded group attention is calculated as in (1) and (2).
	For spatial integration, a single self-attention layer (,𝚽-𝒊-𝐀.) is placed between FFN layers (,𝚽-𝒊-𝐅.). Then, the following formulation (1) is applied.



