
1

Query Optimization in Object Oriented Databases Based

on SD-Tree and n-ary Tree

Tran Minh Bao
1,

* , Truong Cong Tuan
1

1
Hue University's College of Sciences, Hue University, Vietnam.

Abstract

In this paper, we suggest a new technique to create index helping to query almost identical similarities with keywords in

case there is no correct match found. It is based on a SD-Tree and a n-ary Tree helping to query related information when

there is no correct match. Index structure arranges signatures according to hierarchical clustering for improving assessment

of query. This method is based on technique of using signature file and SD-Tree and signature files are organized

according to decentralization to filter unsuitable data quickly and each signature file is saved according to SD-Tree

structure for increasing speed of scanning signature. This method helps to decrease effectively search space, so therefore

improving effectively complexity of query time.

Keywords: Object-oriented database system, index, signature file, SD-Tree, object-oriented query.

Received on 21 December, 2015, accepted on 11 January, 2016, published on 09 March, 2016

Copyright © 2016 T. M. Bao and T. C. Tuan, licensed to EAI. This is an open access article distributed under the terms of

the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,

distribution and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.9-3-2016.151114

*Corresponding author. Email:tmbaovn@gmail.com

1. Introduction

Direct query on objects in object-oriented databases costs

a lot of data storage during processing query and time to

execute query on real data system. The problem is to

describe data system in a more simple way and construct

a corresponding data structure to reduce searching space

during executing query while necessary objects are

ensured to be searched.

To reduce space of data query, proposed

indexing techniques used to evaluate query in databases

[7] have been developed based on binary tree balancing

mechanism which was added some special characteristics

to reduce tree balance or minimize accesses to data files.

These techniques have been developed to increase query

speed in object-oriented databases [11, 12, 13]. The main

idea is that each SD-Tree on a class in hierarchy is

remained but indexes are nested by relation of subclass –

target class. Besides indexes in inherited hierarchy

structure, many indexing approaches used for nested

attribute query have been proposed [2, 3, 4, 8, 10]. Instead

of concentrating on inherited hierarchy of classes,

researchers have discovered general hierarchy of classes

and proposed different index structures following nested

attributes [2, 3, 8, 10]… Signature file storage structures

will reduce searching space and optimize data query

process.

It is necessary to construct a data structure for

signature file storage to improve searching. These

signature file storage structures can be in form of

sequential signature files, sliced signature files, signature

tree structure, signature graph structure… where the cost

of sliced signature file storage is double of sequential

signature files and triple of sequential signature files or

more [9]. The main advantage of this approach is its effect

in processing new insert and query to parts of word.

However, when comparing with indexing based on tree

structure, using sequential signature files has 2

disadvantages: (1) they cannot be used to evaluate range

query; (2) for each processed query, entire signature files

need to be scanned, it makes I/O processing cost increase.

In this paper, we try to improve the second

problem to a certain point. Firstly, we organize sequential

EAEAI Endorsed Transactions
on Context-aware Systems and Applications Research Article

EAI Endorsed Transactions on

Context-aware Systems and Applications
02 - 03 2016 | Volume 3 | Issue 8 | e2EAI

European Alliance
for Innovation

http://creativecommons.org/licenses/by/3.0/

Tran Minh Bao, Truong Cong Tuan

2

signature files in hierarchical structure to reduce searching

space during query evaluating process. Next, we store

signature files in form of a SD-Tree to execute scanning

only one single signature file. If signature file size is

large, time saved by this approach is really significant. In

fact, this is a B
+
-Tree constructed by signature files.

Therefore, it can speed up the process of identifying

signature position in a signature file. However, in a

signature tree, each path is corresponding with one

signature identification which can be used to determine its

only corresponding signature in signature file. This way

helps quickly find out a set of corresponding signatures

with query signature.

The remaining of this paper is presented as follows. In

Part 2, we provide background. Part 3 proposes indexing

technique. Part 4 proposes an approach combining

signature files and SD-Tree hierarchy. Finally, Part 5

gives the conclusion.

2. Background

2.1. Attribute Signature

In an object-oriented database, each object is presented by

a set of attribute values. Signature of an attribute value is

a sequence of hashed-code bits. Given an attribute value,

for example the word “student”, we decompose it into a

string of three-letter sets as follow: “stu”, “tud”, “ude”,

“den” and “ent”. Then, using hash function h, we map a

triplet to an integer k which means kth bit in a string

assigned value 1. For example, assuming that we have

h(stu) = 2, h(tud) = 7, h(ude) = 10, h(den) = 5 and h(ent) =

11. Then we create a bit string: 010 010 100 110 which is

signature of the word.

2.2. Attribute Signature, Signature File

Object signature is constructed by logical OR algorithm

for all signatures of attribute values of the object. Below

is an example of an attribute signature:

Example 1. Consider an object which has attribute values

of “student”, “12345678”, “professor”. Suppose that

signature of these attributes is:

010 010 100 110

100 010 010 100

110 100 011 000

In this case, object signature is 110 110 111 110,

generated from attribute signatures by using logical OR

algorithm. Object signatures of a class are stored in a file,

called object signature file.

2.3. Query signature

An object query will be encoded into a query signature

together with hash function applied to objects. When a

query needs to be executed, object signatures will be

scanned and unmatched objects will be excluded. Then

query signature is compared with object signatures of

signature file. There are three possibilities:

(i) The object matches with the query, i.e., for every

bit in query signature sq, corresponding bit in

object signature s is the same, i.e, sq˄s = sq, a real

object of query.

(ii) The object does not match with the query, i.e.,

sq˄s ≠ sq;

(iii) Signatures are compared and matching one is

found but its object does not match with

searching condition of the query. To eliminate

this case, objects must be checked after object

signatures are matched.

Example 2. This example illustrates the query for object

signature in example 1:

Query: Query signature: Result:

student 010 000 100 110 successful

john 011 000 100 100 unsuccessful

11223344 110 100 100 000 false drop

Comment: comparing query signature sq to object

signature s is incorrect comparison. That means, query

signature sq matches with signature s if for any 1 bit in sq,

the corresponding bit in s is also 1 bit. However, for any 0

bit in sq, the corresponding bit in s can be 0 or 1.

2.4. Querying Object-Oriented Databases

In object-oriented database systems, an entity is

represented as an object, which consists of methods and

attributes. Objects having the same set of attributes and

methods are grouped into the same class. Since a class C

may have a complex attribute with domain C’, a

relationship can be established between C and C’. The

relationship is called the aggregation relationship. When

arrows connecting classes are used to represent the

aggregation relationship, an aggregation hierarchy can be

constructed to show the nested structure of the classes.

Example 3. An example of a nested object hierarchy:

Figure 1. An example of a nested object hierarchy
If an object o is referenced as an attribute of object o’,

then o is said to be nested in o’, and o’ is referred as the

parent object of o.

 class Class Model

Vehicle

- manufacturer

- model: String

- color: String

- DriveTrain

- body

Company

- names: String

- headquarters: String

- divisions

Div ision

- names: String

- function: String

- location: String

VehicleDriv erTrain

- engine

- transmission: String

VehicleBody

- chassis: String

- interior: String

- door: Numeric

PistonEngine

- HPpower: Numeric

- CCsize: Numeric

- CylinderN: Numeric

EAI
European Alliance
for Innovation

EAI Endorsed Transactions on

Context-aware Systems and Applications
02 - 03 2016 | Volume 3 | Issue 8 | e2

 Query Optimization in Object Oriented Databases Based on SD-Tree and n-ary Tree

3

In object-oriented databases, the search condition in a

query is expressed as a combination of attributes. The

attribute may be a nested attribute of the target class.

Example 4. The query “retrieve all red vehicles

manufactured by a company with a division located in

Ann Arbor” can be expressed as:

select vehicle

where Vehicle.color = “red”

and Vehicle.company.Division.location = “Ann Arbor”

Without indexing structures, the above query can be

evaluated in a top-down manner as follows. First, the

system has to retrieve all of the objects in the class

Vehicle and single out those that are red in color. Then,

the system retrieves the company objects referenced by

the red vehicles and checks the locations of the divisions

of the manufacturers. Finally, those red vehicles made by

a company that has a division located in “Ann Arbor” are

returned.

2.5. Signature File Hierarchy and Query
Algorithm

 Signature File Hierarchy

The purpose of using a signature file is to screen out most

of the nonqualifying objects. A signature failing to match

the query signature guarantees that the corresponding

object can be ignored. Therefore, unnecessary object

accesses are prevented. In terms of an aggregation

hierarchy, a signature file hierarchy can be constructed as

follows:

(i) The signature of an object is generated by

superimposing the signatures of all its primitive

and complex attributes.

(ii) The signature of a primitive attribute is obtained

by hashing on the attribute values; the signature

of a complex attribute is the signature of the

object it references.

(iii) Let C be a class, and let o1, ...,ol be its objects;

there exists a signature file S such that each oi(i=

1, ..., l) has an entry <osig, oid> in S.

(iv) Let Si and Sj be two signature files associated

with classes Ci and Cj, respectively. If there

exists an arrow from Ci to Cj, then there is

implicitly an arrow from Si to Sj.

Example 5. Signature and signature file hierarchy:

 Figure 2. Signature and signature file hierarchy

Consider the class “Division” in the class hierarchy

shown in figure 1, which contains no complex attributes.

The signature of an object o of this class can be

constructed as shown in figure 2 (a), where each s(o, x)

stands for the signature produced for the attribute value x

of o and s(o) for the signature of o. For a class containing

complex attributes, the signature of its objects can be

generated in the same way as for a class containing only

primitive attributes. The only difference is that the

signature of a complex attribute is the signature of the

object it references. See figure 2 (b) for an illustration. In

figure 2 (b), o’ stands for an object of class “Company”,

and object o of class “Division” is the attribute value of

“division” of o’. Signature file hierarchy may be

constructed for a database with the schema shown in fig 1

for an illustration in fig 2(c).

 Query Algorithm Based on Signature File

Definition 1. (Query tree) [4] Let p1˄p2…˄pk be the

search condition in query Q, where each pi is a predicate

of the form: <attribute operator value>. Then, all the paths

appearing in the search condition constitute a query tree,

denoted as Qt.

Example 6. Query tree:

 Figure 3. Query tree

Definition 2. (Query signature tree) [4] Let p1.p2pn be

a path in a query tree Qt (from the root to some leaves).

Let <pi... .pn operator value> be a predicate appearing in

the search condition of Q. Then pn’s signature is svalue. The

signature of a non-leaf node in Qt can be obtained by

EAI
European Alliance
for Innovation

EAI Endorsed Transactions on

Context-aware Systems and Applications
02 - 03 2016 | Volume 3 | Issue 8 | e2

Tran Minh Bao, Truong Cong Tuan

4

superimposing the signatures of its child nodes. The query

signature tree is denoted as Q(s,t).

Example 7. The query signature tree:

Figure 4. Query signature tree
Use the query signature tree to reduce searching space.

For this purpose, two stack structures are needed to

control depth-first traversal of tree structures: stackq for

Q(s,t) and stackc for the class hierarchy. In stackq, each

element is a signature, while in stackc, each element is a

set of objects belonging to the same class reached during

class hierarchy traversal.

Algorithm 1. [5] top-down-hierarchy-retrieval;

Input: an object query Q;

Output: a set of OIDs whose texts satisfy the query.

Method:

Step 1. Compute the query signature hierarchy Q(s,t) for

the query Q.

Step 2. Push the root signature of Q(s,t) into stackq; push

the set of object OID of the target class into stackc.

Step 3. If stackq is not empty, sqpop stackq; else go to

(7).

Step 4. Spop stackc; for each oidi E S, if its signature

osigi does not compare sq, remove it from S; put S in

Sresult.

Step 5. Let C be the class to which the objects of S

belong; let C1, ..., Ck be the subclasses of C; then partition

the OID set of the objects referenced by the objects of S

into S1, ..., Sk such that Si belongs to Ci; push S1, ..., Sk

into stackc; push the child nodes of sq into stackq.

Step 6.Go to (3).

Step 7. For each leaf object, check false drops.

In this technique, optimization is achieved by executing

step (4). In this step, some objects are filtered using the

corresponding signature in the query signature tree. In

step (5), the referenced objects and the signatures of the

child nodes of the query signature tree are put in stackc

and stackq, respectively. In step (7), the checking of false

drops is performed.

Example 8. Assume that a part of the signature file

hierarchy constructed for a database with the schema

shown in Figure 1 is of the form shown in the upper part

of Figure 5:

Figure 5. Illustration of query evaluation
Since both the top two signatures in the signature file for

Vehicle match the corresponding signature in the query

signature tree, the signatures referenced by them in the

signature file for Company are further checked. Assume

that the first signature in Company is referenced by the

first signature in Vehicle while the second one in

Company is referenced by the second one in Vehicle. We

can see that the second signature in Company does not

match the corresponding signature in the query signature

tree. Thus, all those Division object signatures referenced

by it will not be checked further (see the grey part of Fig 5

for an illustration). This is optimal compared to “top-

down-retrieval” since by means of “top-down-retrieval”,

checking against all Division object signatures has to be

performed.

2.6. SD-Tree

 Overall Structure of SD-Tree

Indexing technique for Object-Oriented Databases using

the dynamic balancing of B
+
-Tree is called SD- Tree

(Signature Declustering). In this work, the positions of 1s

in the signatures are distributed over a set of leaf nodes.

Using this for a given query signature, all the matching

signatures can be retrieved cumulatively in a single node.

Query searching an optimal search path is calculated so

that the entire process is speeded up.

Example 9. Overall structure of SD-Tree:

Figure 6. Overall structure of SD-Tree [14]
To process a query signature Sq, the last occurrence of 1,

say at position i in Sq is found with the intermediate prefix

formed (B). Then, the signature node of ith leaf node is

EAI
European Alliance
for Innovation

EAI Endorsed Transactions on

Context-aware Systems and Applications
02 - 03 2016 | Volume 3 | Issue 8 | e2

 Query Optimization in Object Oriented Databases Based on SD-Tree and n-ary Tree

5

accessed from root and all signatures with prefix B are

retrieved.

Example 10. Sq=011001000101. To find all the matching

signatures for Sq the tree is traversed from root and the

node values are compared with bit positions of Sq. The

last occurrence of 1 in Sq is at position 12. The binary

prefix generated for Sq using the position of 1s is

01100100010. A node with the key value 12 is accessed

in the signature list of storing 1s in clustered form

and all the signatures in the signature list is checked

for the prefix value 01100100010. Hence regardless of the

bit pattern of Sq, all the matching signatures are returned

in a single access.

 Query Algorithm Based on SD-Tree

The following algorithm outlines the steps to search for

signatures matching a given query signature Sq. In the

procedure F ← 0 always and the algorithm lands up

directly in the signature node corresponding to last 1 from

root.

Algorithm 2. [15] Search(Sq)

Input: The (query) signature to search.

Output: The list of signatures matching the given

signature.

Method:

Step 1. Compute the Signature weight for the query

signature.

Step 2. If signature weight is greater than 50% then search

the query signature in the leaf nodes for the unset bits.

Step 3. Else search the query signature in the leaf nodes

for the set bits.

Step 4. Access leaf node.

Step 5. Compare the prefix of Sq.

Step 6. If Found () then read and output the list of

signatures.

Step 7. Else report “no matching signatures”.

3. PROPOSED INDEXING TECHNIQUE

How is it if query returns zero? In this case, to find out

closer match, Hierarchical Clustering is applied. In cluster,

similar objects are arranged together to create cluster.

Because similar cluster objects will be suitable with any

requirements (if any). This thing will increase search

speed. This process included 2 step. First of all is cluster

and the second is cluster searching. In hierarchical

clustering, objects is linked with each other. In here, data

structure of n-ary Tree is used for creating cluster.

Algorithm 3. Clustering algorithm

Input: Creating condition

Output: Qualified object is embedded in n-ary Tree

Method:

Step 1. Creating new node and inserting into graph.

Step 2. Seeking object that being content with available

condition and attaching new condition.

Step 3. Inserting new node with graph that being content

with new condition.

For searching almost identical similarities, locating

position of condition collections is provided in hierarchy

system and seeking father node of it. For locating

position of node, using level order tree traversal.

Algorithm to find father node such as follows:

Algorithm 4. getParent

Input: Object Condition collections.

Output: Parent node.

Method:

Step 1. Searching nodes are suitable with conditions.

Step 2. Returning qualified nodes to father node.

After gaining closest match, query is edited and

information is retrieved. So therefore hierarchical tree

helps for searching almost identical match.

4. Approach Combining Signature File
Hierarchy and SD-Tree

4.1. Query Data Structure Model

Direct query on objects in object-oriented databases costs

a large space for data storage during query process and a

long time to execute query on real databases. To improve

this problem, we need to represent data system more

simply and construct corresponding data structure to

reduce searching space during query executing process

while necessary objects are still retrieved by using

signature tree. From [5], to optimize the query we need to

combine signature file hierarchy with signature tree. This

has been shown to improve query time. From [14], query

time complexity on SD-Tree is much smaller than

signature tree’s query time complexity. Therefore, we still

use signature file hierarchy as in [5] but replace signature

tree with SD-tree to improve query time. Base on theory

and suggested algorithms, this paper proposes an

approach which combines signature file hierarchy with

SD-Tree as follows: (1) all of signature files are organized

in hierarchical structure to make it easier for executing

stepwise filtering technique; (2) each signature file is

stored in form of SD-Tree structure to speed up signature

file scanning.

In an object-oriented database, each object is

presented by a set of attribute values. Signature of an

attribute is a string of hash-encoded bits. Object signature

is constructed by overlapping all of attribute signatures of

the object. Object signatures of a class are stored in a file,

called signature file. Signature files form SD-Tree.

Examle 11. Construction of SD-Tree is illustrated as

below:

EAI
European Alliance
for Innovation

EAI Endorsed Transactions on

Context-aware Systems and Applications
02 - 03 2016 | Volume 3 | Issue 8 | e2

Tran Minh Bao, Truong Cong Tuan

6

Figure 7. SD-Tree construction
On an object-oriented database, if a class C has an

attribute that is composite with domain C’, relation

between C and C’ will be created. This relation is called

general relation. When connecting these classes by using

arrows to present general relation, a general hierarchy is

built to present nested structure of classes. Classes are

encoded into signature files and signature files form

signature file hierarchy. Each signature file forms a SD-

Tree.

Example 12. Combination of signature file hierarchy and

SD-Tree is illustrated as follow:

Figure 8. Signature files hierarchy and SD-tree
Data structure is stored entirely in the main memory. In

this case, inserting and deleting a signature on SD-tree is

executed easily. However, files in databases are usually

very big. Therefore, data structure cannot be stored in the

main memory but external memory. For object-oriented

databases, they will be stored and executed in external

memory. An object-oriented database has many classes,

each class has many objects. A SD-tree structure will be

constructed corresponding with each class, in the same

time, each object will form an object signature. The entire

object-oriented database will be organized in form of hash

table structure including object signatures to execute

queries.

4.2. Time Complexity

 Comparison Of Searching Between Young’s
Method and Signature File Hierarchy

In [5], to estimate number of accessed objects in a query,

we use two different approaches: (1) Yong’s method is

proposed in [16]; (2) Top down hierarchy retrieval.

(i) Yong’s method

Yong’s method, the signature of a referenced object is

stored in the referring one. Then, predicate checking can

be performed against their signatures before they are

accessed. In this way, a lot of I/O operations can be saved.

(ii) Top down hierarchy retrieval

This method has a stronger filtering ability than Yong’s

method. This is because in each check against a node in a

query signature hierarchy, not only is the predicate related

to the current node involved, but also some other

predicates whose impacts are propagated up several paths

to that node. Using the query signature hierarchy, a lot of

objects of the target class can also be removed by

checking the corresponding signature file, leading to a

drastic reduction in the total number of accessed objects.

In [5], we can achieve high performance by

means of top down hierarchy retrieval. From an abstract

point of view, the query signature hierarchy is a “global”

filter, while the replication technique developed in Yong’s

method can be thought of as a “local” one. Both reduce

the number of objects accessed.

 Comparison Of Time Complexity Between
Signature Tree and SD-Tree

(i) Signature tree method

In [14], time complexity for inserting in a signature tree is

O(nF), where n is number of file’s signatures and F is

length of signature including 0 bit and 1 bit. With

signature tree, tree’s height is limited by O(log2n), n is

number of leaf nodes. Average cost of searching signature

tree is O(λ.log2n), where λ is number of visited paths.

(ii) SD-Tree method

In [14], SD-tree is used as an index structure for set of

large data, small F value reduces time of constructing SD-

tree. Inserting time complexity is limited by O(n.m),

where n is number of signatures in the file and m is the

number of 1 bits in a given signature. Another useful

characteristic of SD-tree is that with higher F value, tree’s

height can be small by changing p, h value, to speed up

searching which is limited by O(logp(F/p-1)). Searching

time for a query with a set of bits at the ith position which

is total of time for access to leaf node (Tli) and time for

searching signature node (Tsi) is calculated as follows:

Ts=Tli+Tsi.

Tli does not change for any leaf node in an active balance

structure like SD-tree and Tsi increases when value of i

increases. Therefore, searching time is limited by

O(Tli+2
i-1

).

Comparing time complexity of signature tree O(λ.log2n)

and of SD-tree O(Tli+2
i -1

), it is clear that value Tli is much

smaller than value λ, it is also an advantage of SD-tree.

4.3. Object-Oriented Query Processing

To execute a query of an object in an object-oriented

database, firstly we have to change an object-oriented

database into data structure as above. We do:

EAI
European Alliance
for Innovation

EAI Endorsed Transactions on

Context-aware Systems and Applications
02 - 03 2016 | Volume 3 | Issue 8 | e2

 Query Optimization in Object Oriented Databases Based on SD-Tree and n-ary Tree

7

Step 1. Attribute of the object is hashed into binary

signatures and attributes which form object signatures.

Step 2. Object signatures in a same layer will form SD-

Tree.

Step 3. Create signature file hierarchy where each file is a

SD-Tree.

After having data structure for query, we execute object

query process on object-oriented databases as follow:

Step 1. Encode key words which need to be retrieved into

binary signature.

Step 2. Execute key word signature query to determine

classes which need to be searched.

Step 3. Execute key word signature query on SD-Tree

corresponding with determined classes.

Step 4. In case exact match is unavailable we change to

step 5. Opposite, turning to step 6.

Step 5. Finding closest match.

Step 5.1. Using Clustering Algorithms on n-ary Tree to

create new requirement.

Step 5.2. Finding out information is suitable with new

requirement.

Step 5.3. Seeking match of son node and returning

corresponding father node.

Step 6. Updating information in database.

5. Conclusion

In this paper, we suggested technique for creating new index

used for Object-oriented database system to find out suitable

match when exact match is unavailable. This approaches is

hierarchical combination between signature and SD-Tree. Plus,

in case exact match is unavailable, n-ary Tree is used for

locating corresponding coincident position. To optimize

decentralized scanning object, we are based on decentralization

of signature files to decrease tree branch. However, because

signature file only works as an incorrect filter, it’s impossible to

be arranged or implementing binary search so we can’t use it to

increase speed of signature file scanning process. So therefore,

we suggest to create a SD-Tree on signature file with role such

as a node in hierarchical signature file. This technique can avoid

to search orderly helping for decreasing needed time to search

on signature file.

References

[1] S. Sung and J. Fu, (1996), Access Methods on

Aggregation of Object-Oriented Database. IEEE

International Conference, Vol (2), pp.977-982.

[2] Bertino, (1990), Optimization of queries using nested

indices, in Proceedings of International Conference on

Extending Database Technology, pp. 44-59.

[3] Bertino and C. Guglielmani, (1992), Optimization of

object-oriented queries using path indices, in 2nd

International Workshop on Research Issues on Data

Engineering: Transaction and Query Processing, pp.

140-149.

[4] S. Choenni, E. Bertino, H. M. Blanken, and T. Chang,

(1994), On the selection of optimal index

configuration in OO databases, in Proceedings of 10th

International Conference on Data Engineering, pp.

526-537.

[5] Yangjun Chen, (2004), Building Signature Trees into

OODBs, Journal of Information Science and

Engineering, 20(2), pp. 275-304.

[6] Dervos, Y. Manolopoulos, and P. Linardis, (1998),

Comparison of signature file models with

superimposed coding, Journal of Information

Processing Letters, Vol. 65, pp. 101-106.

[7] R. Elmasri and S. B. Navathe (1989), Fundamentals of

Database Systems, Benjamin Cumming, California.

[8] Fotouhi, T. G. Lee, and W. I. Grosky, (1991), The

generalized index model for object-oriented database

systems, in 10th Annual International Phonix

Conference on Computers and Communication, pp.

302-308.

[9] Y. Ishikawa, H. Kitagawa, and N. Ohbo, Evaluation of

signature files as set access facilities in OODBs, in

Procreedings of ACM SIGMOD International

Conference on Management of Data, 1993, pp. 247-

256.

[10] W. Kim, K. C. Kim, and A. Dale, (1989), Indexing

Techniques for Object Oriented Databases, Addison

Wesley, pp. 371-394.

[11] Kemper and G. Moerkotte, (1992), Access support

relations: an indexing method for object bases,

Information Systems, Vol. 17, pp. 117-145.

[12] C. C. Low, B. C. Ooi, and H. Lu, (1992), H-trees: a

dynamic associative search index for OODB, in

Proceedings of 1992 ACM SIGMOD Conference on

the Management of Data, pp. 134-143.

[13] Sreenath and S. Seshadri, (1994), The hcC-tree: an

efficient index structure for object oriented database,

in Proceedings of International Conference on Very

Large Database, pp. 203-213.

[14] I.E. Shanthi, R. Nadarajan, (2009), Applying SD-Tree

for Object-Oriented Query Processing, Informatica

(Slovenia), 33(2), 169-179.

[15] Ms. Ankita Thakur, Ms. Meena Chauhan, (2012),

Optimizing Search for Fast Query Retrieval in Object

Oriented Databases Using Signature Declustering,

International Journal of Engineering Research and

Development, pp. 46-50

[16] S. Yong, S. Lee, and H. J. Kim, (1994), Applying

signatures for forward traversal query processing in

object-oriented databases, in Proceedings of 10th

International Conference on Data Engineering, pp.

518-525.

EAI
European Alliance
for Innovation

EAI Endorsed Transactions on

Context-aware Systems and Applications
02 - 03 2016 | Volume 3 | Issue 8 | e2

