
Design and Implementation of Government Affairs

Management System Oriented to Grassroots

Community

Min-Yu Zhou1†, Peng Nie2*, Quan-Sheng Zeng1†, Hao-Bin Chen2†, Tong-He Zhang1†, Zi-Han

Wang2†
*Corresponding author: niepeng@dbis.nankai.edu.cn

†{1911529, 1911396, 1911397, 1911518, 1911486}@mail.nankai.edu.cn

1School of Computing, Nankai University, Tianjin, China

2School of Cyberspace Security, Nankai University, Tianjin, China

Abstract—With the deepening of informatization and intelligence across society, the

construction of smart communities has boomed. However, the construction progress

differs from place to place, and the outcome is also not quite satisfying. To promote the

development of the smart community, we designed and implemented a grassroots

community intelligent service platform. The system is designed to meet the needs of

community governance, providing information management, population monitor, and

grid management, etc. We also addressed some technical issues such as security, cache,

and interface. The grassroots community intelligent service platform not only provides a

convenient way to manage community affairs, but also helps reduce the workload of

community workers and improve the governance effectiveness. We hope this work could

make a positive effect on the development of smart communities.

Keywords - e-government platform; smart community; grassroots governance

1 INTRODUCTION

With the continuous development of information technology, the level of informatization and

intelligence has been improved greatly across society. As an important part of smart cities and

e-governance, the construction of smart communities has emerged in different regions [1].

The community is the basic unit of governance in the city and the bridge to connect with the

people. It is necessary to strengthen the construction of the community governance system,

pushing the focus of social governance down to the grassroots level, realizing the benign

interaction between government governance, social regulation, and residents' autonomy. [3][4]

In the meantime, there exist some problems like separated data, inconvenient user interface, and

complicated old software in the construction of the smart community [2]. We intend to explore

MSIEID 2022, December 09-11, Chongqing, People's Republic of China
Copyright © 2023 EAI
DOI 10.4108/eai.9-12-2022.2327703

the new model of grassroots governance of the "Handheld Cloud Community" by building a

grassroots community intelligent service platform, which mainly provides data management

capabilities and service access capabilities. It provides functionalities such as management of

various information in the community, monitoring of key populations in the community, and

access to various services. The information stored in the platform can be analyzed and

summarized for abnormal situation warnings and decision-making reference. The user interface

is designed to be mobile-first and suitable for most mobile devices, which enables access

almost anywhere. The goal of the platform is to open up a two-way channel between the

community and residents, build a collaborative co-governance platform, reduce the workload of

grid staff, improve community management efficiency, and enhance residents' sense of

belonging and happiness.

2 MATERIALS AND METHODS

2.1 System Design

The core of the system is a database application. As shown in Figure 1, the system can be

divided into two parts: the business subsystem and the access control subsystem. The business

subsystem contains the most functionalities of the platform, but before one can access them,

his/her identity must be assured by the access control system.

Figure 1. Overview of the system

2.1.1 Business Subsystem

The business subsystem provides the main functionalities of the platform. It can be divided into

several modules, including the community management module, estate management module,

personnel management module, policy management module, feedback management module,

and access management module. Each module has one or several categories.

The community management module is designed to fit the needs of multiple communities. It

provides the capability of adding and deleting a community, as well as searching and modifying.

The estate management module is designed to cooperate with grid management, which is a

management method that divides the entire community into several grids and assigns each grid

with a grid-charger to take care of things. The module provides multi-level management from

grids and buildings to units and rooms.

The personnel management module provides management interfaces of staff, grid chargers, and

residents. Managers can filter the name list by customizable conditions, which is helpful for

community management.

The policy management module provides policy uploading and classification, which can be

used to answer residents’ inquiries.

The feedback management module provides problem and reply management, which can help

deal with some community affairs.

The access management module is designed to work with the access control subsystem. The

module provides role-based user permission management, which authorizes a user by

associating the user with a specific group of roles. This is more concise and effective when

dealing with a number of permissions.

2.1.2 Access Control Subsystem

The access control subsystem provides authentication and authorization. Authentications are

done by the traditional combination of username and password. The authorization model is

based on RBAC (Role-Based Access Control) model. Considering the demands of our system,

we add the department part, which mainly serves as categories.

2.2 System Implementation

The system is decomposed into back-end and front-end. Back-end implements most of the

business logic, processing users’ requests, checking permissions, and giving responses. Front-

end presents the user interface, providing concise and efficient operation to the user. The

communications between the back-end and front-end are made possible through RESTful APIs
[7][8]. The technical architecture can be described in Figure 2.

Figure 2. System technical architecture

2.2.1 Back-end framework

The back-end of the system is based on Spring Framework and referred to the back-end

implementation of the open-source project RuoYi-Vue [5]. Based on the classic three-layer

architecture, the back-end is divided into several modules. [11][12]

2.2.1.1 Admin module

This module mainly contains the Controller Layer. The Controllers receive requests from the

front-end and deal with authentication control, authorization control, and data verification.

After processing in the lower layer, they return responses in JSON format.

2.2.1.2 Framework module

This module is mainly the integration and configuration with some external frameworks. In the

back-end implementation, we combine several open-source frameworks to implement general

business such as access control, using the interfaces provided by Apache Shiro to implement

authorization control, using the interfaces provided by JWT (JSON Web Token) to implement

authentication control, and using relevant schemes in RuoYi-Vue and interfaces provided by

Shiro-Redis implementation of the login user cache.

2.2.1.3 System module

This module is mainly related to the Service Layer, DAO (Data Access Object) Layer and

Entities of the specific business of our system. The DAOs provide persistent storage of data in a

database. The Services handles the data from the Controller layer in more detail and

simultaneously uses multiple interfaces of DAOs as a transaction to ensure ACID properties of

database access.

2.2.1.4 Common module

This module contains common utilities used in modules at all levels, most of which referred to

implementations in RuoYi-Vue, as well as basic entities in the system.

2.2.1.5 Quartz module

This module provides timing tasks independently. The major components of the Quartz module

can be summarized as follows:

• A database that stores the configuration detail (i.e., the execution plan) of each timing task.

• A task pool where valid tasks reside.

• An executor that fetches tasks from the task pool and executes the tasks according to the

execution plan.

• An array of implementation-agnostic interfaces for the frontend.

To express a task concisely, the Quartz module introduced cron expression. In 1968, K.

Thompson introduced the concept of the regular expression that allows for fast pattern

matching [10]. Cron expression is a regular-expression-like notion used to describe timing tasks.

Users will have access to the system-provided APIs to create cron expressions to schedule

quartz jobs that run periodically at a fixed interval.

2.2.2 Stateless Authentication with Token

Traditional authentication methods use sessions and cookies. Considering that almost all users

will use mobile devices to access our system, we use token authentication instead. Specifically,

we use algorithms and interfaces provided by JWT (JSON Web Token) and add JWT

authentication facets to each request-mapped handler in the Controllers using Spring Boot's

AOP mechanism [9].

2.2.3 Logged-in User Cache

To improve the concurrency of some high-frequency operations, such as querying basic

information and permissions of a logged-in user, we use a memory database rather than a disk

database to store frequently-used data.

In the payload field of the JWT, it is common to save the user's ID and use the ID to query the

database for subsequent authentication and authorization. This process will join 3-6 tables and

require transactional processing. For each request from a logged-in user, the same tables are

searched before any business is processed, which is disadvantageous in a high-concurrency

application environment. Before going into the details of the cache implementation, it is

necessary to explain the relationship between the logged-in user and the real user. A real user

can log into the system with different identities on different devices, that is, a real user record in

the MySQL database will correspond to multiple logged-in user records in Redis. Based on the

interfaces provided by Shiro-Redis, we cache the basic user information (indexed by UUID in

the payload of the token, UUID is randomly generated every time a user logs in) and the back-

end permissions of each user (indexed by the hash value of user ID and user identity) in Redis.

In order to provide multiple device login restrictions for the same user, a set of multiple logged-

in users' IDs indexed by the corresponding real user's ID is also stored in the cache. The set can

also be used to update the cache of the logged-in user in time when the basic information or

permissions of a real user is updated.

2.2.4 Identity Switch

Based on the RBAC model and combined with business demands, we propose a set of solutions

from database design to the way of interaction with the front-end.

Given that a user may use more than one identity, there is a need to share the same basic

information for their multiple identities while providing permission isolation between these

identities [6]. For example, user Zhang is a resident and staff in community A, and also serves as

a grid-charger in community B. Zhang does not want to copy the same basic information to all

the three systems for staff, grid-chargers, and residents, nor does he want to query any relevant

information of community A when serving as a grid-charger of community B. This is the

original purpose of using multiple identity switches. Fortunately, guided by the RBAC model,

we designed the following data table.

In the Permit table, the add, edit, delete, query, export permissions (hereafter referred to as

"back-end permissions") of each table in the database are saved. In the Role table, there are

several roles with different permissions that are mapped to Dept's three records. These three

records represent three user groups for which our system is geared: staff, grid-chargers, and

residents. The Staff, GridCharger, and Resident tables are child tables of the User table and

record more information about different identities of the same user.

In practical applications, considering user experience, it is improper to expose all URLs to users

regardless of their identity, and only return whether they have permission to access the URL

after their clicks. Therefore, the front-end should know which components need to be displayed

to the currently logged-in user, and we refer to the relevant permissions as display permissions.

The granularity of display permissions is at the front-end component level, while in the back-

end it is at the table-operation level. We save corresponding display permissions and

community ID in the logged-in user cache and back-end permissions in the permission cache.

The front-end and the back-end use separate sets of permissions, with the front-end using

display permissions to ensure user identity isolation, and the back-end using community IDs

and back-end permissions to ensure user community and identity isolation.

2.2.5 User Interface

The user interface is implemented using uni-app framework, which is a universal mobile

interface development framework based on Vue.js. We also used uView UI toolkit to deliver an

elegant and uniform visual experience. The user interface is presented in the form of web pages,

and due to the mobile nature of uni-app, the page is suitable for most mobile devices. In

addition, we reserved an intelligent chat system entry for future extensive use.

3 RESULTS AND DISCUSSION

3.1 Deployment

The system has been experimentally deployed on Alibaba Cloud ECS (Elastic Compute

Service). A domain name with an SSL certificate has been resolved to the server, which enables

access via browser. The screenshots are shown in Figure 3.

Figure 3. Screenshots of the platform

3.2 Cooperation with community

This work is under the cooperation of Donghuijiayuan Community in Hedong District, Tianjin.

The community has many residents with a complex structure and features a large elderly

population and a large floating population. At present, the community adopts grid management,

and a grid-charger needs to manage 300 households or more. For the elderly, disabled persons,

and other key groups, to grasp their health and psychological conditions, grid-chargers are

required to communicate with them regularly. The grid-chargers are also responsible for

helping to solve various problems of the residents. The community also needs to grasp the

movement trajectory and living conditions of the floating population and other types of

population. At present, these tasks are carried out by community workers and the workload is

huge. It is difficult to guarantee that there will be no mistakes in these complicated tasks

manually. The grassroots community intelligent service platform built by us will be helpful to

them.

In order to ensure the clarity of the purpose and the accuracy of the results, the project team has

held many in-depth discussions with the program. The community provides data and other

relevant information, while the project team analyzes demands and develops the platform.

Relevant personnel involved in privacy and security issues in the above process have signed

relevant agreements.

4 CONCLUSION

In response to the existing problems of the smart community and the needs of the cooperating

community, we designed and implemented the grassroots community service platform. In the

platform, we established a grid-managed system model. Then we looked into some problems

like authentication, cache, and identity isolation. Finally, we encapsulated the system with a

mobile-first web interface. Our work could have a positive effect on the development of the

smart community.

Acknowledgments. This work is supported by "Hundred Projects" for Undergraduate

Innovative Research of Nankai University No.202110055737. Sincere gratitude goes to

everyone who has helped us.

REFERENCES

[1] Qi, L., Guo, J. (2019) Development of smart city community service integrated management

platform. International Journal of Distributed Sensor Networks,15(6):

[2] Li, S.Q. (2021) Research on the Development Trend of Smart Community. International

Journal of Social Science and Education Research,4(7):

[3] Gu, Q.H. (2020) Frame-based Conceptual Model of Smart City’s Applications in China. IOP

Conference Series: Earth and Environmental Science,615(1):

[4] Liu, C., Wu, H.Y., Wang, J.Y., Wang, M.K. (2020) A Unified Fourth-Order Tensor-Based

Smart Community System. Sensors (Basel, Switzerland),20(21):

[5] RuoYi. (2021) RuoYi-Vue. https://gitee.com/y_project/RuoYi-Vue.

[6] Ma, L., Yan, Y.J., Jiang, H.W., Zhou, Y.J. (2020) Analysis of Privilege Escalation Based on

Hierarchical RBAC Model. Journal of Physics: Conference Series,1575(1):

[7] Fielding, Thomas, R. (2000) Architectural Styles and the Design of Network-based Software

Architectures. Doctoral dissertation, University of California, Irvine.

[8] Kaur, D.H. (2021) A Performance Comparison of RESTful Applications Implemented in

Spring Boot Java and MS.NET Core. Journal of Physics: Conference Series,1933(1):

[9] Sabir, B.E., Youssfi, M., Bouattane, O., Allali, H. (2019) Authentication and load balancing

scheme based on JSON Token for Multi-Agent Systems. Procedia Computer Science,148:

[10] Thompson, K. (1968) Programming Techniques: Regular expression search algorithm.

Commun. ACM 11(6): 419–422.

[11] Chen, G.H., Xu, J.M. (2020) Design and implementation of efficient Learning platform based

on SpringBoot Framework. J. Journal of Electronics and Information Science,6(1):

[12] Quan, Y. (2019) Design and Implementation of E-commerce Platform based on Vue.js and

MySQL. In: The 3rd International Conference on Computer Engineering, Information Science &

Application Technology (ICCIA 2019). Chongqing, China. pp.460-465.

