
Design and Implementation of Intelligent Medical

System based on Microservices

Hai Bai*1, Xiaoyan Liu2

email address1: 3305965101@qq.com, email address2: 463480242@qq.com

School of Information Engineering and Automation, Kunming University of Science and Technology,

Kunming 650500, China

Abstract. It aims at the shortcomings of the current traditional monolithic medical

information management system such as stability, scalability, coordination between

development and testing and operation and maintenance personnel, and long software

development cycle. The Spring Cloud framework of microservices was used to redesign

the traditional monolithic system to build an intelligent medicine management system

(IMM) system. The response speed and scalability of the reconstructed IMM system are

greatly improved, and it is convenient for O&M personnel to better manage it, which

solves the complexity of the traditional monolithic architecture extension function. The

results show that the average delay of the reconstructed IMM system in calling services

is about 370ms, the submission delay of data services is about 240ms, and the load

capacity is also increased by 42%, which is a huge improvement compared with the

traditional monolithic system.

Keywords: Microservice; Spring Cloud; Service Latency; Load capacity

1 Introduction

At present, most of the domestic medical information management systems are based on the

traditional monolithic architecture to develop software systems [1-3], due to the continuous

development of computer technology, the quality requirements for the current software have

begun to become higher and higher. However, the system developed using the traditional

monolithic architecture involves more modules at start up, and the entire system startup cycle is

long. Functions can only be rounded when expanding systems are rescaled and individual

functional modules cannot be expanded. Poor system isolation, any module error will lead to the

entire system downtime, these drawbacks lead to great problems in the face of multi-user,

high-demand situations. Therefore, this paper designs and implements a medical information

management system based on microservice architecture, and the use of microservice

architecture [4] can effectively solve these problems. The current industry trend shows that

large companies at home and abroad are transforming from service-oriented architecture (SOA)

to microservice architecture, the most well-known of which are Alibaba, JD.com, Tencent,

Twitter, Amazon, etc., and microservice architecture has been widely used. Microservice

architecture splits the system into several relative, independent, autonomous microservice

nodes [5] by function, each microservice runs in its own process, and communicates between

each microservice through communication protocols such as HTTP and lightweight APIs, when

one microservice fails, the impact on other microservices is small, so each microservice can be

developed, deployed, and run independently [6]. This makes the system more convenient in the

MSIEID 2022, December 09-11, Chongqing, People's Republic of China
Copyright © 2023 EAI
DOI 10.4108/eai.9-12-2022.2327629

expansion of functions, with high cohesion and low coupling characteristics, in line system into

multiple microservice nodes with different functions with software quality requirements.

2 Related work

Microservice is a software architecture that can disassemble the traditional monolithic operation

and maintenance of the entire according to functions, and each microservice node

communicates with each other through communication protocols such as HTTP and lightweight

APIs. The reason for the current widespread adoption of microservice architecture: each

microservice is an independent project, can be deployed and developed independently, if you

need to change the function, you can modify it for a single microservice that needs to be

changed, do not depend on other microservices, and the degree of coupling is low. The split

microservices can be started quickly. Microservices can be dynamically scaled on demand.

Through these characteristics, each microservice node can manage its own functions and its

own database in its own process, making the development, testing, and system more convenient

[7].

In order to improve the load capacity of the software, there are usually two solutions: Configure

enough hardware to ensure that the server configuration is enough to bear the needs of users,

that is, hardware load balancing. However, this method is costly, and it may not use so much

computer resources when the number of users is insufficient, resulting in a waste of resources.

The software load balancing method is adopted to solve the problem of load imbalance of

microservice clusters. Servers in a microservices architecture are usually deployed in clusters to

increase the number of visits and complete tasks that a single server cannot complete. However,

when building a service cluster, there is often a large gap between the system resource

utilization of each server, resulting in a significant reduction in the performance of the cluster.

In order to solve this problem, an efficient load balancing mechanism must be used to distribute

requests reasonably to the back-end servers. This realizes load balancing of microservice

clusters and improves the load capacity and resource utilization of the system. Common

microservice load balancing algorithms are divided into static load balancing algorithms and

dynamic load balancing algorithms. Inthis article, the polling selection algorithm in the static

load balancing algorithm is used to implement the load balancing of the system. The algorithm

sends user requests to the servers of the microservice cluster in turn, which has the advantages

of balance, efficiency, simple implementation, and easy to scale out. Microservice frameworks

include: Spring Boot, Dubbo, Service Fabric, Spring Cloud, of which Spring Cloud has become

the standard framework for microservices.

Spring Cloud [8], a microservice framework based on Spring Boot, simplifies the development

of distributed systems through the characteristics of Spring Boot, so that the basic components

of related microservices, such as service discovery and registration, gateways, load balancing of

microservice clusters, circuit breakers, etc., can be started and deployed with one click. The

component framework call relationship of Spring Cloud is shown in Figure 1.

Client Zuul Config

Ribbon

Hystrix

Service Eureka

Service 1

Service n

FeignService 2

Figure 1 Spring Cloud framework

Spring Cloud is a one-stop solution for distributed microservices architecture, which provides

an easy-to-use programming model that allows us to easily build microservices systems on top

of Spring Boot. Spring Cloud is known as the "family bucket" for building distributed

microservices systems, which is not a single technology, but an ordered collection of

microservices solutions or frameworks. It integrates the mature and proven microservices

frameworks on the market, reencapsulates them with Spring Boot thinking, masks complex

configuration and implementation principles, and ultimately provides developers with a

distributed systems development kit that is easy to understand, easy to deploy, and easy to

maintain. Spring Cloud includes nearly 20 sub-projects such as spring-cloud-config and

spring-cloud-bus, providing solutions in the fields of service governance, service gateway,

intelligent routing, load balancing, circuit breakers, monitoring and tracing, distributed message

queuing, and configuration management. Spring Cloud itself is not a ready-to-use framework, it

is a set of microservices specifications with two generations of implementations. Spring Cloud

Netflix is the first generation implementation of Spring Cloud and consists mainly of

components such as Eureka, Ribbon, Feign, Hystrix, and others. Spring Cloud Alibaba is the

second generation implementation of Spring Cloud, which mainly consists of components

suchas Nacos, Sentinel, and Seata. The Spring Cloud framework provides efficient and

available microservices infrastructure components [9], including:

Zuul is a microservice gateway of a system in the middle layer between the front and back ends.

A total of 4 standar filter types are defined [10].

1.PRE, implement authentication.

2.ROUTING, build the device sent to the microservice node.

3.POST, add a standard HTTP header for the response.

4.ERROR, execute when an error occurs.

When a request from a front-end to the backend is called, all requests must first pass through the

Zuul gateway to access the internal service, locate to the specific service node, and the ribbon

decides which service the request is assigned to.

The task of Ribbon [11] is mainly to load balance the microservice cluster and determine the

performance and stability of the entire microservice cluster. Its essence is a client component

that is load balanced by software. In the case of high concurrent access usage of the system, the

previously configured load balancing algorithm is used to distribute its request trafficbalance to

multiple servers to achieve the purpose of expanding server bandwidth, enhancing data

processing capabilities, increasing throughput, and improving network availability and

flexibility. Commonly used load balancing algorithms are divided into static load balancing:

round-robin, random, weighted round-robin, etc. and dynamic load balancing: minimum

number of connections, maximum response speed method.

Service Eureka [12] is mainly responsible for registering and discovering each microservice

node in the system, including server and client. Eureka Server provides service registration

function, when the microservice starts, it will register its own service to the server, the server

maintains a list of available services, stores the information of all available services registered to

the server, these available services can be seen intuitively in the management interface of the

server. Eureka Client usually refers to the various microservices in the microservice system,

which are mainly used to interact with the server.

Hystrix [13] as a circuit breaker mechanism, the main role is the system fusing treatment. When

the system times out of the request and a single or part of the microservices are unavailable, the

Hystrix circuit breaker can provide a downgrade scheme according to the built-in circuit breaker

mechanism, that is, provide a designed downgrade scheme after the request fails, and call the

method immediately. And use the circuit breaker mechanism to prevent diffusion to other

services and ensure the stability of microservices under high concurrency conditions.

Feign is a declarative web service client, which can help call HTTP APIs more conveniently,

only need to create an interface and add an annotation to achieve mutual access between various

microservices.

3 Overall system design

In order to shorten the system startup cycle, expand the function without affecting other service

functions, reduce the coupling degree of the overall system, use the microservice architecture to

design the IMM system, refine the entire system into relatively independent microservice nodes

according to different functions, and componentize each microservice node. In order to cope

with high concurrency access, the system separates the front and back ends to make calls, and

divides the entire system into three modules: front-end service, back-end service, and gateway

service. When using the IMM system, the user first authenticates the identity through the unified

authentication platform in the front-end service, enters the business module after successful

authentication, the user selects the function to be used, and the service request sent by the

front-end service is sent to the gateway service by the front-end service through the HTTP

communication protocol. As an intermediate component that responds to calls between the

front-end service and the back-end service, the gateway service is an API gateway and has

components such as microservice cluster Ribbon load balancing, Hystrix circuit breaker, and so

on. The back-end service has a complete microservice cluster, and all microservice nodes have a

unified shared feature, when the back-end service receives a request, it will return the service

call to the front-end service through HTTP communication through the gateway service.

The system mainly contains user information: complete the user information management

service function. Drug retrieval: Users can query drug keywords and their own related

symptoms online, and the system recommends related drugs through symptom information, and

can choose to enter the drug encyclopedia function after successful query. Complete collection

of drugs: After users query drugs online, the dosage, course of treatment and precautions of

drugs are displayed according to the query drugs. Medical masterpieces: Realize users' online

access to classic works of related medicine. Common diseases: Users can query the causes,

treatment methods and precautions of common contemporary diseases online. Recommended

meals: Enableusers to check the nutrients they need and the foods they temporarily avoid online

according to their own diseases. User suggestions: Users should propose to the administrator the

functions that the system should improve or need to be extended according to their own

experience. Data backup: Prevent the loss of relevant information searched by users or some

drugs, medical masterpieces and related dietary therapies entered by the administrator when

some failures occur in the system. Data recovery: In the event of data loss, the data recovery

function recovers its lost data through previous data backups. In this article, each of these

functions serves as microservice nodes for the system. The IMM architecture diagram is shown

in Figure 2.

Unified authentication platform

Business modules

User Information Drug search

Complete

collection of

medicines

Medical

masterpieces
Common diseases

Recommended

meals

Data backup Hit him bakapUser suggestions

API Gateway

node1

Microservices containers

Microservices1 Microservices2

... Microservices n

Eureka Robbin Hystrix
Log system

client

node2

Microservices containers

Microservices1 Microservices2

... Microservicesn

Eureka Robbin Hystrix
Log system

client

Eureka Service health checks Log system

Service source

User system
Manage the

system
Web Information Data Center

Figure 2 IMM system architecture

4 System test and result analysis

The system is implemented using Spring Cloud's microservice framework, and some

components in Spring Cloud are used in the implementation process, such as Eureka for service

registration, Zuul for filtering tokens as a gateway, Ribbon to achieve load balancing of

microservice clusters, and Hystrix, a circuit breaker to prevent an avalanche effect from the

entire system.

4.1 Test Standards

Software testing standards are divided into:

4.1.1 Benchmarking

Understand the resource consumption of the system while it is idle, such as CPU, IO, network

bandwidth, network connection.

4.1.2 Single consecutive request test

TPS, response time, server resource consumption in the case of 1 consecutive request, mainly

for reference.

4.1.3 Load Testing

Gradually increase the number of concurrent requests, look at TPS, response time, error rate,

server resource consumption, mainly used to analyze maximum performance.

4.1.4 Stress Testing

Test maintaining stress at the critical point of maximum performance to see how well the server

handles high-stress situations.

4.1.5 Stability test

For xx consecutive days, test under a certain concurrency to see whether the server operation

can meet the requirements design.

4.2 Test Scheme

The traditional monolithic system and the IMM system based on microservice architecture are

operated in the same operating environment for stability testing and load testing. The system

operating environment is: 6-core CPU and 16GB memory, and the running system is Windows

10.

Use the resource monitor that comes with Windows 10 to monitor and collect data for the two

systems for 10 consecutive days, and record the response time and immediate delay of calling

services when running for 15, 30, 45, 60, 75, 90, and 105 minutes when they are running the

same number of concurrent requests every day. After recording, continue to increase the number

of concurrent requests, use the j meter tool to simulate high concurrency, view the number of

requests per second of the system, and analyze the load capacity of the two system.

4.3 Test Results

The previous traditional monolithic system has been redesigned to optimize the call delay and

submission delay of the entire system. Compared with the traditional monolithic architecture

system, Table 1 shows that the delay of calling interfaces in the reconstructed new IMM system

within 2hours has been reduced by 56.8%, and Table2 shows that the commit delay of the

reconstructed new IMM system has been reduced by 60.7%, and the system has made great

progress in response speed. At the same time, in terms of load capacity, the new IMM system

realizes the load balancing of microservice clusters due to the round-robin selection algorithm.

Figure 3 shows that the new reconstructed IMM system handles the number of requests per

second under different request concurrency conditions, and its load capacity is also increased by

42%.

Table 1. Comparison of call delays

Time/min Average latency of microservices/ms Monolithic average delay/ms

15 186 548

30 273 648

45 242 628

60 215 607

75 266 670

90 231 564

105 253 580

Table 2. Submit a delay comparison

Time/min Average latency of microservices/ms Monolithic average delay/ms

15 405 821

30 345 864

45 326 785

60 376 928

75 355 822

90 402 912

105 400 923

Microservices IMM Monolithic IMM

Number of concurrent requests

1 5 10 50 100

N
u

m
b

er
 o

f
co

n
cu

rr
en

t
re

q
u

es
ts

 p
er

 s
ec

on
d

10

14

18

22

26

30

34

38

42

46

49

47 48

45

47
46

33 33

32

25

15

103

102

Figure 3 Comparison of operating efficiency

4 Conclusion

In view of the shortcomings of the traditional monolithic medical information management

system, the concept of microservice architecture is used to redesign it. Using the components of

Spring Cloud, the design and implementation of the intelligent medical system based on the

microservice architecture are realized, and the response speed and load capacity of the IMM

system have been greatly improved after the reconstruction. The system is implemented using

the Java language and the Intellij IDEA development platform.

References

[1] HUANG Xianshun, CHEN Jia-liang. Design and implementation of medical information

management system[J]. Examination Weekly,2018(54):12+14.)

[2] Ma Jie. Design and implementation of information management system of Jinan

pharmaceutical company[D]. Shandong University,2014.

[3] ZHOU Xiangrong. Development and design of medical consulting service system[J].

ElectronicWorld,2012(24):151-153.

[4] de Almeida Murilo Góes, Canedo Edna Dias. Authentication and Authorization in

Microservices Architecture: A Systematic Literature Review[J]. Applied Sciences,2022,12(6).

[5] Joseph Christina Terese, Chandrasekaran K.. IntMA: Dynamic Interaction-Aware Resource

Allocation for Containerized Microservices in Cloud environments[J]. Journal of Systems

Architecture,2020,111 (prepublish).

[6] Ruiqi Zeng, Yue Zhao, Hong Su, Xiaoyu Guo. ANovel Construction Technology of

Enterprise Business Deployment Architecture Based on Containerized Microservices[C]//.

Proceedings of the 5th International Conference on Communication, Image and Signal

Processing(CCISP2020).,2020:274-281.DOI:10.26914/c.cnkihy.2020.032043.

[7] Yang Tianyi. On the advantages and disadvantages of microservice architecture[C]//.

Proceedings of the 36th China (Tianjin) 2022' IT, Network, Information Technology,

Electronics, Instrumentation Innovation Conference. [Publisher unknown], 2022:294-297.DOI:10.

26914/c.cnkihy.2022.01504

[8] Li Na. Application of Spring Cloud microservice architecture[J].Electronic Technology and

 SoftwareEngineering,2019(12):142.)

[9] HU Shaoxuan. Design and implementation of academic affairs management system based

on SpringCloud [D].Jilin University,2022.DOI:10.27162/d.cnki.gjlin.2022.005019.)

[10] GE Meng, LI Chuangnan, OUYANG Hongji. Application and implementation of

microservice architecture based on Spring Cloud[J].Modern Information Technology,2021,5(19):

23-26.DOI:10.19850/j.cnki.2096-4706.2021.19.005.

[11] Original Ming. Research on load balancing mechanism based on microservice architecture

[D].Beijing Institute of Graphic Communication,2022.)

[12] WU Xiongjin. Design and development of service registry in microservice framework[J].

Industrial Control Computer,2021,34(08):130-132.)

[13] Wang Zhuo. Optimization analysis and research based on Hystrix service circuit breaker

degradation strategy[J].Software,2022,43(08):125-127.

