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ABSTRACT
Frequent call markets have been proposed as a market design solu-
tion to the latency arms race perpetuated by high-frequency traders
in continuous markets, but the path to widespread adoption of such
markets is unclear. If such trading mechanisms were available,
would anyone want to use them? This is ultimately a question of
market choice, thus we model it as a game of strategic market se-
lection, where agents choose to participate in either a frequent call
market or a continuous double auction. Our market environment is
populated by fast and slow traders, who reenter to trade at different
rates. We employ empirical game-theoretic methods to determine
the market types and trading strategies selected in equilibrium. We
also analyze best-response patterns to characterize the frequent call
market’s basin of attraction. Our findings show that in equilibrium,
welfare of slow traders is generally higher in the call market. We
also find strong evidence of a predator-prey relation between fast
and slow traders: the fast traders chase agents into either market,
and slow traders under pursuit seek the protection of the frequent
call market.
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Economics
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1. INTRODUCTION
High-frequency trading (HFT) is the practice of exploiting speed

advantages in market access and execution to enhance profits in al-
gorithmic trading in financial markets. HFT strategies typically op-
erate at high volumes and low latencies (where fractions of a mil-
lisecond may be pivotal), and maintain positions with extremely
short holding periods. HFT is estimated to account for over half of

daily trading volume [7] and it has dominated financial news head-
lines in recent years. Incidents such as the “Flash Crash” of May
2010 and Knight Capital accidentally flooding the market with hun-
dreds of orders in August 2012 [32] have piqued concerns, and con-
troversies about computerized trading in today’s financial markets
have reached a critical point with the publication of Flash Boys by
Michael Lewis [27].

Flash Boys tells the story of IEX, a trading venue designed specif-
ically to protect institutional investor orders from anticipation by
speed-advantaged algorithmic traders. Proponents of high-speed
traders posit that HFT activity reduces trading costs for market par-
ticipants. Others argue that these traders harm investors and that
practices such as colocation, in which firms embed their HFT sys-
tems in the same data centers as an exchange’s servers, contribute
to a wasteful latency arms race [20].

Incremental speed yields advantage in trading due to the contin-
uous nature of market mechanisms. Currently, most stock markets
operate as continuous double auctions or CDAs [16]. In a CDA,
orders are matched strictly on a first-come basis. This time prior-
ity rule induces a winner-take-all scenario, where the fastest trader
can readily expropriate all gains from new information. The speed
differential between high-frequency traders and slower, non-HF in-
vestors subjects the latter to adverse selection, in which the slower
traders’ resting orders are more likely to trade when information
moves against them.

An alternative to continuous trading is a frequent call market
or frequent batch auction, in which order matching is performed
only at discrete, periodic intervals (e.g., on the order of tenths of
a second). A discrete-time market facilitates more efficient trading
by aggregating supply and demand and matching orders to trade
at a uniform price [3, 18, 41]. In a frequent call market, there
is no time-priority within each clearing interval. Each interval is
a sealed-bid auction: Participants do not know what orders other
traders have submitted, ergo orders in the frequent call market can-
not be targeted specifically by incoming informed orders. Even if
a fast trader knew somehow about a stale order sitting in the book,
it could not exploit that completely because the prices are set via
a competition among all traders able to submit orders within the
clearing interval.

Allowing orders to accumulate over short time periods in a fre-
quent call market has been advocated by several as a means to
neutralize small speed advantages and mitigate detrimental effects
of high-frequency trading [6, 36, 38, 45], and regulators are start-
ing to take notice. For instance, New York Attorney General Eric
Schneiderman endorsed frequent batch auctions in remarks during
a March 2014 New York Law School panel on Insider Trading 2.0:

Currently, on our exchanges, securities are traded con-
tinuously, which...rewards high-frequency traders who
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continuously flood the market with orders, emphasiz-
ing speed over price.... If you had frequent batch auc-
tions, there’s no point in trying to get faster than what-
ever the interval is. It would discourage the risk taking
that can cause flash crashes because, in the quest for
greater and greater speed, there is, in and of itself, a
threat to market stability [35].

U.S. Securities and Exchange Commission Chair Mary Jo White
has also indicated receptiveness towards “flexible competitive so-
lutions. . . [which] could include frequent batch auctions or other
mechanisms designed to minimize speed advantages” [47].

Skeptics of frequent call markets raise various objections to their
feasibility. Some doubt whether continuous- and discrete-time mar-
kets can coexist, and posit that it will be necessary to ensure that
fragmented call markets clear in a synchronized manner [33]. Oth-
ers question the ease of implementing these call markets [2]. Feath-
erstone [14] argues that frequent batch auctions are an unattractive
alternative to current continuous markets, contending that discrete-
time markets will diminish trading and adversely affect price sta-
bility, while simultaneously creating the incentive to snipe within
the clearing interval in the event of new information arriving before
the clear. Similarly, Ross [34] surmises that the introduction of fre-
quent batch auctions would engender a race to place the first order
in the book for each call auction.

These and most other arguments we have encountered appear to
be based on misconceptions or unfounded speculation. The call
market does not need to give time priority for orders within the
clearing interval, and so it is easy to avoid races to submit orders
and to instead channel competition to the price dimension. Traders
submitting the best price, whether fast or slow, will execute, and
orders clear at a uniform price that no market participant knows in
advance, making ties in price unlikely anyway (especially if prices
are fine-grained). For the same reason, synchronization of multiple
frequent call markets is unnecessary, given that the gain from a
speed advantage is already reduced by the lack of visibility into the
order book. In addition, implementation of frequent call markets is
clearly feasible; many modern stock markets open and close trading
each day with a call auction [28, 40].

Yet frequent call markets have hitherto not been widely adopted.
This may be simply a matter of inertia; as markets have evolved
from in-person to electronic, imposing an explicit time delay would
take a deliberate intervention. Such time delays are intuitively ret-
rograde to many, as they seem to compromise the general investor
demand for trading immediacy [12].

This explains why existing continuous markets might not change
their policies, but what about introducing new markets with the fre-
quent call mechanism? We see no economic reason why a discrete-
time market could not coexist alongside continuous market mech-
anisms [42], but admittedly the burden of demonstration may rest
on those of us arguing for feasibility. To provide such a demonstra-
tion, we consider the question of market choice: given availability
of both mechanisms, will traders elect to submit orders to a fre-
quent call market over a continuous market, and if so, under what
conditions?

These are the questions addressed by our study. We formulate
the frequent call market vs. CDA scenario as a game of market
choice in which fast and slow traders—who differ on the frequency
with which they arrive to trade—specify, as part of their strategy, a
selected market mechanism. This strategic market choice game is
described in the following section. We discuss our market environ-
ment in Section 3, our methodology and game analysis in Section 4,
and we survey additional related work in Section 5. Section 6 offers
our conclusions.

2. STRATEGIC MARKET CHOICE
To determine whether a frequent call market operating alongside

a continuous market can successfully attract investors, we propose
a market choice game in which traders specify the preferred trading
mechanism as part of their strategy.

The players in our game are traders, grouped in two roles: FAST
and SLOW. These roles differ only in the frequency with which
traders enter to submit an order. The game is role-symmetric, mean-
ing that players in the same role share the same strategy set, and
payoffs are completely determined by role membership and by the
number playing each strategy in each role. That is, the specific
strategy-to-player assignments within roles are irrelevant.

In our model, there is a single security available for trade on
both a frequent call market and a continuous double auction. The
fundamental value of this security is a mean-reverting stochastic
process. A player’s valuation for units of the security depends on
this fundamental and the trader’s private benefits of trading, with
payoff defined as the total surplus accrued over the trading horizon.

Traders can elect to go to either the frequent call market or the
continuous market. On each arrival, they observe the current funda-
mental value and submit a single-unit order to their selected mar-
ket. Resting orders in the book are subject to adverse selection,
since newly arriving traders have more current information about
the fundamental, which they can exploit to pick off stale orders.
Since SLOW traders arrive less frequently into the market than their
FAST counterparts, SLOW-agent orders are on average based on
older information, and thus are exposed to a greater degree of ad-
verse selection.

We select a fixed, deterministic rate of clearing for the frequent
call market in our market choice game. Though several have pro-
posed randomizing the clearing interval to deter sniping [13, 22,
37], we have argued [42] that such randomization accomplishes no
reduction in incentive for HFT speed advantages. A deterministic
clear time offers the prospect of sniping within a small time window
at the end of the clear interval, whereas a random clear time offers
a small probabilistic prospect for advantage over the entire interval.
In expectation, the value of this advantage is the same. Moreover,
as the model in this paper does not include strategic timing, sniping
is effectively ruled out by assumption.

In a market choice game with players who strategically decide
among market mechanisms, there trivially exist equilibria in which
all traders select any one given market, regardless of its merits.
These equilibria arise because when all other agents are in that
market, the remaining trader has no possibility to trade anywhere
else. Thus the trader’s only option for positive payoff is to join the
focal market. To render these equilibria non-inevitable, we intro-
duce to each market a set of environment agents, providing a base
set of available trading partners. The environment traders follow
designated strategies for their assigned market and are not consid-
ered players in our game model. As such, their behavior plays no
part in game-theoretic analysis and their trading gains are ignored
in surplus calculations.

We employ an empirical simulation-based approach to explore
the strategy space. This facilitates identification of the market con-
ditions under which traders may prefer one market mechanism over
the other. From the empirical game induced over thousands of sim-
ulations of selected strategy profiles, we determine the market cho-
sen in equilibrium, and we analyze the corresponding gains from
trade. We characterize the frequent call market’s basin of attraction
through analysis of trader best responses that specify the frequent
call market over the CDA.

Our findings show that in equilibrium, welfare of SLOW traders
is generally higher in the frequent call market than in the continu-



ous double auction. We also find strong evidence of a predator-prey
interaction between FAST and SLOW traders. The FAST traders fol-
low their prey into either market, whereas the SLOW traders flee
their pursuers, congregating in the frequent call market as long as
it is sufficiently thick.

3. MARKET GAME SETUP
We construct a model of a single security traded simultaneously

in a continuous double auction market (CDA) and a frequent call
market (CALL). Prices are fine-grained but discrete, taking integer
values. Time is likewise fine-grained and discrete, with finite hori-
zon T . The environment is populated by multiple trading agents,
representing investors, each associated with one of the two market
mechanisms. Player agents choose between CDA and CALL, and
environment agents are each assigned to one of these, in both cases
for the duration of the trading period. Agents arrive according to a
Poisson process, and on each arrival they submit a single-unit limit
order to their associated market—replacing any prior outstanding
order. Thus, at any given time, investors are restricted to a single
order to buy or sell one unit.

Before placing orders, traders observe price quotes (BID and
ASK) in their associated market. CDA price quotes reflect the best
current outstanding orders, while the frequent call market quotes
reflect the best outstanding orders immediately following the most
recent market clear. Specifically, for the CDA, BIDt is the price of
the highest buy offer at time t and ASKt is the price of the lowest
offer to sell. For the frequent call market, BIDc corresponds to the
highest outstanding buy offer after the clear at the most recent clear
time c, and ASKc the lowest outstanding offer to sell. Other bids
in either order book are not visible to traders.

We introduce an equal number of environment agents into both
markets. Except for market selection, environment agents oper-
ate equivalently to traders (described below), but are not taken into
account when calculating welfare. We denote the number of envi-
ronment agents in each market by E.

3.1 Valuation Model
Each trader has an individual valuation for the security com-

prised of private and common components. We denote by rt the
common fundamental value for the security at time t. The fun-
damental time series is generated by a mean-reverting stochastic
process:

rt = max {0, κr̄ + (1− κ) rt−1 + ut} .

Parameter κ ∈ [0, 1] specifies the degree to which the fundamental
reverts back to the mean r̄, and parameter ut ∼ N

(
0, σ2

s

)
is a

random shock at time t.
The private component for agent i is a vector Θi representing

differences in private benefits of trading given the trader’s net po-
sition, similar to the model of Goettler et al. [19]. These individ-
ual differences may arise due to portfolio considerations, hedging
needs, or preferences regarding trading urgency. The vector is of
size 2qmax, where qmax > 0 is the maximum number of units the
agent can be long or short at any time, with

Θi =
(
θ−qmax+1
i , . . . , θ0i , θ

+1
i , . . . , θqmax

i

)
.

Element θqi is the incremental private benefit obtained from selling
one unit given current position q, where positive (negative) q indi-
cates a long (short) position. Similarly, θq+1

i is the marginal private
gain from buying an additional unit given current net position q.

We generate Θi from a set of 2qmax values drawn independently
from a Gaussian distribution. Let θ̂ ∼ N

(
0, σ2

PV

)
denote one of

these drawn values. To ensure that the valuation reflects diminish-
ing marginal utility, that is, θq

′
≥ θq for all q′ ≤ q, we sort the θ̂

and set the θqi to respective values in the sorted list.
Trader i’s valuation v for the security at time t is based on its cur-

rent position qt and the value of the global fundamental at time T ,
the end of the trading horizon:

vi(t) = rT +

{
θqt+1
i if buying 1 unit
θqti if selling 1 unit.

For a single-quantity limit order transacting at time t and price
p, a trader obtains surplus:{

vi(t)− p for buy transactions, or
p− vi(t) for sell transactions.

Since the price and fundamental terms cancel out in exchange,
the total surplus achieved when agent B buys from agent S is
θ
q(B)+1
B −θq(S)

S , where q(i) denotes the pre-trade position of agent i.

3.2 Trading Strategies
There is an extensive literature on autonomous bidding strategies

for CDAs [10, 16, 46]. In this study, we consider trading strategies
in the so-called Zero Intelligence (ZI) family [17].

The traders arrive at the market according to a Poisson process
with rate λ. On each arrival, they are assigned to buy or sell (with
equal probability), and accordingly submit an order to buy or sell
a single unit. Agents may trade any number of times, as long as
their net positions do not exceed qmax (either long or short). At the
end of the simulation period, traders liquidate their accumulated
inventory at rT , the end-time fundamental.

A ZI trader assesses its valuation vi(t) at the time of market entry
t, using an estimate r̂t of the terminal fundamental rT . The esti-
mate is based on the current fundamental, rt, adjusted to account
for mean reversion:

r̂t =
(

1− (1− κ)T−t
)
r̄ + (1− κ)T−trt. (1)

The ZI agent then submits a bid shaded from this estimate by a ran-
dom offset—the degree of surplus it demands from the trade. The
amount of shading is drawn uniformly from range [Rmin, Rmax].
Specifically, a ZI trader i arriving at time t with current position q
submits a limit order for a single unit of the security at price

pi ∼

{
U
[
r̂t + θq+1

i −Rmax, r̂t + θq+1
i −Rmin

]
if buying

U [r̂t + θqi +Rmin, r̂t + θqi +Rmax] if selling.

We extend the baseline ZI strategy with a threshold parameter
η ∈ [0, 1], whereby if the agent could achieve a fraction η of its
requested surplus at the current price quote, it would simply take
that quote rather than posting a limit order to the book. Setting
η = 1 is equivalent to the strategy without employing the threshold.

In our setting, traders repeatedly enter the market, thus we refer
to the strategy as ZI with Reentry (ZIR). Upon each entry, the ZIR
trader withdraws its previous order (if not transacted yet) before
executing the strategy described above. Time between entries is
distributed exponentially at rate λ. As described below, our game
employs three rates, one each for FAST, SLOW, and environment
traders.

The final strategy parameter indicates the selected market type:
CALL or CDA. The market choice decision is made before trading
commences at time 0, and once selected, the market for a given
agent is fixed for the duration of the trading horizon.



Rmin 0 0 0 0 500 500 0
Rmax 125 250 500 1000 1000 1000 2500
η 1 1 1 1 0.4 1 1
Market type Both Both Both Both CDA CALL Both

Table 1: ZIR strategy combinations included in empirical game-theoretic analysis. Market type indicates whether the strategy is
available in the CDA, CALL, or both.

4. EMPIRICAL GAME-THEORETIC
ANALYSIS

We determine equilibria for our game of strategic market choice
through empirical game-theoretic analysis (EGTA), a simulation-
based process that allows us to perform strategy selection for traders
by comparing the payoffs (i.e., surplus) of different combinations
of trader and strategy assignments [44]. EGTA entails simulation
of many strategy profiles, accumulating payoff observations, and
inducing an empirical game model.

We apply EGTA in an iterative manner, interleaving exploration
of the profile space with analysis of the empirical game model in-
duced by average payoffs in simulation. Specifically, we generate
equilibrium candidates by applying replicator dynamics to com-
plete subgames, defined as sets of strategies (one set per role) for
which we have simulated all profile combinations. This yields role-
symmetric Nash equilibria (RSNE) of the subgames, which we can
then test as candidate solutions for the overall game. If we can iden-
tify a strategy in the full strategy set that beneficially deviates from
the candidate, we say the candidate is refuted. We say that a candi-
date profile is confirmed as an RSNE when all possible deviations
have been evaluated, and none are beneficial.

We simulate additional profiles for a game until we have con-
firmed at least one RSNE, evaluated every pure-strategy symmet-
ric profile (i.e., where the players in each role play a strategy with
probability 1), and pursued with some degree of diligence every
equilibrium candidate encountered. We confirm or refute each can-
didate by evaluating deviations to strategies outside their subgames.
If a candidate is refuted, we construct a new subgame by adding the
best response to its support, and proceed to explore the correspond-
ing subgame. When this process reaches quiescence, we consider
the search to have satisfied the diligence requirement.

In this study, we simulate the market model described in Sec-
tion 3 using an extension of the financial market simulator we de-
veloped for our prior analysis of latency arbitrage [41]. We manage
our experiments via the EGTAOnline infrastructure [8], and we run
our simulations on the high-performance computing cluster at the
University of Michigan.

We collect data for multiple combinations of the trader strategies:
a minimum of 5,000 samples per profile evaluated, with 20,000
samples for most profiles and averaging at least 10,739 samples
per profile in each environment. From these payoff estimates, we
compute RSNE for each environment, and use these as a founda-
tion for our analysis of the welfare effects in equilibrium for FAST
versus SLOW traders, the attractiveness of the CALL over the CDA,
and the loss in deviating from the equilibrium market type.

4.1 Game Reduction
As analysis of the full game is intractable due to the exponential

growth in game size relative to the number of players, we employ
deviation-preserving reduction (DPR) to construct a reduced game
approximating the full role-symmetric game [48]. DPR preserves
the payoffs from single-player, unilateral deviations, and maintains
in the reduced game the same proportion of opponents playing each
strategy as in the full game. In a deviation-preserving reduced

game, each player views itself as controlling one full-game agent
and views the other-agent profile in the reduced game as an aggre-
gation of all other players in the full game.

In the market choice game, players are partitioned into rolesR =
{FAST, SLOW}, and players in either role can select among a set of
strategies S. Consider the reduction of an (NFAST, NSLOW)-player
game to a (kFAST, kSLOW)-player reduced game. Given the other
FAST agents play strategies (f2, . . . , fkFAST ) and the SLOW agents
play strategies (s1, . . . , skSLOW ), the payoff for a FAST agent play-
ing strategy f1 ∈ S in the reduced game is given by the payoff of
playing f1 in the full (NFAST, NSLOW)-player game when the other
NFAST − 1 FAST traders are divided uniformly (NFAST−1

kFAST−1
) among

the strategies f2, . . . , fkFAST and the other-role (i.e., SLOW) players
are divided uniformly (NSLOW

kSLOW
) among their strategies s1 . . . skSLOW .

The payoff for a single SLOW agent is analogous.
We deliberately select values forNr and kr , r ∈ {FAST, SLOW},

to ensure that the fractions above defining the game reduction come
out as integers. That is, for each role r, we choose values such that
Nr is evenly divisible by kr and Nr − 1 is evenly divisible by
kr − 1. Specifically, our market choice game is comprised of 42
players, with NFAST = NSLOW = 21, which we approximate by
a DPR game with kFAST = kSLOW = 3. We use simulation data
from the full (21, 21)-player game to estimate the payoffs of the
(3, 3)-player reduced game.

4.2 Environment Settings
We evaluate the performance of traders in four environments.

Reentry rates are fixed across the environments, with FAST traders
arriving in the market at rate λF = 0.004, and SLOW traders en-
tering at rate λS = 0.002. In all settings, there is one CDA and
one frequent call market, which clears every 100 time steps. Each
simulation run lasts T = 12000 time steps. The mean-reverting
global fundamental has a mean value r̄ = 105. The variance for
the private value vector is σ2

PV = 5×106. The fundamental shock
variance is σ2

s = 1× 106.
The strategy of environment agents is fixed; they play a ZIR

strategy with range [0, 1000] and η = 1. The environment agents
enter their respective markets with rate λE = 0.005. The environ-
ments differ in the value of the mean-reversion parameter (κ) and
the number of environment agents E ∈ {8, 14, 42}. The configu-
rations are as follows:

Environment I E = 8, κ = 0.05

Environment II E = 8, κ = 0.01

Environment III E = 14, κ = 0.01

Environment IV E = 42, κ = 0.01

The empirical games for these environments include 12 strate-
gies (Table 1) for traders, 6 in each market.

4.3 Social Optimum
We assess efficiency by comparison of market outcomes with

the social optimum. We define this optimum for a population of
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Figure 1: Histogram of the net position (i.e., number of units
traded) of traders in the socially optimal allocation. The distri-
bution is compiled from 20,000 samples.

42 traders, based on the distribution of the private component of
agents’ valuations, with parameters qmax = 10 and σ2

PV = 5 ×
106. To calculate an optimal allocation for a particular array of
draws from this distribution, we simply find the competitive equi-
librium using the call market clearing function. Each trader sub-
mits its valuation vector as a demand curve, with qmax sell orders
at prices r̄ + θsi , s ∈ {−qmax + 1, . . . , 0} and qmax buy orders at
prices r̄+θbi , b ∈ {+1, . . . , qmax}, with each order for a single unit
of the security. Over 20,000 samples, we find a mean social welfare
of 27887. As they are not considered players in the market choice
game, we do not include environment agents in the determination
of the socially optimal allocation. Figure 1 shows the histogram of
trades per player in the social optimum.

4.4 Basin of Attraction
The main results of this study are shown in the heat maps of

Figure 2, which illustrate the trader population conditions under
which the CALL serves as an attractor. We characterize the fre-
quent call market’s basin of attraction by categorizing the market
type a trader selects when the other traders’ strategies are fixed; in
other words, we identify and classify the trading mechanism se-
lected in the trader’s best response.

Given a trader, we fix the other-agent profile (i.e., the set of strat-
egy counts for the 20 players in the same role and for the 21 players
in the other role), and we identify the market type selected in the
trader’s best response. Since we selectively sample full-game pro-
files for the (3, 3)-player DPR approximation, we can bucket all
other-agent profiles into 12 unique categories by role, based on the
population of traders in each market type.

For example, if we examine a SLOW trader in the CALL, the
20 other SLOW traders may all be in the same market (CDA or
CALL) or they may be equally split between the two markets (10 in
the CALL and 10 in the CDA). No other cross-market divisions of
same-role players are possible because we selectively collect pro-
files to reduce via DPR to a (3, 3)-player game. The 21 traders
in the other role (FAST) may all be in the same market (CDA or
CALL), or they may be split between the two markets, with 7
agents in one market and 14 in the other.

For each of the 12 categories of trader population distributions
across markets, we count the number of other-agent profiles for
which the given player’s best response specifies the CALL over
the CDA. We report the corresponding percentages in two best-
response heat maps, one per role, for each market choice game.

To ensure full coverage of all population categories, we construct
a complete subgame1 for each environment. Our results for these

1In each subgame we include the strategies played with the highest
probabilities across all RSNE found in that environment. The full

subgames are illustrated in the heat maps of Figure 2; these char-
acterize the frequent call market’s basin of attraction from the per-
spective of a single trader in each role (SLOW on the left, FAST on
the right). For example, the top left entry in a SLOW trader heat
map reports the percentage of all other-agent profiles comprised of
20 SLOW traders in the CDA and 21 FAST traders also in the CDA
in which a SLOW trader’s best response specifies the CALL.

The higher mean reversion in environment I implies that slower
traders are less likely to be picked off by speed-advantaged traders,
and therefore we find that the SLOW traders display no strong pref-
erence to switch to the CALL unless the majority of other traders
(regardless of speed) are in the frequent call market as well. When
the degree of mean reversion is reduced, the SLOW agents face
greater risk of being picked off by FAST agents with newer and bet-
ter information. Therefore, environments II through IV are much
more salient in answering questions about strategic market choice
under adverse selection, and we focus the rest of the following dis-
cussion in this section on those corresponding subgames.

We see from the environment II–IV heat maps that there is safety
in numbers for a single SLOW trader deciding between the CALL
and CDA: if 20 of the SLOW traders are in a given market, the
best response is more often than not to pick the same market as ev-
eryone else, whether that is the CDA or CALL. When the SLOW
agent population is equally divided between the two markets, how-
ever, we observe a gradual mass exodus of SLOW traders from the
frequent call market as more FAST traders enter the CALL. The
percentage of SLOW-trader best responses selecting the CALL de-
creases monotonically from around 90% to below 40% as FAST
traders leave the CDA for the frequent call market. Despite the
protection afforded to them in the CALL, the SLOW traders would
rather take their chances in the CDA than remain in the same mar-
ket as the FAST traders. However, if the CALL is sufficiently thick
(as in environment IV), the SLOW traders prefer the sanctuary of
the frequent call market, regardless of where the FAST traders are.

On the other hand, FAST traders clearly stand to gain from the in-
formationally disadvantaged orders submitted by their slower coun-
terparts. Therefore, they exhibit a strong preference for the market
selected by the majority of SLOW traders, and they readily follow
the SLOW traders to either market. We observe that their preference
for the CALL increases strictly monotonically, from 0% to nearly
100%, as the number of SLOW traders in the CALL increases.

These results reveal the dynamics of the predator-prey interac-
tion between the FAST and SLOW traders. The SLOW traders face
less risk as part of a large group, but once they are split up between
the two markets, those in the CDA tend to flee to the CALL to get
away from the FAST traders, while the FAST traders relentlessly
pursue the SLOW traders, regardless of market.

We also analyze the collected profiles in the full games, shown
in Figure 3. The heat maps for the SLOW traders are similar to
those in the complete subgames, but the results for FAST traders are
markedly different. This is due to the bias in sampling full-game
profiles for our game-theoretic analysis. As sampling all 681,264
profiles in the full game (given two roles, with 12 strategies each)
is intractable, our coverage of the profile space is primarily deter-
mined by the more promising subgames identified during EGTA.

4.5 Equilibrium Analysis
Our equilibrium results are shown in Table 2. For each RSNE,

we compute surplus for traders in each role by sampling 10,000

details of all equilibria in the four games, as well as the strategy
sets of the complete subgames used to characterize the frequent
call market’s basin of attraction, are available in an online appendix
(http://hdl.handle.net/2027.42/111897).
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Figure 2: Basin of attraction for CALL, as characterized by
best-response heat maps of complete subgames for each envi-
ronment. The subgame for environment III has a 6×6 strategy
space, with three strategies in each market, for each role; the
subgames for the other environments have strategy spaces of
size 4× 4. The matrices on the left (in green) are from the per-
spective of a single SLOW trader; the matrices on the right (in
red) are from that of a FAST trader. The rows in each matrix
specify the distribution of same-role agents across the two mar-
kets, and the columns specify the cross-market distribution of
other-role agents. Each entry in the heat map matrix gives the
percentage of all other-agent profiles in which a single agent’s
best response specifies CALL. Heat map colors follow a scale
where light corresponds to 0% and dark to 100%.

full-game profiles based on the equilibrium mixture probabilities,
with one simulation run per sampled profile. We successfully find
at least one and up to six RSNE in each environment; each equilib-
rium has one to three strategies played with positive probability for
a given role. There is at least one all-CALL RSNE in each environ-
ment; all but one environment has at least one all-CDA equilibrium.

We find empirical support for the general welfare benefits of
the CALL market, but primarily for SLOW traders: the mean to-
tal SLOW-agent surplus accrued over the all-CALL equilibria in a
given environment is uniformly higher than that over the all-CDA
equilibria in the same environment. Environments I and II have the
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Figure 3: Basin of attraction for CALL, as characterized by
best-response heat maps of sampled full-game profiles for each
environment. Data presented is as for Figure 2.

same environment-agent population, but the lower mean reversion
in the latter makes SLOW traders more susceptible to adverse se-
lection. This is reflected in the significant reduction in total SLOW-
agent surplus in environment II versus environment I. FAST traders
accrue approximately the same level of surplus in both environ-
ments. We also observe that although the total welfare in envi-
ronment I is close to the social optimum described in Section 4.3,
increased adverse selection reduces overall surplus, and it is in this
setting that the CALL provides significant welfare improvement
over the CDA.

Within the same environment and with reduced mean reversion,
FAST traders also generally shade their bids less in the frequent call
market versus the CDA, as can be evidenced by reduced Rmid val-
ues. This effect does not hold for the SLOW traders, who shade
approximately the same regardless of market type. The reduction
in FAST-trader bid shading is indicative of the shift from a compe-
tition on speed in the CDA to a competition on price in the CALL.

We find at least one all-CDA RSNE in environments I through III.
This is due to the low number of environment agents in these games.
When there are only 4 environment agents in each market, as in
environments I and II, the CALL market is not thick enough—
sufficient volume is required for the call auction to deliver on its



Env Total surplus FAST SLOW
market surplus Rmid η market surplus Rmid η

I 27288 CALL 14469 129 1 CALL 12819 230 1
I 26697 CALL 14384 210 1 CALL 12314 486 1
I 27261 CDA 14598 250 1 CDA 12662 198 1
I 26785 CDA 14136 435 0.769 CDA 12649 250 1
I 25321 CDA 13502 418 0.943 CDA 11819 750 0.4
I 26133 CDA 13969 559 0.630 CDA 12165 500 1
II 21050 CALL 14697 703 1 CALL 6353 1250 1
II 21242 CDA 15355 710 0.448 CDA 5887 1250 1
III 19992 CALL 13790 644 1 CALL 6202 1250 1
III 20441 CALL 13909 500 1 CALL 6532 1111 1
III 19734 CDA 14483 750 0.4 CDA 5251 1250 1
IV 18067 CALL 12856 970 1 CALL 5211 1250 1

Table 2: Role-symmetric equilibria for the four strategic market choice games, one per environment, calculated from the (3, 3)-
player DPR approximation. Each row of the table describes one equilibrium found, including, for each role in the RSNE, the selected
market mechanism (CALL or CDA) and the average values for total surplus of players in the role and for two strategy parameters:
Rmid (the midpoint of ZIR range [Rmin, Rmax]) and threshold η. Values presented are averages over strategies in the profile, weighted
by mixture probabilities. There is at least one all-CALL RSNE in each environment and one all-CDA RSNE in environments I to III,
but we did not find any all-CDA equilibria in environment IV.

promise of welfare improvement. But in environment IV, where
E = 42, there is ample volume and order activity in the CALL
market for traders to strongly prefer it over the CDA, hence we find
no all-CDA RSNE in this environment.

Notably, we only find RSNE in which both FAST and SLOW
agents select the same market. We can definitively rule out two-
market equilibria—in which all agents in one role choose the CALL
and all those in the other role choose the CDA—by exploiting an
independence property of market choice games. In these games,
the payoff for any given strategy depends only on the strategies of
traders in the same market. We identify CALL-CDA equilibrium
candidates by exploring four subgames for each environment. In
each of these subgames, we limit the 21 traders in one role to a
single strategy in the first market, while permitting traders in the
other role to select any of the six strategies specifying the other
market. In essence, we limit these subgames to one market and one
role. We compute the equilibria in each of these subgames and form
equilibrium candidates of the target form; we can then confirm or
refute these candidates within the full strategy space.

For example, we explore a subgame with SLOW traders play-
ing CALL strategies from Table 1 and FAST traders playing some
strategy sCDA in the CDA. We also explore a subgame with FAST
agents playing CDA strategies and SLOW agents playing a fixed
strategy sCALL in the CALL market. Analysis of the first (second)
subgame gives the equilibria for FAST (SLOW) traders in the CDA
assuming no SLOW (FAST) traders are present. We can then form
a CALL-CDA equilibrium candidate from any equilibrium in the
first subgame (which specifies the strategies for FAST traders in the
CDA) and any equilibrium in the second subgame (which specifies
the strategies for SLOW agents in the CALL).

We refute all such candidate equilibria in all four environments,
hence there are no RSNE in which all FAST traders are in the CDA
and all SLOW traders are in the CALL. Such equilibria might be
expected given that FAST traders benefit from picking off stale or-
ders in the CDA. Ultimately, we find no such RSNE because the
FAST traders benefit from being in the same market as the SLOW
traders. The SLOW traders face greater risk of adverse selection
in the CDA, so they select the frequent call market, followed close
behind by the FAST traders.

4.6 Regret Analysis
We also evaluate the degree to which a trader is attracted to the

CALL versus the CDA. To that end, we compute NE regret [23],
which captures the loss of utility for a player who deviates from a
Nash equilibrium to a specified strategy. The NE regret of a given
strategy s is defined as the utility to the player in equilibrium less
the payoff it accrues when it deviates to s. Accordingly, the NE
regret of any equilibrium strategy is zero.

To compute the NE regret of deviating to the other market, we
use the sampled surplus values in Table 2 to determine the per-agent
surplus for a trader in a given role, and we subtract from that the
payoff of the best-performing strategy in the other market. Again,
we can exploit the independence of the two markets in our model,
this time to determine the best other-market strategy. For example,
for an all-CALL RSNE, we can measure the payoff to an agent that
deviates to strategy sCDA in the CDA via the payoff in any profile
in which a single trader plays sCDA and the other traders are in the
CALL. We average the payoffs accumulated across all such profiles
to determine the maximum-payoff other-market strategy for each
RSNE, and we use these to compute the minimum NE regret for
deviating to the non-RSNE market.

Our results are shown in Figure 4. SLOW traders generally have
lower regret if deviating to the CALL from an all-CDA RSNE than
if deviating to a CDA from an all-CALL RSNE. This is indicative
of the greater loss they face if they leave the CALL market, as they
are at high risk of being picked off by the faster traders in the CDA.
The FAST traders, on the other hand, stand to lose more if they de-
viate from an all-CDA RSNE to the CALL, versus deviating to the
CDA from an all-CALL RSNE, because their payoffs are based on
exploiting their speed advantage over the SLOW traders. In short,
SLOW traders would much rather stay in the CALL market, while
FAST traders exhibit a stronger preference for the continuous mar-
ket. We observe that FAST traders have universally greater regret
than the SLOW traders; this is because they already accrue the lion’s
share of overall welfare, hence they have greater profits to lose. The
negative regrets in our results are indicative of the limitations of the
DPR approximations we use in deriving equilibria.

Also notable is that the best strategy when deviating to the CDA
from an all-CALL RSNE is always the one strategy in which the
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Figure 4: NE regret of equilibria in the four environments (I–
IV), computed for each RSNE as the per-agent surplus in a role,
less the maximum payoff possible if a player in that role devi-
ates to the other market. Os indicate the NE regret in deviating
to the CDA from an all-CALL RSNE; Xs indicate the NE re-
gret in deviating to the CALL from an all-CDA RSNE. Note
that the FAST and SLOW trader NE regrets in environment IV
are overlaid as they are nearly identical.

threshold η < 1, regardless of environment or trader speed. Be-
cause environment agents arrive even more frequently than FAST
traders, any player faces significant adverse selection if alone with
the environment agents in the CDA market. Adopting a lower η de-
creases the tendency to leave standing orders, thus avoiding some
of the pick-off risk.

5. RELATED WORK
There are only a few isolated examples of call markets in today’s

financial markets, most of which clear on a semi-frequent basis.
The Taiwan Stock Exchange matches orders by call auction, with
clears occurring every 60 to 90 seconds, depending on trading ac-
tivity [26]. From mid-1998 to 2002, the Taiwan Futures Exchange
employed a periodic call market to match orders; the clearing inter-
val in the auction was incrementally reduced from 30 seconds to 20
and then 10, before finally being eliminated in favor of a predomi-
nantly continuous market mechanism [43]. More recently, both the
London Stock Exchange and the NYSE have announced plans to
introduce a midday batch auction in hopes of encouraging institu-
tional investors to trade large blocks of shares on their exchanges
[21, 39]. An intraday call auction has been standard for the past
15 years on Xetra, an electronic trading system for securities op-
erated by Deutsche Börse [4]. Outside the equities space, batch-
ing to prevent exploitation by fast traders is currently in place on
several foreign-exchange platforms. EBS, one of the largest cur-
rency trading platforms, has introduced a so-called latency floor,
in which orders are batched in randomized clearing intervals (of
lengths ranging from one to three milliseconds) in an effort to curb
the advantages of super-fast traders [9]. The competing ParFX plat-
form applies a randomized delay of 20 to 80 milliseconds to all or-
der elements, and Thomson Reuters is currently trialling random-
ization of order execution on its foreign-exchange platform [9].

Several prior works have argued for frequent call markets as a
means to end the latency arms race. Budish et al. [6] show that
frequent batch auctions can potentially eliminate the latency arms
race by reducing the value of very small speed advantages. Us-
ing millisecond-level exchange data, they demonstrate the break-
down of correlation between securities at high frequency, arguing
that this phenomenon creates arbitrage opportunities that can be

exploited by the fastest traders. They develop a simple theoretical
model of a single security traded on a continuous limit order book
and show that in equilibrium, HFT profits come from fundamental
investors via wider spreads. In a complementary analysis, Budish
et al. [5] discuss the implementation details of frequent batch auc-
tions in today’s regulatory environment. Farmer and Skouras [13]
likewise advocate frequent sealed-bid auctions as a means to end
the technological arms race, suggesting that clear times be random-
ized. McPartland [29] proposes matching orders every half-second
and switching to a cardinal time-weighted pro rata trade alloca-
tion formula to eliminate the advantage of speed in tie-breaking.
This work also recommends randomization of the trade match algo-
rithm, that is, matching orders to trade at a random time within each
fixed-length clearing interval. Additional variants of randomized
frequent call markets to deter HFT sniping have been suggested by
Sellberg [37] and ISN [22].

Others have focused not on the role of call markets in mitigating
the harmful effects of HFT, but on the difference in market qual-
ity offered in a discrete-time versus a continuous market. Pancs
[30] compares three models—a dark pool, a continuous market,
and a periodic call auction—focusing on both allocative efficiency
and informational efficiency (which is high when observed trans-
actions reveal traders’ private information). This study finds that
the periodic auction is more allocatively efficient than the continu-
ous protocol when the demand for immediacy is low. Pellizzari and
Dal Forno [31] use an agent-based model to compare the efficiency
of a call auction (clearing only once), a continuous double auction,
and a dealership. They find that the dealer market is the most ef-
ficient market structure of the three, offering the lowest volatility
and the highest perceived gains by traders.

Baldauf and Mollner [2] develop a model of order anticipation to
examine the impact of exchange competition on the spreads faced
by investors. They study selective delay, an alternative trading
mechanism in which cancellation orders are processed immediately
but all other order types have a small delay, showing that selective
delay reduces adverse selection by allowing liquidity providers to
cancel stale quotes before being sniped by HFTs. In the specific
setting of their work, they demonstrate that selective delay leads to
the same outcome as a frequent batch auction. In another study,
Baldauf and Mollner [1] consider a setting in which selective de-
lay and frequent batch auctions result in different equilibrium out-
comes. They show that a frequent batch auction in this case results
in wider spreads than both selective delay and a continuous market.

Another relevant question is the frequency of clearing in a peri-
odic call market, with some prior work suggesting that more fre-
quent trading leads to increased volatility [25, 43]. Fricke and
Gerig [15] argue that the optimal speed at which a security clears
is related to volatility, trading intensity, and correlation of the se-
curity’s value with other securities. They estimate that a range of
0.2 to 0.9 seconds is optimal. Du and Zhu [11] study the effects
of trading speed on overall welfare via a series of uniform-price
double auctions held at discrete time intervals. They find that the
optimal trading frequency varies depending on trader speed: fast
traders prefer a higher trading frequency, whereas slow traders pre-
fer a lower frequency (and consequently thicker) market.

Much of the empirical work in the call auction literature ex-
amines the effects of discrete-time trading through natural exper-
iments. For example, Kalay et al. [24] analyze the move of stocks
on the Tel Aviv Stock Exchange from discrete-time trading to con-
tinuous trading. They argue that investors prefer stocks that trade
continuously, based on observed losses in volume in stocks that
trade by call auction. Webb et al. [43] examine the effect of the
decision of TAIFEX, at the time a periodic call auction, to match



the trading hours of the Singapore Exchange (SGX), a continuous
market, finding that this switch led to a statistically significant re-
duction in volatility on the SGX. They attribute these results to
better price formation in the discrete-time market.

6. CONCLUSIONS
We examined strategic market choice in four environments with

both FAST and SLOW traders who must decide between two market
mechanisms: a frequent call market and a continuous double auc-
tion. We modeled this interaction as a game of market selection.
We employed empirical simulation methods to compare the market
type selected in equilibrium, the trading gains accrued, and the re-
gret of deviating from equilibrium. We also analyzed best-response
patterns in order to characterize the frequent call market’s basin of
attraction in multiple environments.

This study offers the first analysis of adoption of frequent call
markets, framed as a question of strategic market choice. Our
findings demonstrate that in equilibrium, SLOW-trader welfare is
generally higher in the discrete-time market—further evidence that
frequent call markets offer both increased gains from trade as well
as protection from speed-advantaged HFTs capable of picking off
resting orders. We also find strong evidence of a predator-prey in-
teraction between FAST and SLOW traders. The FAST traders chase
the SLOW traders into either market, whereas the SLOW traders flee
their pursuers for the protection and efficiency gains of the frequent
call market, as long as the CALL is sufficiently thick.

Overall, our results demonstrate that a frequent call market func-
tions as an attractor for SLOW traders, as FAST traders are willing to
follow the SLOW traders to either market. The predators (e.g., the
HFT real-world counterparts to FAST traders) will always pursue
their prey (e.g., institutional and retail investors), but in a frequent
call market, the SLOW traders will be better protected from adverse
selection and sniping. This suggests that frequent call markets in
the wild could attract sufficient volume for viability, while deter-
ring the wasteful pursuit of tiny latency advantages.

Several limitations should be taken into account in evaluating our
results. We employ a simulation-based methodology for deriving
our payoff estimates, and whereas we effectively reduce sampling
error though the collection of large numbers of observations, there
are limitations to the DPR approximations we use to compute equi-
libria (as evidenced by the observed negative NE-regret values).
As we are not able to exhaustively search the entire strategy space,
our equilibria are subject to refutation by other strategies, and ad-
ditional qualitatively distinct equilibria are always possible.

Our trader strategy set is fairly limited, with both FAST and
SLOW traders employing the same set of strategies. One partic-
ularly unrealistic restriction is that traders cannot alter their mar-
ket choice once it has been made. Interesting extensions might
include strategies that permit learning or adaptive selection of the
market mechanism, or formulating an iterated form of our market
choice game. Similarly, broader exploration of environments with,
for instance, zero mean reversion in the fundamental, slower en-
vironment agents, as well as different clearing frequencies, could
provide further insight on the relative attractiveness of alternative
market mechanisms.
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