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Abstract

Introduction: High quality spectra are very useful in anesthesia related procedures where Electroencephalo-
gram (EEG) frequency content has been shown to drastically help track different brain states. A recent work
(Konstantinidis & Brown, 2019 [1]) introduced the Gaussian Hybrid Autoregressive Model as a parametric
method to generate smooth, very high resolution spectrograms of non-stationary EEG data of humans under
propofol. Objective: In this paper, we extend the model proposed in [1] to incorporate non-Gaussian state noise.
Methods: A Monte Carlo Markov Chain (MCMC) filtering procedure on a self-organizing state-space model
is presented. Results: We test the extended model on EEGs from human patients under propofol, ketamine
and sevoflurane and illustrate the advantages over its Gaussian counterpart. Conclusion: The suitability of
the proposed method for online use, in combination with its ability to smoothly track frequency changes in
human EEG signals under the most common anesthetics, suggests that it can be used for real-time brain state
tracking. Such online use can facilitate the design of more precise closed loop systems for automatic control
of brain states under general anesthesia.
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1. Introduction

Non-stationary time-series frequency analysis tradi-
tionally attracts the attention of the scientific com-
munity. This interest is due to its enormous practical
benefits that arise from the fact that most signals with a
temporal representation encountered in real-life appli-
cations are characterized by time-varying statistics. An
example of a real-life application is the use of EEG
to track brain states under anesthesia. EEG has been
extensively used to characterize brain states under var-
ious anesthetics [2], [3], [4] and to automatically adjust
drug infusion rates using closed loop control systems
using instantaneous brain states as control signals [5].
The issue of non-stationarity is overcome by assump-
tions about local stationarity properties over short time
intervals and application of techniques suitable only
for stationary signals. Even though such assumptions
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can have practical advantages, they are not always suf-
ficient and can be a source of noise. Current techniques
used to estimate frequency spectra of non-stationary
signals include various non-parametric methods, such
as the multitaper approach developed in [6] and vari-
ants thereof. Non-parametric approaches cannot yield
spectrograms with both high temporal and frequency
resolution simultaneously. Improving time resolution
by using a shorter, assumed stationary, data segment
results in lower frequency resolution and vice versa.
Parametric methods (e.g., autoregressive models) are
usually based on time-varying linear predictive models
and provide an elegant alternative. In [1], a hybrid
autoregressive model is used in a state-space form with
Gaussian state noise and Kalman Filtering is employed
to fit the model. Hybridity is shown to yield smoother
EEG spectrograms than non-parametric and discrete
parametric methods. In [7], Cauchy state noise is used
and is shown to provide advantages over the use of
Gaussian state noise in efficiently tracking EEG fre-
quency changes during Event Related Synchronization
(ERS). The scale of the Cauchy distribution is assumed
identical for all parameters and is jointly estimated with
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the state (autoregressive parameters) using a sequential
importance resampling algorithm. Motivated by the
work of [7], this paper extends the hybrid approach of
[1] and develops an algorithm to fit hybrid autoregres-
sive models using Cauchy state noise by jointly esti-
mating a different scale for each autoregressive param-
eter. Finally, it explores the performance of the hybrid
algorithm on different EEG datasets of humans under
anesthesia and compares it to that obtained by other
widely used non-parametric and discrete parametric
methods.

2. Methods

2.1. Hybrid Cauchy Model
In [7], the performance of the filter is better than
the Gaussian one in identifying abrupt frequency
changes but the use of Cauchy noise can introduce
some disturbances in more stationary regimes of
simulated data. Motivated by the approach in [7], a
bootstrap hybrid algorithm is developed, that attempts
to improve the tracking performance of the Gaussian
filter while mitigating outliers in more stationary parts,
by taking advantage of hybridity.

Self-Organizing State-Space Formulation.

State Equation: dx(t) = w(t)dt (1)

Observation Equation: zk = Hkxk+vk (2)

w(t) =
[
w1(t), w2(t), . . . , wp(t), ε1(t), ε2(t), . . . , εp(t)

]T
,

where wj (t) ∼ C(0, qj (t)) is a continuous Cauchy
process with 0 mean and scale parameter qj (t) and
εj (t) ∼ N (0, Rε) is a continuous Gaussian process with
0 mean and variance Rε
vk ∼ N (0, R(t)) is a discrete scalar white Gaussian

observation noise with 0 mean and variance R(t)
x(t) =

[
a1(t), a2(t), . . . , ap(t), ln(q1(t)), ln(q2(t)),

. . . , ln(qp(t))T = [a(t), q(t)]T is the augmented state
vector with the continuous time-varying autoregressive
coefficients and their respective scale parameter.
To ensure positivity of the scale parameters, their
logarithm is estimated.
Hk =

[
zk−1, . . . , zk−p, 0, . . . , 0

]
is the observation matrix

at time tk comprising the p past discrete observations
and p zeros
xk = x(tk) is the sampled state vector at time tk

Let T denote the total number of observations
in the data, indexed by k, N denote the total
number of particles used for the sequential importance
resampling, indexed by i, j index the autoregressive

parameters
[
a1(t), a2(t), . . . , ap(t)

]
and fs denote the

sampling frequency.

Discretization of the state equation. To start the algorithm,
it is necessary to discretize equation (1).

For a discretization step ∆, (1) can be written as x(t +

∆) = x(t) +
t+∆∫
t
dw(t) (3). The Ito integral in equation (3)

can be discretized as ∆x(t) = ∆w(t), where ∆x(t) ≈ x(t +
∆) − x(t),∆w(t) ∼ C(0, Q∆), for the first p dimensions
where Q is the diagonal matrix with entries qj (t) and
∆w(t) ∼ N (0, Qq∆), where Qq is the diagonal matrix
with entries εj (t) for the next p dimensions.

The Self-Organizing state-space equations can now
be written as:
State Equation: ∆x(t) = ∆w(t) (4)

Observation Equation zk = Hkxk+vk (5)

Markov Chain Monte Carlo (MCMC). Let B denote the
number of bootstrap samples and w

(i),b
k denote the

unnormalized weight of the particle i at time k for

the bootstrap sample b and W
(i),b
k the normalized one

respectively. Let a(i),b
k,j denote the value of the particle

i for the coefficient j at time k for the bootstrap
sample b. Let ESS denote efficient sample size and
[α, β] denote the interval for uniform initialization
of the Cauchy scale parameters. Let Qq denote the
covariance matrix of the Gaussian distribution of
the scale parameters of the Cauchy distributions of
the coefficients. The posterior density for a given
bootstrap sample is approximated by p̂(ak |z1:k) =
N∑
i=1
W

(i)
k δa(i)

k
(ak) and the autoregressive coefficients are

estimated by performing Metropolis-Hastings updates
using the approximated posterior as proposal density.
The algorithm is described in detail on the next page.

Log-likelihood of the model. Let θ denote the scale
parameters qj . The log-likelihood that the observed
data are generated by the model is defined as L(θ) =

log
N∏
k=1

p (zk | zk−1, . . . , z0, θ). (6)

(6) can be approximated using p (zk | zk−1, . . . , z0, θ) =∫
p(zk |xk)p(xk | (zk−1, . . . , z0, θ))dxk ≈ 1

N

N∑
i=1
p(zk |t

(i)
k ) =

1
N

N∑
i=1
w

(i)
k (7), where t(i)k denotes the particle i at time k.

Using (7), (6) can be approximated as L(θ) =
T∑
k=1

log(
N∑
i=1
w

(i)
k ) (8), where w

(i)
k is the unnormalized

weight of particle i at time k.
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for b=1:B do
Initialization: a(i),b

0 = aryule(Z, p),W (i),b
0 = 1

N ,

q
(i),b
0 = diag(U (α, β))

Filtering: for k=1:T do
Sample a(i),b

k−1+∆ ∼ C(a(i),b
k−1 , Qk−1∆)

q
(i),b
k−1+∆ ∼ N (q(i),b

k−1 , Qq∆)
...

a
(i),b
k ∼ C(a(i),b

k−1+( 1
∆fs
−1)∆

, Qk−1∆)

q
(i),b
k ∼ N (q(i),b

k−1+( 1
∆fs
−1)∆

, Qq∆)

w
(i),b
k = W

(i),b
k−1 p(zk |Hk , a

(i),b
k , R) =

W
(i),b
k−1 N (zk |Hk , a

(i),b
k , R)

W
(i),b
k =

w
(i),b
k

N∑
i=1

w
(i),b
k

ESSbk = 1
N∑
i=1

(W (i),b
k )2

if ESSbk <
N
3 then

Resample with replacement N

particles from {x(i),b
k }Nk=1 according to

probabilities W (i),b
k

Reset W (i),b
k = 1

N
end
Sample q̃k (i),b(0) ∼ p̂(abk , q

b
k |z1:k),

ãk
(i),b(0) ∼ p̂(abk , q

b
k |z1:k),

L̃(0) =
k∑
t=1
log(

N∑
i=1
w

(i),b
t ), w̃k (i),b(0) = wk

(i),b

for l=1:L do
q̃k

(i),b(l) ∼ p̂(abk , q
b
k |z1:k),

ãk
(i),b(l) ∼ p̂(abk , q

b
k |z1:k)

w̃
(i),b
temp(l) = w̃

(i),b
k (l − 1)×

×p(zk |Hk , ã
(i),b
k (l), q̃k (i),b(l), R)/p(zk |Hk ,

ã
(i),b
k (l − 1), q̃k (i),b(l − 1), R)
L̃temp(l) = L̃(l − 1)

−log(
N∑
i=1
w̃

(i),b
k (l − 1)) + log(

N∑
i=1
w̃

(i),b
temp(l))

With probability
min(1, L̃temp(l)\L̃(l − 1)), set

âbk,j = ˜ak,j b(l), w̃k (i),b(l) = w̃
(i),b
temp(l)

W
(i),b
k =

w̃
(i),b
temp(l)

N∑
i=1

w̃
(i),b
temp(l)

,

L̃(l) = L̃temp(l)

Otherwise set ˜ak,j (i),b(l) = ã
(i),b
k,j (l − 1),

L̃(l) = L̃(l − 1)
end

end
end

âk,j = 1
B

B∑
b=1

âbk,j

Algorithm 1: MCMC on hybrid state-space
2.2. Model Selection, Spectral Estimation &
Roughness Metric

Model selection is performed using the well-known
Akaike Information Criterion (AIC), defined as
AIC(p) = 2p − 2LML, where p is the order of the
autoregressive model and LML is the maximized
marginal log-likelihood for that model. The order
that yields the lowest AIC will be chosen. LML is
approximated by (8). Model selection was performed
in an initial burn-in period of the anesthesia procedure
(10 seconds for the experiments presented).

Having calculated the optimal estimates for the
autoregressive parameters, the spectral density at
frequency f and time t is calculated using:

S(f , t) = R

|1−
p∑
k=1

ak(t)e
−i2πk ffs |2

, 0 ≤ f ≤ fs
2 (9)

Where ak(t) is the k-th estimated autoregressive
coefficient at time t.

Finally, we define a roughness metric of a coefficient

ak(t) between 2 time points t1 and t2, Rk =
t2∫
t1

[d
2ak(t)
dt2

]2dt

(10) [8]. The lower the metric, the smoother the
temporal evolution of the autoregressive coefficients.

3. Results

Results on non-parametric, discrete Gaussian (DC) and
hybrid Gaussian (HG) and Cauchy (HC) models will
be discussed. Discrete Cauchy models lead to even
noisier spectrograms than the Gaussian models, as
expected due to the nature of the heavy-tailed Cauchy
distribution. Spectrograms are shown for the discrete
Gaussian and hybrid Cauchy models.

3.1. Simulation Results

To validate the extended model and to obtain an
insight on how hybridity and use of Cauchy state noise
enhances smoothness and instantaneous frequency
estimation accuracy, it was fit along with its Gaussian
counterparts to a simulated noisy sinusoidal wave with
stepwise frequency modulation, in order to simulate
both abrupt and stationary regimes.

An artificial sinusoidal signal of T = 60sec, zk =
Aksin(ωk

k
fs

) + vk was generated at a typical EEG
sampling rate fs = 250Hz. vk is added white Gaussian
noise with zero mean and unit variance. Amplitude
evolves as Ak = 1 + k

T fs
, 0 ≤ k

fs
≤ T . Let ωk evolve
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Figure 1. Instantaneous frequency tracking

Table 1. Mean Square Errors On Simulated Data

DG HG HC
(3.18 ± 0.01) (2.12 ± 0.007) (1.26 ± 0.009)

following the equation below.

ωk =



30, if 0≤ kfs<10

70, if 10≤ kfs<20

50, if 20≤ kfs<30

80, if 30≤ kfs<40

60, if 40≤ kfs<T

Let ck|N denote the roots of the characteristic
polynomial of the autoregression, which can be written
as ck|N = rk|N e−iωk|N , where rk|N is the modulus and ωk|N
is the phase of each root ck|N . The dominant frequency
is proportional to the phase of the complex roots:

fk|N =
fs |ωk|N |

2π . Applying this procedure for a discrete
and hybrid models on the simulated data, using an
autoregressive model of order p = 2, R = 1 and Q =
10−3I , B = 100, Qq = 10−4I the following estimations
are obtained (Figure 1). A low autoregressive order was
used for increased tractability of the poles. The values
for the remaining parameters were set empirically.

All models are able to track the true frequency
evolution, but the hybrid ones result in much less
fluctuation around the true instantaneous value. Hybrid
Cauchy Model does not suffer from the lag of the Hybrid
Gaussian model at the times of abrupt frequency
changes. The use of Cauchy model in combination with
the adaptive estimation of the scales allows for very
high adaptability. Mean Square Errors (MSE) are shown

Figure 2. Non parametric spectrograms of human EEG under
propofol

in Table 1. Values shown are averages and standard
deviations for 100 runs.

3.2. Spectrograms of EEG under anesthetics
Spectrograms for propofol, ketamine and sevoflurane
were calculated using the hybrid and discrete para-
metric methods, as well as widely used non-parametric
methods including the periodogram, the multitaper
spectrogram, the state-space periodogram and the
recently developed state-space multitaper spectrogram
[9]. For the multitapers, 3 tapers were used at a 2Hz
spectral resolution. The time window of assumed sta-
tionarity was 2 seconds. For all Cauchy spectrograms,
B = 10 bootstrap samples and N = 500 particles were
used. The performance of the proposed model was com-
pared to that of discrete methods that have been used
before for EEG spectrogram generation under anesthe-
sia [10] and to that of the non-parametric approaches
mentioned above. All EEG recordings are part of de-
identified data collected from patients at Massachusetts
General Hospital (MGH), as a part of a MGH Human
Research Committee approved protocol. Spectrograms
of human EEG under propofol, ketamine and sevoflu-
rane are discussed.

Propofol. In the case of propofol, non-parametric
spectrograms (Figure 2) clearly show an α frequency
band in addition to the slow oscillations, as expected
[2].

The periodogram and the multitaper spectrogram
are quite noisy. On the other hand, their state-space
counterparts seem to underfit as it is very implausible
that the α band is evolving as a completely straight line
in an actual EEG experiment.

Autoregressive models of selected order p = 14 were
used to calculate the parametric spectrograms. In
the purely discrete case (Figure 3), the resulting
spectrogram seems able to identify the subtle changes
in frequency but is not able to reduce the underlying
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Figure 3. Discrete Gaussian parametric spectrogram of human
EEG under propofol

Figure 4. Hybrid Cauchy parametric spectrogram of human EEG
under propofol

Figure 5. Non-parametric spectrograms of human EEG under
ketamine

noise to the same extent as the hybrid spectrogram.
The hybrid Cauchy model (Figure 4) performs better
in identifying the slight frequency changes across the
α band without introducing extra noise.

Ketamine. A β-γ frequency band is apparent in all
non-parametric spectrograms (Figure 5) with peaks
at around 30Hz and 50Hz, as expected [2]. The
periodogram and multitaper spectrogram seem to
identify changes across the bands but they suffer from
high noise. On the other hand, as it was the case
with propofol, state-space periodogram and multitaper
spectrogram oversimplify the frequency evolution and
yield a constantly evolving β-γ band.

Order p = 11 was selected for the parametric
spectrograms. The discrete one (Figure 6) is quite
noisy, while the Cauchy hybrid spectrogram (Figure 7)
provides a better result.

Figure 6. Discrete Gaussian parametric spectrogram of human
EEG under ketamine

Figure 7. Hybrid Cauchy parametric spectrogram of human EEG
under ketamine

Figure 8. Non-Parametric Spectrograms of human EEG under
sevoflurane

The ability to efficiently track high frequency events
due to ketamine induced spikes in the EEG is a strong
validation for the proposed model.

Sevoflurane. Non-parametric spectrograms of EEG
under sevoflurane follow (Figure 8). The interchange
between the merge and separation of the α and
slow oscillations is observed throughout the whole
recording, as expected [2].

Order p = 18 was selected for the parametric
spectrograms. The hybrid model (Figure 10) provides
again the best result by efficiently smoothing the
discrete spectrogram (Figure 9).

The conclusion drawn by visual inspection for
smoother spectrograms of the hybrid models is
corroborated by the roughness metrics of Table 2, as
defined in (10). The reported final value for each
model is the average of the metrics for each individual
coefficient taking part in the model.
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Figure 9. Discrete Gaussian parametric spectrogram of human
EEG under sevoflurane

Figure 10. Hybrid Cauchy parametric spectrogram of human
EEG under sevoflurane

Table 2. Roughness Metrics

DG HG HC
Propofol 3.338·10−5 6.567·10−7 2.379·10−6

Ketamine 3·10−3 9.474·10−5 2.273·10−4

Sevoflurane 5.05·10−4 6.09·10−6 4.09·10−5

Table 3. Log-Likelihood Values For Hybrid Models

HG HC
Propofol (4.08 ± 0.034) · 105 (4.74 ± 0.14) · 105

Ketamine (8.36 ± 0.18) · 104 (1.03 ± 0.083) · 105

Sevoflurane (9.01 ± 0.09) · 105 (1.03 ± 0.011) · 106

As expected, the hybrid Cauchy model yields less
smooth coefficients than the hybrid Gaussian but much
smoother than the discrete Gaussian. We believe that
the hybrid Cauchy model estimates the instantaneous
frequency with higher accuracy, balancing the tendency
for oversmoothing of the hybrid approach by the
heavier tales of the Cauchy distribution and thus
the proposal of larger variations of the autoregressive
parameters.

Apart from the better performance in simulated
data, log-likelihood values of Table 3 corroborate the
aforementioned hypothesis. Averages and standard
deviations are shown for 100 runs. Cauchy models yield
higher likelihood values in all three cases.

Finally, the Ljung-Box scores for residual autocorre-
lation are shown in Table 4. In accordance with [7],
the scores are much higher than the cutoff value for 5
lags (11.07), indicating strong residual autocorrelation.
This is a common phenomenon when fitting models to

Table 4. Ljung-Box Scores For Hybrid Models (5 Lags)

Hybrid Gaussian Hybrid Cauchy
Propofol 416.8344 ± 5.46 252.59 ± 13.4
Ketamine 441.17 ± 8.9 358.3154 ± 24.64

Sevoflurane 308 ± 7.04 280 ± 11.082

Table 5. Execution Times

Algorithm Time (seconds)
Hybrid Cauchy Filtering 270±8.1
Hybrid Kalman Filtering 123.6±6.7
Discrete Kalman Filtering 54.3±2.4

Non-parametric spectrograms 50±0.12

biomedical signals and is due to the long-term auto-
correlations present in the signals. The use of Cauchy
model reduces residual autocorrelation significantly.

3.3. Online use
All algorithms described in this paper can be a great
tool for offline analysis of the EEGs. On the other hand,
we are ultimately interested in developing real-time
control systems and therefore the practicability of the
algorithms for online use should be investigated. In this
section, we report the time elapsed for the algorithms
to be run on the 10-minute dataset of EEG under
ketamine used to generate spectrograms of Figures 7-
9. Run on a 2.9 GHz Intel Core i5 with an 8GB RAM the
following execution times were obtained for the hybrid
and discrete models (Table 5).

The algorithm was run five times for each case
to establish an indicative average and standard
deviation. The frequency resolution was 4 index/Hz.
Autoregressive model selection was performed before
the execution of the filtering procedure and is not
included in the reported times. Model order selection
can be determined through offline analysis of the EEG,
or through the use of a short burn-in period in the very
beginning of the anesthesia procedure. All reported
times are much less than the duration of the recording
(10 minutes) and therefore the algorithms are suitable
for online use (the time required to process each new
incoming observation is less than the sampling rate).

Longer execution times are observed in the hybrid
models in comparison to the discrete versions. This
is expected since the integration of the differential
equations for the state vector and the state covariance
matrix, that is the main idea of this approach, takes
more time than just "jumping" from a value at time tk
to the updated value at tk+1. Furthermore, very high

6 EAI Endorsed Transactions on 
Bioengineering and Bioinformatics 
02 2021 | Volume 1 | Issue 1 | e5



Hybrid Adaptive Parametric Frequency Analysis

temporal resolution of the parametric models leads to
an inherent higher computational burden, that the non-
parametric models avoid due to the binning procedure.

Finally, regarding the Cauchy model, the use of the
MCMC approach in combination with the hybridity and
thus the need to sample from the discretized model (∆ =
fs
50 in this paper) leads to the longest execution times.
On the other hand, this method is shown to provide
the most accurate results in the simulated data and the
highest likelihood values in human EEG datasets. Thus,
it would be beneficial to adapt the algorithm for higher
computational efficiency [11].

4. Discussion
The hybrid filter stands at the border between the
underfitting regime of the state-space multitaper peri-
odogram and the overfitting regime of the multitaper
spectrogram. In relation to the purely discrete version,
the hybrid filter is better able to capture the smoothness
in the data, while at the same time this ability does not
prevent it from identifying sharp frequency changes. To
stress the importance of the hybrid model, we would
like to emphasize that lowering the covariance matrix
of the discrete model as a measure towards smoothness
of EEG spectrograms of patients under propofol was
not an efficient approach, as shown in [1]. Lower qual-
ity spectrograms with induced artifacts due to a low
covariance matrix were also observed for EEGs under
ketamine and sevoflurane.

In this hybrid approach, no prior knowledge about
the evolution of the parameters in the time intervals
between the observations is assumed. As a result,
the autoregressive coefficients are assumed to follow
a random walk. The proposed model can become
even more potent in calculating frequency spectra
if some prior knowledge about the parameters is
available that will guide a reasonable choice of the
state transition matrix. On the other hand, predicting
a priori how the parameters are expected to evolve
is not a trivial issue and demands a fair amount
of research and experience with EEG datasets and
effects of anesthetics on the brain. Nevertheless, it is
expected that incorporating such prior information can
enhance the model’s performance even more, since
by integrating the state equation, the model will be
able to predict values for the parameters even in the
time intervals between the observations where no new
information is available.

Concerning the two different hybrid models, our
results agree with [7] and indicate that the use of
Cauchy noise is also advantageous when calculating
spectra of EEG under anesthesia, in addition to EEG
spectral analysis for Event Related Desynchronization
that is discussed in [7]. The use of the self-organizing
model allows the scales of the Cauchy distribution to

be adjusted to higher values during abrupt frequency
changes for better tracking. On the other hand, fitting
of Cauchy models is more computationally expensive
due to the need for Monte Carlo simulations. Gaussian
assumptions lead to convenient closed form solutions
and allow the use of Kalman Filter that is perfectly
suited for online use and do not impose the high
computational burden of Monte Carlo simulations,
which, even though can be alleviated by parallelization,
requires substantial hardware. For this reason, the
Gaussian [1] or the Cauchy model presented in this
paper are available to allow for optimal trade-off
between desirable accuracy and use of resources one
wants to allocate.

5. Conclusion

Overall, the proposed method is an accurate tool
for frequency analysis of non-stationary data. It
provides a complete framework that incorporates
robust autoregressive model selection and an efficient
way to calculate instantaneous frequency estimates. To
the best of our knowledge, no other method has shown
similar, smooth yet accurate, results for frequency
analysis of EEG under anesthetics. The suitability of
the proposed model for online use, coupled with its
ability to provide smoother spectrograms, suggests that
it can be used as a monitoring tool for real time
brain state tracking under general anesthesia that will
further potentiate the design of closed loop systems for
automatic and precise control of brain states. Future
work will test the accuracy of brain-state classification
when using our model for feature extraction. Finally,
note that even though we have focused on anesthesia
EEGs, the work presented in this paper can be applied
to any non-stationary time-series.

References
[1] Konstantinidis & Brown (2019) Smoother Adaptive

Parametric Spectrograms: An application to EEG under
general anesthesia 19th Annual International Conference
of the IEEE Bioinformatics and Bioengineering (BIBE),
Athens, Greece

[2] Purdon et al. (2015) Clinical Electroencephalography for
Anesthesiologists: Part I: Background and Basic Signatures
Anesthesiology. 2015 Oct;123(4):937-60

[3] Purdon et. al. (2013) Electroencephalogram signatures
of loss and recovery of consciousness from propofol
Proc Natl Acad Sci U S A. 2013 Mar 19; 110(12):
E1142–E1151. Published online 2013 Mar 4. doi:
10.1073/pnas.1221180110

[4] W. Saadeh et al. (2019) Design and Implementation of
a Machine Learning Based EEG Processor for Accurate
Estimation of Depth of Anesthesia IEEE Transactions on
Biomedical Circuits and Systems, vol. 13, no. 4, pp. 658-
669, Aug. 2019.

7 EAI Endorsed Transactions on 
Bioengineering and Bioinformatics 
02 2021 | Volume 1 | Issue 1 | e5



Konstantinidis, Brown

[5] Yang et al. (2019) Developing a personalized closed-loop
controller of medically-induced coma in a rodent model J
Neural Eng. 2019 Mar 11. doi:10.1088/1741-2552/ab0ea4

[6] Thomson, D. J. (1982) Spectrum estimation and harmonic
analysis Proceedings of the IEEE, 70, 1055–1096

[7] Ting et al. (2010) Spectral estimation of nonstationary
EEG using particle filtering with application to event-related
desynchronization (ERD) IEEE Transaction on Biomedical
Engineering, vol. 58. no. 3, pp. 321-331, 2011. DOI
10.1109/TBME.2010.2088396

[8] James Ramsay et al. (2009) Functional Data Analysis with
R and MATLAB Springer, ISBN:978-0387981840 Entropy

2015, 17, 928-949; doi:10.3390/e17030928
[9] Kim et al. (2018). State-space multitaper time-frequency

analysis Proc Natl Acad Sci U S A. 2018 Jan 2;115(1):E5-
E14

[10] Georgiadis et al. (2009) Kalman smoother based time-
varying spectrum estimation of EEG during single agent
propofol anesthesia 31st Annual International Conference
of the IEEE EMBS Minneapolis, Minnesota, USA

[11] Lawrence M. Murray et al.(2016). Parallel Resampling
in the Particle Filter Journal of Computational
and Graphical Statistics, 25:3, 789-805, DOI:
10.1080/10618600.2015.1062015

8 EAI Endorsed Transactions on 
Bioengineering and Bioinformatics 
02 2021 | Volume 1 | Issue 1 | e5


	1 Introduction
	2 Methods
	2.1 Hybrid Cauchy Model
	Self-Organizing State-Space Formulation
	Discretization of the state equation
	Markov Chain Monte Carlo (MCMC)
	Log-likelihood of the model

	2.2 Model Selection, Spectral Estimation & Roughness Metric

	3 Results
	3.1 Simulation Results
	3.2 Spectrograms of EEG under anesthetics
	Propofol
	Ketamine
	Sevoflurane

	3.3 Online use

	4 Discussion
	5 Conclusion



