
Monitoring and Improving Managed Security
Services inside a Security Operation Center
Mina Khalili1, Mengyuan Zhang1,∗, Daniel Borbor1, Lingyu Wang1, Nicandro Scarabeo2, Michel-
Ange Zamor3

1Concordia Institute for Information Systems Engineering (CIISE), Concordia University, Montreal, QC H3G 1M8,
Canada
2University of Cassino and Southern Lazio, Viale dell’Università, 03043 Cassino FR, Italy
3Département d’informatique, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada

Abstract

Monitoring and improving the performance of Security Operation Centers (SOC) are becoming crucial due to
the emerging need of benefiting from Managed Security Services (MSS) rather than hiring in-house security
experts. In this paper, by observing workflows of a real-world SOC, a system consisting of three different
modules is designed for monitoring analysts’ activities, analysis performance measurement, and performing
simulation scenarios. The system empowers managers to evaluate the SOC’s performance, which helps them
to conform to Service Level Agreement (SLA) and see the need for improvement. Moreover, the designed
system is strengthened by a background service module to provide feedback about anomalies or informative
issues for security analysts. Three case studies have been conducted based on real data collected from the
operational SOC, and simulation results have demonstrated the effectiveness of the different modules of the
designed system in improving the SOC performance.

Received on 28 November 2018; accepted on 19 December 2018; published on 25 January 2019
Keywords: Managed Security Services, Network Security Monitoring, Security Operation Center, Performance
Metrics, Service Level Agreement, SLA, SOC, MSS, NSM, Security analysts
Copyright © 2019 Mina Khalili et al., licensed to EAI. This is an open access article distributed under the terms
of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits
unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.
doi:10.4108/eai.8-4-2019.157413

1. Introduction
Advantages of employing Managed Security Services
(MSS), such as cost-effectiveness, skilled security
experts, appropriate facilities, up to date security
awareness, and 24 hours continuous service encourage
different companies to outsource their security services
rather than having in-house security employees [1].
Network security monitoring (NSM) is a service of
MSS for continuous monitoring of networks by human
experts instead of installing solely security appliances.
The official definition of NSM is “the collection,
analysis, and escalation of indications and warnings
to detect and respond to intrusions” [2]. Therefore,
in order to provide NSM service, Managed Security
Service Providers (MSSP) deploy various sensors in the
client site, such as Intrusion Detection Systems (IDS),

∗Corresponding author. Email: mengy_zh@ciise.concordia.ca

to gather various suspicious alerts from each client’s
computer network, and send them to the Security
Operation Center (SOC). Then, SOC as a heart of
NSM correlates and analyzes the alerts by its human
security analysts to confirm whether they are successful
exploits. A security incident is detected and confirmed
by True Positive (TP) alerts as indications. In case of
an incident, results of analysis need to be exposed to
decision makers, in a process called escalation, to react
in an appropriate way.

Emerging demand of outsourcing security services
from different companies makes the business world
increasingly competitive for MSS providers. Monitoring
and improving performance of the SOC becomes more
crucial to the managers to optimize their resources and
improve the quality of their service.

The ability to monitor and improve the performance
of security analysts inside the SOC urges the need of
having measurable performance metrics for the human

1

Research Article
EAI Endorsed Transactions
on Security and Safety

EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e1

http://creativecommons.org/licenses/by/3.0/
mailto:<mengy_zh@ciise.concordia.ca>

M. Khalili et al.

activities. In order to have quantitative performance
metrics, we need to carefully analyze analysts’ tasks,
which is mainly a security investigation workflow, to
model their behavior. Modeling the workflow should
result in trackable and measurable actions. Task
analysis techniques help extracting characteristics of
human activities which would result in revealing the
potential improvement options [3].

Monitoring the SOC performance lets the managers
know if they conform to their SLA with their clients,
if the number of analysts working in the SOC for
each work-shift is enough to serve all the customers
appropriately, how each analyst is working efficiently.
Afterwards, with historical performance metrics on
hands, managers can identify and assess the potential
options to improve the current performance.

Challenges faced by the operational SOC include:

• To the best of our knowledge, there does not
exist any model for the SOC analysis workflow
to elaborate analysts’ detailed tasks. By modeling
the analysis workflow, we can obtain a clear
picture about analysis steps allowing the system
to track analysts’ activities.

• Automated system for monitoring and evaluat-
ing SOC performance are still lacking in exist-
ing works. Consequently, there is no clear under-
standing of SOC capability and different analysts’
performance.

• The study related to simulating potential
improvement options of the SOC in order to
assess their effectiveness stays neglected.

• A convenient knowledge transfer among analysts
system is still missing. Analysts usually possess
different knowledge, since they gain different
knowledge during each investigation related to
different clients.

The aforementioned challenges prevent managers to
prioritize the efforts on improving SOC performance.

There are three main categories of related work
(a more detailed review is given in Section 7). The
first category discusses different aspects of MSS.
Different designs for a SOC architecture, such as
employing recognition mechanism of the immune
system, cloud-based NSM, hierarchical mobile-agent-
based approaches, etc, have been proposed [4–10].
Researchers study [11–13] various aspects of different
operational SOCs to compare their functionality.
However, these works are fundamentally different from
our work, our study focuses on providing a solution
for SOC managers to evaluate and improve SOC
capability without modifying SOC architecture. The
second category is alert correlation techniques helping
to provide more accurate alerts, and reducing the rate of

False Positive (FP) [14–17]. The third category reviews
studies about Call Centers (CC), since SOC and CC are
similar regarding their performance evaluation. In a
CC, operators answer to different calls in a queue, where
in a SOC, analysts analyze incoming logs in a queue.
Different queueing models are employed in this area to
solve the problem of staffing, scheduling, and routing
jobs policy [18–21]. To the best of our knowledge, there
is little work related to performance measurement and
improvement of a SOC.

In this paper, we propose a system to help managers
by evaluating and monitoring the performance of
a SOC and analysts by easing knowledge transfer
among them. The designed system consists of a
Graphical User Interface (GUI) for managers with
three modules, monitoring, measuring, and simulation
respectively. Additionally, a background service to
generate feedbacks to SOC’s analysts about anomalies
and informative issues are proposed to transfer
knowledge among analysts. Monitoring module helps
managers to obtain the current analysts’ activities of
the SOC. This module illustrates details of recent
investigations which are in progress or recently
completed by the analysts. Managers can check overall
and detailed SOC performance with the measuring
module. Consequently, they can make the decision
related to adding new analysts, recognize demanding
clients, or optimize certain analysis steps average
duration. With the simulation module, the managers
can assess different performance improvement options
to see the potential effect of each possible improvement
on the performance result of real production data,
without affecting the normal operation of the SOC.
The simulation results also provide insight for the
development team to improve SOC console applications
and provide proof of concept for clients. Analysts
benefit from the feedback module where they get hints
about next probable steps. Feedbacks include the range
of task times, the alerts for missing steps. Moreover,
the knowledge of one analyst could be transferred to
another one through the feedback module. Specifically,
the contributions of our work are:

• First, we model the alert analysis workflow based
on a real operational SOC.

• Second, we develop a practical system to monitor
the analysis workflow, measure analysts’ perfor-
mance based on divers performance metrics, sim-
ulate possible improvement options and enable
knowledge transfer among analysts by the feed-
back module.

• Finally, we conduct three case studies based on
real-life activity logs of analysts over a period of
57 days to show how the performance would be
affected by various simulation scenarios.

2 EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e1

Monitoring and Improving Managed Security Services inside a Security Operation Center

Figure 1. An example of a typical deployment model for Network
Security Monitoring service representing an operational SOC and
a client infrastructure

The rest of the paper is organized as follows. Sec-
tion 2 describes the required background knowledge to
understand this work. Section 3 illustrates our mod-
eling methodology of the analysis workflow, and the
logging phase of analysts’ activities. Section 4 pro-
vides an overview of the system’s functionality, and
the modules employed methodology. Section 5 demon-
strates the implementation of the whole system. Sec-
tion 6 evaluates three case studies to assess different
improvement options of the SOC performance. Sec-
tion 7 reviews related work. Section 8 concludes our
work and addresses the future work.

2. Preliminaries
In this section, the operational SOC workflow and
its related characteristics and notations are explained
to provide background knowledge. In this paper, our
study is based on a real operational SOC. Besides
illustrating SOC characteristics, a brief description of
the designed system, and related definitions are given
to show how the proposed system functions alongside
the SOC main workflow.

Figure 1 illustrates a sample deployment model from
an infrastructure perspective. The operational SOC uses
Virtual Private Network (VPN) to connect the client site
to the SOC. Sensors can be placed at various locations in
the client network, such as outside the firewall facing
internet, behind the firewall inside the demilitarized
zone (DMZ), which are accessible internal points of
client’s network from outside, or in the local network
behind the firewall.

Analysts rely on SOC console, to review related
alerts1 of each client and conduct the analysis.
The workflow of alert analysis starts from the SOC
console consisting tasks, such as receiving alerts, cross-
referencing network map of a client, examining a

1To clarify notations, alerts are specifically IDS-generated. However,
the event notation includes all kinds of machine-generated alerts and
logs. Logs could be referred to normal operating system events (e.g.,
unsuccessful attempt to log in to a system) that can be useful for a
security investigation.

client’s assets and vulnerabilities, opening content of
the alert packet, and contacting the client in case of a
true positive alert.

Incident category Investigation type Abbreviation
Security related BruteForce Attack BFA

Denial Of Service DOS
External Vulnerability Scan EVS
Malware Infection MI
Abnormal Activities AA
Others OTHERS

Policy violation Policy Violation PV
Peer to Peer Bittorrent P2P

Table 1. List of investigation types related to the incident
categories

There are eight investigation (the analysis task of
sensor generated alerts by an analyst) types in two
main categories from the SOC perspective, security-
related incidents, and policy violation incidents. Table 1
represents different investigation types.

For each investigation type, multiple approaches may
exist. We collect all possible analysis approaches in one
integrated model consisting of different investigation
paths. The complete investigation workflow modeling
phase will be described in details in Section 3.1.

Sub-steps in each step are defined as actions. Actions
are track-able points for each step performed by
analysts. They correspond to single mouse clicks on
the SOC console listed in Table 3. To avoid discussing
unnecessary details, we focus on steps rather than
actions mostly throughout the paper.

3. Modeling and Logging the Investigation
Workflow
In this section, we demonstrate the modeling phase of
the investigation workflow in Section 3.1 following with
the logging phase of analysts’ activities in Section 3.2.

3.1. Modeling the Investigation Workflow
The modeling of an investigation workflow is per-
formed in two phases. The first phase is to gather the
expert knowledge from analysts to identify different
investigation types and relevant approaches. To model
different tasks (steps) and their relationship, UML
activity diagram has been employed to describe the
model. The second phase is to visualize the model for
the designed system. Graphviz V.2.38 [22] is employed
to layout the activity diagram to represent the investi-
gation workflow model in the system.

Figure 2 demonstrates one integrated model. Each
node is labeled as the combination step ID and action
ID (step ID: action ID). A sequence of nodes following
from first node to the last node of the model forms an
investigation path.

3 EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e1

M. Khalili et al.

StepIDs Description
A Checking global view of the SOC Console which shows

all alerts related to each client, expanding a specific
alert to check the details and related destination and
source IP addresses

B Classifying an event as not-suspicious and labeling it as
FP

C Checking the network assets to see whether the
reported alert is related to discovered vulnerabilities.
Moreover, checking whether the same attack is reported
recently

D Updating an existing incident for the client, since a
similar incident is reported recently. Or updating the
incident description, since the client responded to the
incident (clarifying the incident)

E Creating a new incident for the client, since indications
confirm the alert as suspicious (true positive alert)

F Checking the escalation grid for the related client. In
this grid, analysts are provided information about how
the client prefers to be informed about different kinds
of attacks depends on criticality (e.g. call, email, report)

O Opening the alert packet content by a specific tool to
analyze deeply, such as Wireshark.

Table 2. Step IDs and their description

Step ActionID Description
A 130 Opening a specific client alert view

105 Expanding the aggregated alert detail
107 Clicking on the alerts to view alert details

by “Editor”
B 109 Clicking on the button “Acknowledge”

from alert detail
125 Clicking on the button “Acknowledge”

from alert list
C 104 Clicking on “View Asset” that will open a

small window from source IP
126 Clicking on “View Asset” that will open a

small window from destination IP
110 Clicking on the tab “Incidents”
112 Clicking on “Edit incident” to open and

view the incident
D 114 Clicking on the button “Add to incident”

116 Clicking on the button “Add alerts to
incident”

117 Under comment box, clicking on the
button “Apply” or “OK”

E 119 Clicking on the button "Create incident"
121 Clicking the button "Finish"

F 122 Opening the documents dashboard
123 Selecting the client
124 click on the document "Escalation Grid"

O 103 clicking on the button "Export to pcap"
127 Opening the packet using Wireshark

Table 3. Steps with sub-steps as Action IDs and related
description

The logical relationship among different nodes of
the model could be AND or OR. By traversing a
single investigation path in a model, all existing nodes
in the same path have AND logical relationship and
in different investigation paths are described as OR
relationship. AND logical relation implies mandatory
nodes. If an analyst misses one mandatory node
between previous and next node of a path, the feedback
module will warn the analyst about the missing steps.
A detailed discussion related to feedback module is in

Figure 2. An Example of an Investigation Model

Sections 4.1, and 5.4. In a model, we use diamond shape
to indicate OR relationship. Different investigation
paths can be followed based on different conditions,
such as different investigation types.

In our system, we use Graphviz [22] to generate the
investigation models and output them as a DOT file
format. Then DOT files will be used in our system as the
standard to track analysts’ activities. Since preparing
activity diagrams by the Graphviz tool requires writing
codes in a special format, we introduce an open-source
extension for Microsoft Visio called GraphVisio [23]
to simplify this procedure. This extension eases the
phase of generating a DOT file where analysts draw
activity diagrams with Visio and then export their
model directly to a DOT file.

4 EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e1

3.2. Logging Analysts’ Activities
Based on the extracted model from Section 3.1, each
task is defined by different actions as single mouse
clicks on the SOC console. These mouse clicks are
logged automatically in our system. Each log resembles
one single action performed by an analyst through
the SOC Console. Our data gathering process follows
extract, transform, load (ETL) process; this section
mainly focuses on the data extraction and section 6.1
completes the data processing.

Database Attributes Description
ID Auto increment primary key of the table
TimeStart Starting time of the action
TimeEnd Ending time of the action
InvestigationTypeID Related investigation type
StepID Related step
ActionID Related action
SourceID Event (alert) comes from which source e.g., IDS
EventID The rule identifier of sensors to raise the alert
AnalystID Which analyst performs the investigation
ClientID Investigation is related to which client
IncidentID The incident recorded in the SOC Console
InvID An unique ID assigned to the investigation

Table 4. Database table attributes and description

Each row of logs consists of eleven attributes, which
are described in Table 4. For example, the start and
end time of the action as two attributes: TimeStart, and
TimeEnd. Based on the identified actions through the
SOC Console, the logging script captures the actions
started and ended via the SOC Console. The start time
of actions are bound to the specific buttons, and end
time of actions are bound to the start time of the
next recognizable action by the system. In this way,
no time in the middle of an investigation is skipped
in case of using other tools not being monitored by
our logging system. End time of the last action is a
specific button to close an investigation. A tuning step
is required to adjust the logs during the pre-processing
phase before storing the logs into the database, which
will be demonstrated in Section 6.1.

As is shown in Table 4, each row of activity logs
has related StepID and ActionID which the row will
be matched to the investigation model. Therefore, by
extracting StepID:ActionID from a log, we can map the
nodes from our model to the logs. By tracking analysts
activities, our system is able to understand the process
in each investigation, such as the analyst is working
on which step currently, or what is the next action.
Mapping all logs of one investigation to the model,
the system can also identify the missing steps to alert
analysts.

Table 5 shows a sequence of logs belonging to one
investigation, containing three steps and eight actions
(A:130ÝA:105ÝC:104ÝC:110ÝA:107ÝE:119ÝC:112
ÝE:121). This investigation path is illustrated in the

model shown in Figure 2 as specified by the double
boxes. By comparing the combined key of each log,
which is StepID:ActionID, the system can map the log
to a node of the model (the analyst is performing which
step and action). By looking at all logs and mapping
them to related nodes in the investigation model,
we can see which path is followed by the analyst.
Furthermore, By identifying the path followed by an
analyst in the model, the feedback module can notify
analysts about probable next steps or missing steps
(will be discussed in Section 5.4).

4. Methodology
In this section, we elaborate the system modules
and their functionalities. Then, we describe the
methodology and detailed implementation of each
module.

4.1. Overview of The System
The designed system assists both managers and analysts
as a value-added component of the SOC Console.
General workflow of the designed system is shown in
Figure 3, where activity logs are being gathered from
analysts’ machines and stored in the database. The main
GUI including the monitoring, the measuring, and the
simulation modules keeps reading the database and
provides different capabilities to the managers. The
feedback module works as a background service to give
feedback to analysts in real time.

Generally, the monitoring module tracks and monitors
analysts’ activities. The measuring module allows man-
agers to check SOC’s performance with divers metrics
provided by the system. Furthermore, customizable
Online Analytical Processing (OLAP) analysis is inte-
grated into the system to provide more detailed analysis
performance results. The simulation module facilitates
evaluating improvement options through two differ-
ent approaches: first, studying the impact of analysis
duration by modifying the duration of analysis steps.
second, applying a different queuing model and alert
dispatching approach to evaluate the overall perfor-
mance. The feedback module assists analysts of the SOC
by notifying them with different information through
the Microsoft Windows operating system tray, while
they are performing investigations through the SOC
Console.

Monitoring Module. Figure 4 shows the monitoring
module of the managers’ GUI. This module is
provided to illustrate the detailed information of the
SOC ongoing investigations in an easy-to-understand
way. The main purpose is to visualize the ongoing
investigations. The GUI keeps only the investigations
started within a predefined period (e.g., 30 minutes).

Y-axis shows different investigations and the x-axis
shows the corresponding investigation durations. Each

5

Monitoring and Improving Managed Security Services inside a Security Operation Center

EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e1

M. Khalili et al.

ID TimeStart TimeEnd In
ve

st
ig
at
io
n
Ty

p
eI
D

St
ep

ID

A
ct
io
n
ID

So
u
rc
eI
D

E
ve

n
tI
D

A
n
al
ys
tI
D

C
li
en

tI
D

In
ci
d
en

tI
D

InvID
203547 1432954820387 1432954834974 MI A 130 0 33906 4 15 0 1210176
203548 1432954834974 1432954851571 MI A 105 0 33906 4 15 0 1210176
203549 1432954851571 1432954857971 MI C 104 0 33906 4 15 0 1210176
203550 1432954857971 1432954868877 MI C 110 0 33906 4 15 0 1210176
203551 1432954868877 1432954934995 MI A 107 1 33906 4 15 0 1210176
203552 1432954934995 1432955078419 MI E 119 0 33906 4 15 0 1210176
203553 1432955078419 1432955083059 MI C 112 0 33906 4 15 500204 1210176
203554 1432955083059 1432955083059 MI E 121 0 33906 4 15 500204 1210176

Table 5. Log entries of one investigation related to MI investigation type

Figure 3. The proposed system architecture

Figure 4. The monitoring module dashboard

stacked bar is an ongoing investigation in the SOC.
A vertical line, represents the current time, separates
the investigation into two phases. The left side of the
vertical line demonstrates the completed steps of an
investigation, and the right side indicates the next
predicted steps. The prediction of the steps is provided
by mapping the ongoing investigations to their relevant
models, which will be detailed in section 5.1. The
visualized investigations get updated by reading new
data from database incrementally. For example, PV 1 in
Figure 4, the analyst finished the step A and is doing the
step O, and the predicted step is continuing on the step
O with demonstrating historical average time (0m48s).

Measuring module. We propose the measuring module
in order to have a better understanding of the
performance of the SOC. Qualitative measurement

usually is ignored as it is difficult or expensive to be
scaled. However, in our system, the measuring module
provides managers with quantitative measurements of
the SOC performance.

To the best of our knowledge, this work is one of
the first studies related to SOC analysis performance
in the literature. Jacobs et al. [12] examine different
aspects of three real-world operational SOCs. The
performance metric in their work only counts the
number of analyzed incidents per analyst for each day.
However, without taking the time duration of analysis
into consideration, counting the number of incidents
solely is not a good metric. The efforts on difficult
investigations will not be properly captured. As a result,
analysts are not motivated to analyze carefully, since
it results in showing lower productivity for them in
managers’ point of view. In a university SOC assessed
in the same work, a ticketing system dispatching alert
tickets to analysts, provides a performance metric,
which is time spent on each ticket, however, the
detailed study is missing. To address the existing
works’ limitation, our measuring module is designed to
provide various SOC’s performance metrics to evaluate
SOC behavior.

We enumerate the metrics provided by the measuring
module. Important results, such as the maximum
values, are shown in the main GUI, where detailed
analysis is reachable through different buttons. Figure 5
shows the measuring module dashboard, and the two
detailed analysis reports are open in separate windows.

The first group of metrics provides average analysis
time from different perspectives. More specifically,

• Total average analysis time.

• Average analysis time of each investigation
type/analyst/client.

• Average analysis time of different analysts for the
same investigation type.

6 EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e1

Figure 5. The measuring module dashboard

• Average analysis time of different investigation
types for the same client.

• Average analysis time of different analysts for the
client.

The second group of performance metrics concen-
trates on the average duration of different investigation
steps. This group attempts to show steps’ average dura-
tion in general, for different analysts and clients. More
specifically,

• Ranking analysis steps according to the time spent
in executing.

• Average analysis time of different analysts for the
same step.

• Average analysis time of different clients the same
step.

The third group is about showing maximum values
for selected performance metrics in the managers’
GUI. This group helps managers to determine if
maximum values significantly differ from historical
average durations. For example,

• Identifying which investigation type takes more
time to be analyzed.

• Which step of which investigation type takes more
time to be analyzed.

• Which analyst has the highest average time for
which investigation type.

• Which client has the highest average time for
which investigation type.

• Which analyst has the highest average time for
which client.

The fourth group is the number of created and
updated incidents for different parameters. For exam-
ple,

• The number of created and updated incidents for
each investigation type.

• The number of created and updated incidents for
each analyst.

• The number of created and updated incidents for
each client.

OLAP Component An OLAP tool is employed beside
the designed measuring module inside the managers’
GUI. OLAP empowers managers to create new analysis
queries with mouse dragging and clicking instead of
modifying code or writing complicated SQL queries.
An open-source web-based OLAP engine, Community
Edition Saiku (CE Saiku) [24], is integrated into the
GUI providing customized data analysis opportunities.
CE Saiku is implemented by Pivot4J Java API using
Mondrian OLAP server. We integrate web-based Saiku
to the managers’ desktop GUI by embedding a browser.

Saiku configuration for SOC performance metrics is
discussed beside an example in section 5.2.

Simulation Module. The simulation module is designed
to show the effects of potential changes on the
investigation workflow. It simulates the effect of
a change on real activity logs, and recalculates
performance metrics. It helps the managers to prioritize
efforts on potential improvements of the SOC. Two
potential changes as simulation options are provided.
One is modifying the current steps’ duration, and the
other is changing the dispatching method of alerts.

The first simulation capability is to modify specific
steps’ duration by a specified percentage to see how
different performance metrics would be affected. This
simulation helps managers to find out whether it is
the best option to optimize one specific step to reduce
the time taken by that task. By assessing optimization
options for each step, the manager decides one or
more steps duration to be modified and by a specific
percentage. An optimization option can be a possible
automation for a specific step to reduce analysts’
tasks. The reduction percentage is the manager’s
prediction as a result of that potential change in
the investigation workflow. For example, if one step
is going to be automated completely, the related
duration of the step should be removed completely
(reduction percentage is 100%). The simulation is
designed in a way that the simulator considers
all historical database investigations containing that
specific step, and modifies all current sub-steps’
(actions) durations by the mentioned value, and
recalculate all performance metrics based on the
manager’s assumption.

7

Monitoring and Improving Managed Security Services inside a Security Operation Center

EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e1

M. Khalili et al.

Figure 6. The results of the simulation module alongside the measuring module

The second simulation capability is simulating the
dispatching phase of incoming alerts among analysts
with a different queueing model. Different ways of
dispatching services (alerts) among servers (analysts)
are usually studied as queuing models [25]. In our
work, a different alert dispatching method is simulated
to assess the employed approach effect on the SOC
performance metrics.

The result of both simulation scenarios is shown
side by side with the real one (measuring module) in
the GUI to ease the comparison process for managers.
Figure 6 shows an example of the provided simulation
results beside the measuring module. In this way,
comparing the effect of the simulation scenario on
actual SOC performance metrics is easy for the
managers. For instance, as we see in Figure 6, the
simulation reduces the average time of analysis from
6:41 to 5:53. By the measuring module results, we
see the most time-consuming investigation type is PV
with the average of 10:17, the conducted simulation
reduces it to 6:03 however the investigation type is
not changed. Moreover, we can compare easily that the
biggest investigation type average duration belongs to
AnalystID 2 for PV with the average of 45:05, and this
simulation changes it to AnalystID 4 for MI with the
average of 11:42.

Feedback Module. The feedback module is designed for
knowledge transfer among SOC analysts. Knowledge
can be a hint about next required action to proceed
in the investigation, notifying the analyst about
anomalous durations and missing steps, or showing the
result of previous similar investigation types performed
by other analysts. The analysts are firstly notified about
mentioned information in the Windows operating
system tray, and the summary of all notifications are
accessible in a desktop GUI.

The feedback Module works as a background service
uninterruptedly as analysts activity logs are being
stored in the database. It keeps reading the database,
and mapping them to the investigation model. As
a result, the system can notify analysts about next
probable steps, find anomalies, and warn analysts
about them. The module reminds the analyst what
is the probable next step based on the step he is
currently performing. Anomaly notifications are about
spending normal duration on the steps, or not missing
an action. For instance, If the analyst takes 50% (which
is configurable) less or more time than the historical
average duration of the step, he will be warned. If the
analyst’s activities do not match one of the investigation
model’s paths, he will receive a warning about the
missing steps.

Moreover, once an analyst starts to perform an
investigation, the feedback module shows previous
investigations activity logs of the same type by different
analysts. This feature provides background knowledge
from other analysts’ approaches with different clients,
or result of similar investigations for the same client.
The results can be filtered by a specific client to
provide knowledge whether the client recently had
the same event type, what was the result, which
source or destination IP were involved, etc. The main
investigation approaches adopted by analysts are the
same. However, analysts’ knowledge can be improved
over time with experiences and knowing clients’
environment better. Moreover, the feedback module
shows results of investigations which can help the next
analyst to have an inference about similar situations,
for instance, the same event is generated for the same
source and destination IP which was false positive
before. Then, the next analyst by knowing the history
of the client about this specific event, and result of

8 EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e1

previous analyst’s investigation, can take a faster action
with the knowledge of the previous analyst.

The feedback module is shown in Figure 7. As is
shown, different hints are provided to the analyst.
The analysts receive notifications in real time about
their ongoing investigations in the Windows operating
system tray, where all notification reports are accessible
by the GUI.

Figure 7. The feedback module notifications and reports

5. Implementation
In this section, the methodology and implementation
details of each module are discussed. All modules are
implemented in Python 2.7 programming language and
existing libraries.

5.1. Monitoring Module
Visualization of the monitoring module is implemented
with Matplotlib package [26] in Python. In each update,
the module fetches StepID and ActionID from the last
log of the investigation, and composes the mapping key.
Then, it maps the key value to the relevant node of
the investigation model. By traversing the investigation
model, it can recognize what is the next probable action.
If the next node is End, it shows the investigation
is completed, otherwise it shows the next probable
action and step. If the predicted steps contain multiple
possible actions, a black-color step will display on the
GUI otherwise a white-color step will show.

5.2. Measuring Module
The measuring module is designed to provide SOC
performance statistics with different metrics. The SOC
performance metrics are described in Section 4.1.
By having the measurable investigation workflow,
performance metrics can be calculated by running

SQL queries on the database. The duration of an
investigation is measurable from provided analysts’
activity logs with different attributes. In our system, we
use PostgreSQL [27] in the implementation to support
SQL standard queries.

Saiku OLAP Configuration. CE Saiku is integrated into
the managers’ GUI to the measuring module to provide
easy customizable metrics on the investigation logs.
Leveraging this open source OLAP tool allows us to
connect directly to the developed system relational
database, which is PostgreSQL, access data easily,
and design the desired multidimensional schema by
mapping database tables fields to cubes. The package
we use to integrate CE Saiku browser into the desktop
GUI is CEF python [28]. In this way, the managers can
work with CE web Saiku application through the GUI
directly.

The multidimensional OLAP schema, Mondrian [29],
is defined in an XML format to be used by CE
Saiku engine. It is designed by considering multiple
attributes of analysts’ activity logs to provide detailed
investigation measurement to the SOC managers. The
attributes considered for the schema are: investigation
types, analysts, and clients. Quantitative attributes in
the calculation include TimeStart, TimeEnd, and InvID.
For each quantitative attribute, we need to set a proper
calculation function, called aggregator. For example, a
sum function could be set to TimeStart and TimeEnd
attributes resulting in a total investigation duration.
The calculation function for InvID counts the number
of distinct values indicating how many investigations
are done.

A schema is designed by considering multiple
attributes of analysts’ activity logs to provide detailed
investigation measurement to the managers. The
attributes considered for the schema are: investigation
types, analysts, and clients. Quantitative attributes in
the calculation include TimeStart, TimeEnd, and InvID.
For each quantitative attribute, we should set a proper
calculation. For example, a sum calculation could be set
to TimeStart and TimeEnd attributes. The calculation
for InvID counts the number of distinct values.

After having basic measures, a method called
calculated member is used to write formulas to combine
different measurements together. For instance, as a
basic measure, different investigations’ durations are
calculated. Then by using the calculated member, we
can calculate the average of investigation duration per
client, analyst, and investigation type. The calculated
member in our example is Average per Investigation. The
results shown in Figure 8 are for each client, analyst
and investigation type. The potential benefit of using
such an OLAP tool to have customizable performance
metrics as cubes, rather than hard-coded metrics is
demonstrated in this example.

9

Monitoring and Improving Managed Security Services inside a Security Operation Center

EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e1

M. Khalili et al.

Figure 8. Partial OLAP analysis results

5.3. Simulation Module
The simulation results only provide a hypothesis
evaluation for end users; the production database stays
the same. The alert dispatching simulation is provided
in a replicated database by storing the simulated
logs, and the modifying steps’ duration simulation is
performed by SQL queries in real time.

Modifying Steps’ Duration. Performance metrics are
calculated based on modified time durations as a
comparison to the measuring module. The goal of
this modification is to obtain the possible steps for
automation and significantly reduce human effort in the
analysis.

Alert Dispatching Method. The default alert dispatching
method is assigning the same number of clients
to the available analysts of a work shift. Analysts
are responsible for their assigned clients and work
independently. For instance, we have five available
analysts and 15 clients, every three clients are assigned
to one analyst regardless of any consideration. This
approach has some pitfalls, such as the possibility of
assigning clients with a high load of alerts to the same
analyst, where the other analyst is assigned clients with
a low load of alerts. It is also possible that two clients
assigned to the same analyst are under attack at the
same time, and the analyst cannot handle both of them
at the same time, where none of the clients of the other
analyst are in such a critical situation.

The simulation methods follow a single-queue,
multiple-servers methodology. Considering several
servers serving clients from a single queue is known as

the M/M/c model where c is the number of servers [25].
The discipline in these systems is first-come, first-served
and the arrival rate of jobs is based on the Poisson
process. And the job routing method is Fastest Server
First [30], which distribute the incoming jobs to the
fastest server first.

In this simulation, two metrics will be provided to
assess the effect of the simulated method. One is the
average analysis duration, and the other is the alert
waiting time. The waiting time is the time the alert
stays in the SOC console (queue) to be analyzed. It
is the subtraction of the start time of an investigation
from the arrival time of an alert in the queue. In
our study, waiting time implies the response time of
the SOC to incidents which is an important factor for
the managers to respect SLA for different clients. By
considering the waiting time, we can also assess how
the new approach would affect the waiting time of the
alerts. The simulation will be detailed in a case study in
Section 6.4.

5.4. Feedback Module
The feedback module first maps analysts’ activity logs
back to the investigation model to locate the analysis
step. Then, it provides the predicted steps to analysts
as hints for the possible solutions. In the end, it tracks
the analysts’ activities and provides notifications for
missing steps.

The first algorithm to find missing steps maps
analysts’ incoming activity logs to the investigation
model continuously to see whether a step is missed. It
starts checking logs of one investigation from the first
log. It checks every two successive logs (adjacent) in
the database to see whether they are also successive
in the model. If they are not adjacent in the model,
there are one or more missing nodes between them. The
second algorithm is to find the shortest path between
two nodes. Since it is possible to have several paths
between two nodes, the shortest path, including fewer
nodes, is selected to report missing actions or steps.
The first algorithm provides the accurate missing steps,
while the second algorithm consumes less computation
time and provides the least missing steps.

In order to report duration anomalies, as some
analysts may not spend enough time on some steps,
a dynamic duration standard is provided base on
historical data for each specific step. The standard
duration is considered as real-time average of historical
data in a range, as follows.

(1 − n) ∗ AverageDuration < StandardDuration

< (1 + n) ∗ AverageDuration
(1)

For instance, by applying the above formula, if n is
20% and Average is 60 sec, normal duration range is

10 EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e1

between 48 and 72. The alternative range percentage is
configurable.

6. Data Processing and Case Studies
Three case studies are elaborated in this section to show
the effectiveness of our designed system in improving
the SOC performance. Firstly, we go through the dataset
pre-processing and provide different statistics of the
dataset. Then we provide case studies.

6.1. Dataset Pre-processing
A pre-processing step is implemented to remove data-
gathering mistakes resulting in out-of-range values,
impossible data combinations, and missing values.

Out of range values implies those steps’ durations,
which are too long compared to real durations and
need to be normalized. One possible reason for these
abnormal cases is that the TimeEnd of each action is
considered as TimeStart of the next action. Therefore,
the gap (e.g., analysts take a leave) between sequential
actions will increase the duration. Such a large duration
between steps is considered as noise in our dataset.
Similar to the noise removal, we clean the data from the
attributes missing values, conflicting actions, and false
positive or contextual events.

Different activity logs from analysts’ machines are
gathered and stored at the same time by the logging
script. Firstly, different analysts’ activity logs are
separated from each other and ordered by time. Then,
different investigations from the same analyst are
distinguishable from each other by a specific ActionID
(#130). Then we assign each investigation a unique
identifier as InvID.

TimeStart TimeEnd In
ve

st
ig
at
io
n
Ty

p
eI
D

St
ep

ID

A
ct
io
n
ID

So
u
rc
eI
D

E
ve

n
tI
D

A
n
al
ys
tI
D

C
li
en

tI
D

In
ci
d
en

tI
D

1432357758628 1432357765749 0 1 130 0 0 2 10 0
1432357765749 1432357822688 0 1 105 0 0 2 10 0
1432357822688 1432358143981 1 1 107 0 34463 2 10 0
1432358143981 1432358146472 0 16 103 0 0 2 10 0
1432358146472 1432358250989 0 16 127 0 0 2 10 0
1432358250989 1432358250989 1 2 125 0 34463 2 10 0

Table 6. Raw activity logs in the format of text file

InvestigationTypeID and StepID values are mapped
from numbers to predefined codes of the system in
the pre-processing phase. For instance, in the text
file, value 1 for the InvestigationTypeID attribute is
an identifier of Policy Violation (PV) investigation
type. Consequently, those numbers are mapped to the
abbreviated forms of their investigation type names.
Similarly, it is done for StepID attribute, codes 1, 2, 3,
... are mapped to A, B, C, ... respectively.

Parameters New Updated Closed Total
Incidents Incidents Alerts Dataset

Number of log entries 3301 1558 9380 14239
Number of investiga-
tions

194 331 765 1290

Proportion 15.04% 25.66% 59.3% 100%
Total average analysis
duration

17:52 06:41 05:16 07:32

Average duration of
fastest analyst

12:10 03:59 04:44 06:22

Average duration of
slowest analyst

22:38 09:46 11:27 11:52

Table 7. The dataset statistics

In Table 6, we can see values of InvestigationTypeID
attribute are zero and one, firstly all values of this
attribute are changed to one. Then all values are
mapped to PV as we see in Figure 9. If all those values
related to the InvestigationTypeID were zero, it would
mean the InvestigationTypeID was not retrievable. We
will simply assign OTHERS to the investigationTypeID.

Figure 9. Rows of logs related to one investigation placed in the
database

6.2. Statistics of Dataset
The time period of the dataset is from June 2015 to
August 2015 for 57 days. 6 analysts perform alert
analysis for 40 clients. The time duration format in
Table 7, and all following tables is mm:ss. As is
shown, 40.7% of investigations result in creating or
updating incidents, where 59.3% of total investigations
are about closing alerts after an investigation. Average
analysis duration of investigations ending in creating
new incidents is 17:52, while the average duration
of updating an incident and closing an alert are
06:41, 05:16, respectively. Moreover, different analysts
have different average analysis durations. The slowest
analyst’s average duration is 11:52 whereas the fastest
one is 06:22.

The different average investigation durations of
different investigation types are shown in Table 8 based
on three investigation results. For each column, the first
element is the number of related investigations, and
the second is the average investigation duration. For all
investigation types, we can see the average duration of
creating a new incident category is longer compared to
updating the incident and closing the alert categories.
EVS, MI, BFA and PV investigation types take more
time to gather indications to create an incident than

11

Monitoring and Improving Managed Security Services inside a Security Operation Center

EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e1

M. Khalili et al.

Inv New Updated Closed Total
Type Incidents Incidents Alerts Dataset
- # Avg # Avg # Avg # Avg
EVS 6 20:50 11 06:28 91 03:27 108 04:43
MI 47 20:31 68 07:04 183 06:22 298 08:45
BFA 24 20:18 17 08:38 102 05:16 143 08:11
PV 20 19:46 10 10:17 80 05:41 110 08:40
AA 6 19:27 2 01:10 67 05:25 75 06:25
DOS 4 17:35 5 08:13 77 04:55 86 05:41
OTHERS 87 15:02 218 06:17 165 04:58 470 07:26

Table 8. The dataset statistics regarding different investigation
types. Here, average values are time duration in the format of
mm:ss, and the other column (#) is the number of instances.

AA, DOS, and OTHERS. Most popular attack type is MI
with 47 distinct incidents in the dataset, whereas DOS
has the least number of created incidents, 4. After MI,
other two popular attack types are BFA and PV. Since
the number of cases for OTHERS type is much more
than other known categories, it is not mentioned in our
comparisons for known investigation types.

For almost all investigation types, the average time
of updating an incident is more than closing the alert
of the same type. An exception is the AA type whose
number of related cases (#2) for updated ones is not
enough to be considered as a counterexample. However
EVS attack type takes more time to be confirmed as
an incident, the average duration of getting closed is
the least (03:27) among other types. The most time-
consuming investigation type for updating an incident
is PV type, which is reasonable as it mostly needs
communicating with the client to clarify the situation.

Looking at the total dataset statistics, MI, BFA, and
PV are the most time-consuming alert types in the
SOC regardless of the investigation result. The number
of received alerts from these attack types is highest
beside EVS, although EVS alerts are analyzed quickly.
The trend shows MI type has the highest number of
investigations (298), and the highest average analysis
time (08:45).

6.3. Case Study I, Modifying the Duration of Steps
This case study is about assessing potential steps which
could be automated to improve overall performance.
Every change in a system needs to be assessed before
going into production. After going through all steps
that analysts perform for an alert investigation, two
possible automation options are recognized. One is
about checking clients’ assets and the other is about
checking escalation grid. These two are considered as
potential improvements to the current investigation
workflow.

Checking clients’ assets (part of step C). In this case
study, we assess how the possible solution would affect
the SOC performance. As we know, investigations can

Inv Type Dataset Average Simulation Average Reduction Ratio
EVS 20:50 18:17 12.24%
MI 20:31 18:15 11.05%
BFA 20:18 19:22 4.6%
PV 19:46 19:25 1.77%
AA 19:27 16:13 16.62%
DOS 17:35 16:57 3.6%
OTHERS 15:02 14:01 7.62%

Table 9. Class: creating new incidents; 94 out of 194
investigations (48.45%) contain step C. By the simulation, the
total average analysis duration decreases from 17:52 to 16:31, or
7.55%.

Inv Type Dataset Average Simulation Average Reduction Ratio
EVS 06:28 05:10 20.10%
MI 07:04 06:24 9.43%
BFA 08:38 06:47 21.43%
PV 10:17 09:08 11.18%
AA 01:10 00:30 57.14%
DOS 08:13 08:13 0.0%
OTHERS 06:17 06:04 3.45%

Table 10. Class: updating incidents; 42 out of 331 investigations
(12.69%) contain step C. By the simulation, the total average
analysis duration decreases from 06:41 to 06:13, or 6.98%.

result in three different categories, creating a new
incident, updating the current incident, or closing the
alert as FP. For the first two categories (creating or
updating incidents), the simulation is done in a way
that the related actions’ duration to asset checking is
eliminated completely, then average analysis durations
are recalculated to show the improvement. For the
closing alerts category containing this step, careful
observation is made whether the reason for closing
the alert was about mismatching asset’s vulnerabilities
and the raised alert. If the condition is true, we claim
the entire investigation is useless. Implementing this
solution would remove this FP automatically. As a
result, FP alert reduction aside, analysts’ time would
be saved. If the alert is not closed immediately after
checking this step, we just deduct this step duration
from the duration.

Creating a new incident Table 9 shows the results
for creating a new incident class, where the dataset
average, the simulated average, and the reduction ratio
are represented in this table. Generally, 48.45% of
investigations in this class contains an asset checking
step which is involved in this simulation. The total
average of this investigation class is decreased by
7.55%. The most affected investigation types are AA,
EVS, and MI. Table 10 depicts the simulation result
of the updating incidents class, where 12.69% of
investigations has the asset checking step. The total
average of this class is decreased by 6.98%.

12 EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e1

Inv Dataset Average after Final Reduction
Type Average eliminating inv Simulation Ratio
EVS 03:27 03:28 3:11 8.17%
MI 06:22 06:14 5:44 8.02%
BFA 05:16 05:19 5:01 5.64%
PV 05:41 05:55 5:36 5.35%
AA 05:25 05:08 4:59 2.92%
DOS 04:55 04:55 4:46 3.05%
OTHERS 04:58 04:50 4:35 5.17%

Table 11. Class: closing alerts; 5.36% of investigations are
removed, 231 out of 724 investigations (31.9%) are involved in
this simulation. By the simulation, the total average analysis
duration decreases from 05:12 to 04:54, or 5.77%.

Closing alerts category The step for checking a
client’s asset is performed in 30.2% of investigations
(231 out of 765 investigations) which can be eliminated
from the analysis process similar to other two
investigation categories scenarios. Specifically, 41 out of
231 (17.75%) alerts of these investigations are closed
immediately after checking the step indicating useless
investigations. Since they are closed immediately after
this step, it is assumed that the raised alerts did not
match the assets vulnerabilities. As a result, they could
be cleaned from the alerts repository before reaching
analysts’ SOC Console. By implementing the solution,
the rate of false positive alerts would be decreased
by 5.36% (41 out of 765) in this class, where 266
minutes of analysts time (around four and a half hours)
would be saved. For the remaining 190 investigations
containing this step, we eliminate the asset checking
step and recalculate the results for the closing alerts
category. Results are shown in Table 11 illustrating
7.28% decrease in the total average analysis duration.

All investigation categories Table 12 illustrates dif-
ferent simulated average analysis durations for different
investigation types. After removing 41 investigations
from the closed alerts category, 29.38% of investigations
are affected by this scenario, and the total average
analysis duration decreases by 6.83%. The most affected
attack types are EVS, MI, and BFA, where PV and DOS
attacks are improved to a lower degree.

Considering investigation classes, the summary of
simulation results is shown in Table 13.

Checking escalation grid (step F). One analysis step is
checking escalation grid to find out how the related
client should be informed in case of a new or updated
incident. Each client’s escalation grid as an informative
document is accessible through some mouse clicks in
the SOC Console. The contacting approaches can be
different for each client based on the severity of the
incident and the client’s preference.

A possible improvement for this step is providing
information about the required escalation method for

Inv Dataset Average after Final Reduction
Type Average eliminating inv Simulation Ratio
EVS 04:43 04:46 4:15 10.84%
MI 08:45 08:49 7:58 9.64%
BFA 08:11 08:19 7:42 7.41%
PV 08:40 08:59 8:36 4.27%
AA 06:25 06:11 5:47 6.47%
DOS 05:41 05:44 5:33 3.2%
OTHERS 07:26 07:26 7:03 5.16%

Table 12. Total dataset; 29.38%, 367 out of 1249 investigations
contain step C (41 investigations are removed from 1290 total
investigations, as is discussed for the closed alerts category). By
the simulation, the total average analysis duration decreases from
07:34 to 07:03, or 6.83%.

Inv Dataset Simulation Involved Reduction
Class Average Average Proportion Percentage
Creating
new
inci-
dents

17:52 16:31 48.45% 7.55%

Updating
inci-
dents

06:41 06:13 12.69% 6.98%

Closing
alerts

05:12 04:54 31.9% 5.77%

Total
dataset

07:34 07:03 29.38% 6.83%

Table 13. The summary of simulation results for different
investigation classes

an incident in the window of creating and updating
incidents in the SOC Console. By correlating related
client escalation grid and related incident type, the
proper contact approach can be fetched and shown to
the analyst as a hint which saves him time to go through
different buttons to find out the required information.
In this scenario, we observe how frequent this step is
beside the average duration analysts spending on it.

We found that 58 out of 194 (29.9%) investigations
contain checking escalation grid for the category of
creating incidents. Besides, 18 out of 331 (5.44%) and
23 out of 765 (3.0%) investigations include checking
escalation grid for the categories of updating and
closing incidents respectively. Since the number of
involved investigations for the last two investigation
classes is not much (as expected), the simulation is
only done for the creating new incidents category.
Table 14 shows the detailed simulation results for the
class of creating new incidents, where the related step
is eliminated completely. Our simulation illustrates
the average investigation duration is decreased by just
1.3%. MI and AA attack types are mostly checked for
the proper escalation method.

Combination of two possible improvements. By combining
the above two improvement options, we assess how
averages would be affected. Correlated alerts with

13

Monitoring and Improving Managed Security Services inside a Security Operation Center

EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e1

M. Khalili et al.

Inv Type Dataset Average Simulation Average Reduction Ratio
EVS 20:50 20:36 1.12%
MI 20:31 20:06 2.03%
BFA 20:18 20:06 0.98%
PV 19:46 19:43 0.25%
AA 19:27 19:01 2.23%
DOS 17:35 17:28 0.66%
OTHERS 15:02 14:52 1.11%

Table 14. Class: creating new incidents; 58 out of 194
investigations (29.9%) contain step F. By the simulation, the total
average analysis duration decreases from 17:52 to 17:38, or 1.3%

Inv Dataset Average after Simulation Reduction
Type Average eliminating inv Average Ratio
EVS 04:43 05:18 04:46 10.06%
MI 08:45 09:46 08:48 9.9%
BFA 08:11 08:59 08:18 7.61%
PV 08:40 09:32 08:59 5.77%
AA 06:25 06:40 06:11 7.25%
DOS 05:41 05:59 05:43 4.46%
OTHERS 07:26 07:52 07:25 5.72%

Table 15. Combined effect: 41 investigations are removed
resulting in an increase in the average analysis durations shown
in the third column, 377 out of 1249 investigations (30.18%)
are affected by the combination of two simulation scenarios, and
decreases the total average analysis duration from 8:09 to 7:33,
or 7.36% beside saving four and a half hours man-hour.

assets’ vulnerabilities and automated shown escalation
grid together are simulated to show the effect on the
averages. Table 15 shows the simulation results. Firstly,
by removing 41 investigations which were closed
immediately after checking assets’ vulnerabilities, new
analysis averages are shown in the second column
indicating on an increase which means removed
investigations were part of short investigations. Then
by eliminating the steps related to checking assets and
escalation grid, simulated average analysis durations
are calculated and shown in the fourth column. By
employing both automation solutions, the total average
analysis duration would be decreased by 7.36%. The
most affected attack types are EVS and MI.

6.4. Case Study II, A Different Alert Dispatching
Method

In this case study, the simulation of a different
dispatching method of incoming alerts among analysts
is assessed. As discussed in Section 5.3, the simulation
follows single-queue, multiple-servers methodology,
where the routing strategy is assigning alerts to the
fastest analysts.

The number of analysts working in the SOC is
different from one work-shift to another work-shift. For

weekdays (Monday to Friday), there are three work-
shifts per day; day-shift from 8:00 to 16:00, evening-
shift from 16:00 to 00:00, and night-shift from 00:00 to
8:00.

In total, 33-day work-shifts are considered for the
simulation with the minimally two analysts working
per work-shift. For 17 work-shifts, two analysts are
working per work-shift. For 15 work-shifts, three
analysts and for one work-shift four analysts are
working in the SOC in parallel. Table 16 shows
statistics on the selected dataset for 33-day work-shifts
and simulation results. Each column represents one
investigation class, such as new incidents which the first
sub-column is dataset average analysis time, the second
one is simulated average analysis time, and the third
sub-column is the reduction ratio.

By comparing Table 7 with Table 16, we can see the
proportion of the closing alerts category increases from
59.3% to 94.12%, since all investigations of the work-
shift are considered regardless of their duration.

The simulation result in Table 16 represents the effect
of the simulated dispatching approach on the total
average analysis time and waiting time of different
investigation classes and the total dataset. Total average
analysis duration and waiting time of the total dataset
are improved by 4.42% , and 2.18% respectively.

6.5. Case Study III, The Feedback Module
Our study on the analysts’ activity logs shows
investigations’ average durations for different attack
types are usually different from each other. Different
analysts’ average durations are usually also different
even for the same attack type implying the different
efficiency. The different efficiency can be due to
the analysts’ different levels of knowledge regarding
analysis approaches or familiarity about clients’
environments.

As is discussed in Sections 4.1 and 5.4, one feature of
the feedback module is showing previous investigation
logs whose alert type is similar with which the analyst
is currently analyzing. In this case study, we evaluate
how such a feedback module would affect the analysts’
performance.

We consider one analyst as the senior analyst who
has better efficiency than others. The other analysts
who may benefit from the senior analyst’s knowledge
and experience are called junior analysts. We model the
trend of investigation durations of the senior analyst,
and partially apply the model to future investigation
durations of the junior analysts, assuming that, since
the junior analysts can see what the senior analyst
performed through the feedback module, they can
potentially improve their efficiency.

Linear regression analysis [31] is employed to model
the senior analyst’s investigation durations. By the

14 EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e1

Inv classes New Incidents Updated Incidents Closed Alerts Total Dataset
of log
entries

1059 731 11181 12971

of
investigations 75 163 3807 4045
Proportion 1.85% 4.03% 94.12% 100%
Parameters Real Simu % Real Simu % Real Simu % Real Simu %
Total average
analysis
duration

18:13 16:54 7.23% 05:19 04:16 19.75% 01:25 01:25 0% 01:53 01:48 4.42%

Waiting time 120:16 116:02 3.52% 120:00 116:02 3.3% 120:06 117:34 2.11% 120:06 117:29 2.18%

Table 16. The alert dispatching method dataset statistics for 33-day work-shifts, the simulation results and the reduction ratios.

AnalystID Average Variance The Number of Investigations
1 16:05 - 1
2 01:17 - 1
3 21:34 717.72 2
4 05:46 100.57 5
5 07:29 35.45 6
6 03:16 7.85 45

Table 17. Different analysts’ statistics; the average investigation
duration, the variance of investigations durations, and the number
of investigations related to EventID 101010 which is a custom
EventID for verifying DNS queries.

regression analysis, the mathematical function repre-
senting investigation durations is extracted from the
dataset. The duration of each investigation completed
by the senior analyst is considered as a data point
for that analyst. Different data points of the analyst
is ordered by time chronologically as they are per-
formed in different days. By extrapolating the estab-
lished model, we can predict future investigation dura-
tions of the senior analyst based on his historical data.

A realistic assumption here is that the junior analyst
will partially benefit from the knowledge of the senior
analyst by observing the latter’s investigation details
but such benefit is not likely sufficient to enable the
former to perform those analyses with exactly the same
efficiency as the latter. In other words, knowledge
transfer is partial instead of complete. Accordingly, we
assign a percentage range by which a junior analyst can
improve the efficiency of his/her investigations of the
same type after observing the senior analyst’s approach
and results. It is assumed in this case study that a junior
analyst can gain 10% to 60% of the senior analyst’s
knowledge to improve his investigations. To obtain a
more accurate estimation of such a range from real data
is a future work.

The average investigation duration of a junior analyst
for EventID 101010 is considered as the default
value for his/her future investigation durations in our
simulation. This default value can be improved by
learning from the senior analyst. For example, when
we assume the junior analyst gains knowledge by

10%, his average investigation duration is calculated
as the summation of 90% of the estimation proportion
(90% ∗ Junior_Investigation_Average) and 10% of the
senior analyst’s investigation duration (as predicted by
the model) (10% ∗Model_Investigation_Duration). As
another example, when we assume the junior analyst
gains knowledge by 60%, his average investigation
duration is equal to 40% of his own duration plus 60%
of the senior analyst’s duration.

The reason behind considering the average investi-
gation duration of the senior and junior analysts in
this case study instead of modeling their investigations
durations is that we do not have sufficient data points to
establish the model for them. Since the dataset does not
provide enough investigations for any single EventID,
the average investigation duration is considered. Since
the dataset does not provide enough investigations for
any single EventID, the average investigation duration
is considered for the junior analysts.

For the regression analysis, the X-axis represents
time series ordering investigations chronologically and
the Y-axis is the investigation duration for the data
points. In practice investigations might be performed
on the same day or across different days in the period
of the dataset, but the time distance between data
points considered in this case study is limited to one
day in this simulation. We aim to obtain the main
trend of the investigation durations in chronological
order as either an increase or decrease in the average
investigation durations of the senior analyst during the
dataset period.

There turn out to be a lot of fluctuations for the 45
data points representing investigation durations for the
AnalystID 6. To smooth the curve, every five adjacent
investigation durations are averaged and represents one
data point. In the end, we obtain a model of the senior
analyst’s investigation durations as the exponential
equation shown below.

y = 2.8352e−0.005x (2)

In Table 18, some of the data points are shown.
The first 10 data points are averaged investigation
durations from 45 investigations of the dataset for the

15

Monitoring and Improving Managed Security Services inside a Security Operation Center

EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e1

M. Khalili et al.

senior analyst, and the next 10 data points are the
extrapolation of the model. The average duration of the
dataset data points is 3:04, where the average duration
of the extrapolated data points is 2:37 showing the
decreasing trend of the senior analyst’s model, which
indicates that the analyst’s efficiency for this type of
investigations slowly improves over time.

X; Time Y; Investigation X; Future Y; Extrapolated
Series Duration Time Series Investigation Duration

1 2:11 11 2:41
2 2:20 12 2:40
3 2:11 13 2:40
4 5:57 14 2:38
5 3:31 15 2:38
6 2:32 16 2:37
7 1:59 17 2:36
8 2:54 18 2:35
9 5:46 19 2:35

10 1:16 20 2:34

Table 18. First 10 investigation durations represent data points
from the dataset for the senior AnalystID 6 and EventID 101010,
and the next 10 investigation durations are extrapolated under
the model.

As is discussed, in order to estimate the junior
analyst’s efficiency, a percentage range of gaining
knowledge is considered from 10% to 60%. We simulate
10 future investigation durations for the junior analysts
by combining their own investigation average duration
and the effect of the senior analysts knowledge using
the percentage.

Table 19 shows the simulation results, where
the junior analyst is AnalystID 5 with the default
investigation average duration of 7:29. Estimation
results show that, if the junior AnalystID 5 gains 10%
of the senior analyst’s knowledge through the feedback
module, the average investigation duration will change
from 7:29 to 6:59, decreased by 6.68%. If he/she gains
60% of the senior analyst’s knowledge, his/her average
investigation duration will change from 7:29 to 4:33,
decreased by 39.2%.

Table 20 shows the simulation results where the
junior analyst is AnalystID 4 with the default
average of 5:46. Simulation results show that, if the
junior AnalystID 4 gains 10% of the senior analyst’s
knowledge, the average investigation duration will
change from 5:46 to 5:26, decreased by 5.78%. If he/she
gains 60% of the senior analyst’s knowledge, his/her
average investigation duration will change from 5:46 to
3:53, decreased by 32.66%.

In summary, in this case study, the impact of showing
previous investigations to the analysts, which is one
of the important features of the feedback module, is
assessed based on some assumptions. The AnalystID
6 is considered as a senior analyst, and AnalystsIDs 5
and 4 are juniors. Based on the simulation results, if

Simulated Junior’s average Model’s inv Simulated
Time Series inv duration*90% duration*10% inv duration

1 6:44 0:16 7:00
2 6:44 0:16 7:00
3 6:44 0:16 7:00
4 6:44 0:15 6:59
5 6:44 0:15 6:59
6 6:44 0:15 6:59
7 6:44 0:15 6:59
8 6:44 0:15 6:59
9 6:44 0:15 6:59

10 6:44 0:15 6:59

Simulated Junior’s average Model’s inv Simulated
Time Series inv duration*40% duration*60% inv duration

1 2:59 1:37 4:36
2 2:59 1:36 4:35
3 2:59 1:36 4:35
4 2:59 1:35 4:34
5 2:59 1:35 4:34
6 2:59 1:34 4:33
7 2:59 1:34 4:33
8 2:59 1:33 4:32
9 2:59 1:33 4:32

10 2:59 1:33 4:32

Table 19. The simulation results of the feedback module’s impact
for the junior AnalystID 5 with the default average investigation
duration of 7:29 for the EventID 101010. The first part simulates
the junior’s efficiency for 10 future investigations by considering
the knowledge transfer percentage as 10%, and the second part
simulates the junior’s efficiency for 10 future investigations by
considering the knowledge transfer percentage as 60%.

the junior analysts gain 10% to 60% of the professional
analyst’s knowledge; the efficiency of AnalystID 5 can
be improved by 6.68% to 39.2%, and the efficiency
of AnalystID 4 can be improved by 5.78% to 32.66%.
Those results clearly demonstrate the potential benefit
of the feedback module of the system. The summary of
results is shown in Table 21.

7. Related Work

In this section we first review the existing work
regarding MSS, MSM, NSM, and SOC in Section 7.1,
then the literature of alert correlation techniques are
presented in Section 7.2. Finally, we illustrate the
studies related to CC in Section 7.3.

7.1. MSS, MSM, NSM, SOC

Allen et al. [1] study the different security services, e.g.,
network boundary protection services, vulnerability
assessment, and provide guidelines related to the MSS.
Then, MSM is introduced as a network security solution
of this century by Schneier [32]. McKeown et al. [33]
conclude the monitoring scope for MSM, which mainly
focuses on a client’s network, and MSS, which focuses
on security products for the companies.

16 EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e1

Simulated Junior’s average Model’s inv Simulated
Time Series inv duration*90% duration*10% inv duration

1 5:11 0:16 5:27
2 5:11 0:16 5:27
3 5:11 0:16 5:27
4 5:11 0:16 5:27
5 5:11 0:16 5:27
6 5:11 0:16 5:27
7 5:11 0:16 5:27
8 5:11 0:15 5:26
9 5:11 0:15 5:26

10 5:11 0:15 5:26

Simulated Junior’s average Model’s inv Simulated
Time Series inv duration*40% duration*60% inv duration

1 2:18 1:37 3:55
2 2:18 1:36 3:54
3 2:18 1:36 3:54
4 2:18 1:35 3:53
5 2:18 1:35 3:53
6 2:18 1:34 3:52
7 2:18 1:34 3:52
8 2:18 1:33 3:51
9 2:18 1:33 3:51

10 2:18 1:32 3:50

Table 20. The simulation results of the feedback module’s impact
for the junior AnalystID 4 with the default average investigation
duration of 5:46 for the EventID 101010. The first part simulates
the junior’s efficiency for future 10 investigations by considering
the knowledge transfer percentage as 10%, and the second part
simulates the junior’s efficiency for future 10 investigations by
considering the knowledge transfer percentage as 60%.

Junior Default Investigation Estimation Reduction
AnalystID Average Duration 10% - 60% 10% - 60%

5 7:29 6:59 4:33 6.68% 39.2%
4 5:46 5:26 3:53 5.78% 32.66%

Table 21. The summary of results

Bejtlich [2] provides a formal definition for NSM with
different terms and security processes beside deploy-
ment considerations. Shin and Gu [6] implement NSM
for cloud services in which the CloudWatcher frame-
work is proposed to direct network packets of the cloud
passing through defined network security monitoring
points. Ballard et al. [9] propose OpenSAFE to focus the
monitoring on routing network traffic. OpenSAFE pro-
vides configurable network traffic routing by employing
OpenFlow-supported devices [34] to preserve high line
rates performance, and introduces ALARMS as a flow
specification language to ease the management of net-
work monitoring devices.

Various researchers are working on proposing a new
framework for SOCs. Bidou [4] discusses the main
concepts and components of a SOC as a heart of NSM
for the first time. Different modules’ functionalities,
from event generating, collecting, and storing to
analysis approaches and related response methods, are
covered to explain the process of building a SOC,

where integrating all modules is considered as a
challenge. Niu et al. [5] propose a solution to utilizing
recognition mechanism of the immune system to detect
intrusions. Hu and Xie [8] present a novel design for
a SOC by applying Dempster-Shafer Theory to the
basic SOC model proposed by Bidou [4]. In this work,
the authors claim to reduce TP and TN by using
multi-sensor data fusion techniques. Later, Li et al. [7]
propose a hierarchical mobile-agent-based SOC to avoid
one fixed location for alert correlating and improve
computational efficiency.

Several works are done related to enhancing the
performance of SOC. Tsai et al. [35] introduce a
mechanism for trusted sharing of security incidents
among independent SOCs. Ganame et al. [10] develop
a SOC providing a global view of the monitored
network in a graphical way to help analysts detecting
attacks. Jacobs et al. [11] propose a classification model
to assess SOC services. In the proposed framework,
either SOC clients or owners can measure the maturity
of SOC processes regarding certain aspects, e.g, log
collection. Michail [13] studies SOC from a business
perspective and proposes answers for permanence
related questions in SOC. Sundaramurthy et al. [12]
study three operational SOCs to understand the
functionality details by an anthropological approach.
However, to the best of our knowledge, there is no
work presenting a clear approach to model the SOC
analysis process by human analysts, and evaluating
SOC performance by different metrics in the literature.

7.2. Alert Correlation Techniques
Two SOC-related studies, which are done by Bidou. [4],
and Hu and Xie. [8] claim that correlating gathered
events from different sensors plays an important role
to generate accurate suspicious events, and reduces the
rate of false positive. There are plenty of works for
alert correlation, since it is considered as the most
improvable and effective part of a SOC regarding
performance improvement.

Luo and Kay. [36], and Hall and Llinas. [37]
have employed data fusion techniques earlier in
other fields either military or non-military intelligent
systems. Leau et al. [38] have conducted a survey,
and classified alert correlation approaches to four
categories; correlation methods based on similar
semantics in alerts description, predefined attack
scenarios, preconditions and postconditions of attacks,
and data mining.

Elshoush and Osman. [15] devise a correlation
framework aiming to reduce FP alerts in initial phases
by removing unrelated alerts from fused alerts, and
then, correlation approaches, such as attack scenarios,
are employed to generate correlated alerts. Wang et
al. [14] propose a memory efficient correlation approach

17

Monitoring and Improving Managed Security Services inside a Security Operation Center

EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e1

M. Khalili et al.

by employing attack graphs which are predefined
attack scenarios. By introducing a novel approach
Queue Graph, nested loop based correlation is solved,
and it is possible to match alerts to related nodes of
the attack graph. Zali et al. [16] presents a correlation
approach by pre-defining simple relations among
minor attacks to identify attack scenarios in real time.

A correlation method is introduced by Zhu and Ghor-
bani [39] to recognize different attack scenarios without
experts’ knowledge background. Multilayer perceptron
and support vector machine are employed as neutral
network approaches to evaluate correlation probability
of each pair of alerts. Correlation probability estimation
results are stored in Alert Correlation Matrix, which
will be used to extract high-level attack scenarios.

Ramaki et al. [17] present a correlation framework
to detect multi-step attack scenarios in real time as an
Early Warning System (EWS). An EWS aims to identify
hidden risky behavior of a system which might expose
the system to threats [40]. Statistical and stream mining
(sequence analysis) techniques are employed to design
the correlation scheme.

7.3. Call Centers And Queuing Models

In both SOC and CC, humans serve different clients
with various service requests in a queue. In the SOC,
security analysts are the servers and incoming alerts
are considered as different service requests, whereas in
the CC, operators respond to different calls. In both
cases, incoming service requests are coming in a queue
and the service needs to meet certain service level
agreement (SLA) specified between clients and service
company.

Brown et al. [41] describe queuing-theoretic models
for service systems based on a basic common queuing
model M/M/N system or Erlang-C [42] which considers
arrival rate based on the Poisson process. Green et
al. [18] study the different methods of queuing-theory
for setting a service system to serve clients whose
request-pattern is predictable during a day (how much
demanding in which periods).

Excoffier et al. [19] propose a solution to solve
the staffing problem, which determines the minimum
number of servers that could conform to SLA. The
proposed solution is based on linear approximation,
and considered arrival rate as random. Mattia et
al. [20] presents a robust solution guaranteeing that the
proposed shift schedule with the minimum number of
servers can conform to SLA. It computes the solution by
considering the probability distributions of uncertain
parameters.

Other recent works related to queuing models of
CC [21, 43] focus on considering impatient customers
as a new input parameter for queuing models. This new

parameter introduces the uncertainty from the client
side into the models.

8. Conclusion and Future Work

In this section, we conclude our work by summarizing
the contributions in Section 8.1 and discussing the
directions of future work in Section 8.2.

8.1. Conclusion

In this paper, by modeling the main workflow of
an operational SOC, a system for improving the
SOC’s performance has been designed consisting of
four modules, monitoring, measuring, simulation, and
feedback. The integration of the first three modules
provide SOC managers a solution to evaluate the
current performance, and assess potential improvement
options through simulations. The feedback module
enables knowledge transfer among SOC analysts in
their ongoing workflows to improve their performance.

By deploying a logging component inside the main
SOC console, analysts’ activity logs from a real
production SOC are collected from June to August 2015
for 57 days in a dataset for evaluating our system.
Three case studies have been conducted based on the
dataset to study the designed system’s effectiveness,
namely, modifying the duration of steps, a different
alert dispatching method, and the feedback module’s
impact.

In the case study of modifying the duration of
steps, we provide two improvement scenarios for the
SOC workflow. The simulation result of the combined
scenarios demonstrates a performance improvement of
7.36%. In the case study of a different alert dispatching
method, the results indicate that one important factor
to improve the efficiency by the employed approach is
about a combination of the selected analysts’ expertise
for one work-shift. If analysts with different expertise
are chosen to work in the same work-shift, it would
increase the efficiency of the SOC by the proposed
dispatching model more. The simulation results for the
33-day work-shifts state a 4.42% improvement in the
average investigation duration and 2.18% in the alerts
waiting time. In the case study of the feedback module’s
impact, knowledge transfer rates (10% to 60%) are
considered for two junior analysts gaining knowledge
from a senior analyst regarding a specific EventID. The
average performance improvement for the two junior
analysts ranges from 6.23% to 35.93% depending on
their knowledge transfer rate. In order to asses the
improvement results, it should be considered that all
improvement percentages point at the time duration
reduction in one single investigation.

18 EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e1

8.2. Future Work
The future directions for this work will mainly be in two
parts. First, we will apply data mining for automated
analysis of investigations logs, e.g., apply classification
and association techniques. By using classification,
we can label analysts’ performance regarding their
performance evaluation. And association rules can be
employed to find frequent patterns, such as the habit of
analysts during the investigation, pre-filter EventIDs.

Second, we will also apply and simulate queuing
theories on the dataset to show how different models
affect the overall performance of the SOC differently
to find the optimum approach. Moreover, extending
case studies on a larger scale dataset would also be an
interesting future direction.

Acknowledgement. Authors with Concordia University are
partially supported by Natural Sciences and Engineering
Research Council of Canada under Discovery Grant N01035.

References
[1] J. Allen, D. Gabbard, C. May, E. Hayes, and C. Sledge,

“Outsourcing managed security services,” tech. rep.,
DTIC Document, 2003.

[2] R. Bejtlich, The Tao of network security monitoring: beyond
intrusion detection. Pearson Education, 2004.

[3] A. Crystal and B. Ellington, “Task analysis and human-
computer interaction: approaches, techniques, and levels
of analysis,” in Americas Conference on Information
Systems (AMCIS’04), p. 391, 2004.

[4] R. Bidou, “Security operation center concepts & imple-
mentation,” available at http://www. iv2-technologies. com,
2005.

[5] Y. Niu, Q. Zhang, Q. Zheng, and H. Peng, “Security
operation center based on immune system,” in Interna-
tional Conference on Computational Intelligence and Secu-
rity Workshops, CISW’007., 2007.

[6] S. Shin and G. Gu, “Cloudwatcher: Network security
monitoring using openflow in dynamic cloud networks,”
in 20th IEEE International Conference on Network
Protocols (ICNP), 2012.

[7] J. S. Li, C. J. Hsieh, and H. Y. Lin, “A hierarchical mobile-
agent-based security operation center,” International
Journal of Communication Systems, vol. 26, no. 12,
pp. 1503–1519, 2013.

[8] X. Hu and C. Xie, “Security operation center design
based on ds evidence theory,” in Proceedings of the IEEE
International Conference on Mechatronics and Automation,
2006.

[9] J. R. Ballard, I. Rae, and A. Akella, “Extensible and
scalable network monitoring using opensafe,” Proceeding
of INM/WREN, 2010.

[10] A. K. Ganame, J. Bourgeois, R. Bidou, and F. Spies,
“Evaluation of the intrusion detection capabilities
and performance of a security operation center.,” in
SECRYPT, pp. 48–55, 2006.

[11] P. Jacobs, A. Arnab, and B. Irwin, “Classification of
security operation centers,” in Information Security for
South Africa, 2013, pp. 1–7, IEEE, 2013.

[12] S. C. Sundaramurthy, J. Case, T. Truong, L. Zomlot,
and M. Hoffmann, “A tale of three security operation
centers,” in Proceedings of the ACM Workshop on Security
Information Workers, 2014.

[13] A. Michail, “Security operations centers: A business
perspective,” Master’s thesis, Utrecht University, 2015.

[14] L. Wang, A. Liu, and S. Jajodia, “Using attack graphs
for correlating, hypothesizing, and predicting intrusion
alerts,” Computer communications, vol. 29, no. 15,
pp. 2917–2933, 2006.

[15] H. T. Elshoush and I. M. Osman, “An improved
framework for intrusion alert correlation,” in Proceedings
of theWorld Congress on Engineering, vol. 1, pp. 1–6, 2012.

[16] Z. Zali, M. R. Hashemi, and H. Saidi, “Real-time
intrusion detection alert correlation and attack sce-
nario extraction based on the prerequisite-consequence
approach,” The ISC International Journal of Information
Security, vol. 4, no. 2, 2013.

[17] A. A. Ramaki, M. Amini, and R. E. Atani, “Rteca: Real
time episode correlation algorithm for multi-step attack
scenarios detection,” Computers & Security, vol. 49,
pp. 206–219, 2015.

[18] L. V. Green, P. J. Kolesar, and W. Whitt, “Coping with
time-varying demand when setting staffing require-
ments for a service system,” Production and Operations
Management, vol. 16, no. 1, pp. 13–39, 2007.

[19] M. Excoffier, C. Gicquel, O. Jouini, and A. Lisser,
“Comparison of stochastic programming approaches
for staffing and scheduling call centers with uncertain
demand forecasts,” in Operations Research and Enterprise
Systems, pp. 140–156, 2014.

[20] S. Mattia, F. Rossi, M. Servilio, and S. Smriglio, “Robust
shift scheduling in call centers,” in Combinatorial
Optimization, pp. 336–346, 2014.

[21] H. Takagi and Y. Taguchi, “Analysis of a queueing model
for a call center with impatient customers and after-
call work,” International Journal of Pure and Applied
Mathematics, vol. 90, no. 2, pp. 205–237, 2014.

[22] “Graphviz, open source graph visualization project.”
http://www.graphviz.org/.

[23] “Extension for MS-Visio, GraphVisio.”
http://www.calvert.ch/graphvizio/thumb.

[24] “Community edition Saiku.”
http://community.meteorite.bi/.

[25] N. Gautam, Analysis of Queues: Methods and Applications.
CRC Press, 2012.

[26] “Matplotlib , Python 2D plotting library.”
http://matplotlib.org/.

[27] “PostgreSQL, open source object-relational database
system.” http://www.postgresql.org/about/.

[28] “CEF Python, browser embedding pack-
age for popular Python GUI toolkits.”
https://code.google.com/p/cefpython/.

[29] J. Hyde, “Mondrian Documentation.” https:

//mondrian.pentaho.com/documentation/schema.

php#What_is_a_schema.
[30] M. Armony, “Dynamic routing in large-scale service

systems with heterogeneous servers,” Queueing Systems,
vol. 51, no. 3-4, pp. 287–329, 2005.

[31] D. C. Montgomery, E. A. Peck, and G. G. Vining,
Introduction to linear regression analysis, vol. 821. John

19

Monitoring and Improving Managed Security Services inside a Security Operation Center

EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e1

https://mondrian.pentaho.com/documentation/schema.php#What_is_a_schema
https://mondrian.pentaho.com/documentation/schema.php#What_is_a_schema
https://mondrian.pentaho.com/documentation/schema.php#What_is_a_schema

M. Khalili et al.

Wiley & Sons, 2012.
[32] B. Schneier, “Managed security monitoring: Closing the

window of exposure,” Counterpane Internet Security,
2000.

[33] B. Schneier, “Managed security monitoring: Network
security for the 21st century,” Computers Security,
vol. 20, no. 6, pp. 491–503, 2001.

[34] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “Open-
flow: enabling innovation in campus networks,” ACM
SIGCOMM Computer Communication Review, vol. 38,
no. 2, pp. 69–74, 2008.

[35] D. Tsai, W. Chen, Y. Lu, and C. Wu, “A trusted
security information sharing mechanism,” in 43rd
Annual International Carnahan Conference on Security
Technology, 2009.

[36] R. C. Luo and M. G. Kay, “Multisensor integration
and fusion in intelligent systems,” IEEE Transactions on
Systems, Man and Cybernetics, vol. 19, no. 5, pp. 901–931,
1989.

[37] D. L. Hall and J. Llinas, “An introduction to multisensor
data fusion,” Proceedings of the 1998 IEEE International
Symposium on Circuits and Systems, ISCAS’98., 1998.

[38] L. Yu Beng, S. Ramadass, S. Manickam, and T. Soo Fun,
“A survey of intrusion alert correlation and its design
considerations,” IETE Technical Review, vol. 31, no. 3,
pp. 233–240, 2014.

[39] B. Zhu and A. A. Ghorbani, Alert correlation for extracting
attack strategies. PhD thesis, University of New
Brunswick, Faculty of Computer Science, 2005.

[40] S. Chen and S. Ranka, “An internet-worm early warning
system,” in IEEE Global Telecommunications Conference,
GLOBECOM’04., 2004.

[41] L. Brown, N. Gans, A. Mandelbaum, A. Sakov, H. Shen,
S. Zeltyn, and L. Zhao, “Statistical analysis of a telephone
call center: A queueing-science perspective,” Journal of
the American statistical association, vol. 100, no. 469,
pp. 36–50, 2005.

[42] A. K. Erlang, “The theory of probabilities and telephone
conversations,” Nyt Tidsskrift for Matematik B, vol. 20,
no. 16, pp. 33–39, 1909.

[43] C. Kim, S. Dudin, O. Taramin, and J. Baek, “Queueing
system map| ph| n| n+ r with impatient heterogeneous
customers as a model of call center,” Applied Mathemati-
cal Modelling, vol. 37, no. 3, pp. 958–976, 2013.

20 EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e1

	1 Introduction
	2 Preliminaries
	3 Modeling and Logging the Investigation Workflow
	3.1 Modeling the Investigation Workflow
	3.2 Logging Analysts' Activities

	4 Methodology
	4.1 Overview of The System
	Monitoring Module
	Measuring module
	Simulation Module
	Feedback Module

	5 Implementation
	5.1 Monitoring Module
	5.2 Measuring Module
	Saiku OLAP Configuration

	5.3 Simulation Module
	Modifying Steps' Duration
	Alert Dispatching Method

	5.4 Feedback Module

	6 Data Processing and Case Studies
	6.1 Dataset Pre-processing
	6.2 Statistics of Dataset
	6.3 Case Study I, Modifying the Duration of Steps
	Checking clients' assets (part of step C)
	Checking escalation grid (step F)
	Combination of two possible improvements

	6.4 Case Study II, A Different Alert Dispatching Method
	6.5 Case Study III, The Feedback Module

	7 Related Work
	7.1 MSS, MSM, NSM, SOC
	7.2 Alert Correlation Techniques
	7.3 Call Centers And Queuing Models

	8 Conclusion and Future Work
	8.1 Conclusion
	8.2 Future Work

