
1

A Comparative Study of the Implementation of
SJF and SRT Algorithms on the GPU Processor
Using CUDA

Youness Rtal 1,*, Abdelkader Hadjoudja 1

1 Department of Physics, Laboratory of Electronic Systems, Information Processing, Mechanics and Energy, Faculty of
Sciences, Ibn Tofail University, Kenitra, Morocco

Abstract
GPU (Graphical Processing Units) have become in a few years very powerful tools for parallel computing. They are currently
used in several fields such as image processing, bioinformatics, medical applications and numerical computation...etc. Their
advantages are faster processing and lower power consumption compared to CPU power. It is simple to program a GPU
processor using the CUDA C language to perform tasks that are typically computed in parallel. But you need to understand
the different architectural aspects of the GPU. In this paper, we will define and implement the two operating system
algorithms the SJF (Shortest Job First) algorithm and the SRT (Shortest Remaining Time) algorithm in a single-wire CPU
environment using the C language, and then the same algorithms will be implemented on the GPU using the CUDA C
language, in order to compare the different performances of the implementation of the two algorithms on GPU and CPU
processors and to verify the efficiency of this study.

Keywords: CUDA, GPU, CPU, SRT, SJF, thread.

Received on 07 January 2021, accepted on 28 January 2021, published on 08 February 2021

Copyright © 2021 Youness Rtal et al., licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium so long as the original work
is properly cited.

doi: 10.4108/eai.8-2-2021.168689

1. Introduction

With the emergence of high-level programming languages for
graphics processing units (GPUs), GPUs have become more
attractive to speed up tasks that are typically performed in
parallel. Despite these new languages, it is difficult to use
these complex architectures effectively. Indeed, graphics
cards are evolving rapidly, with each generation bringing its
own features dedicated to accelerating graphics routines or
high-performance computing. The architectural details of
these architectures remain largely secret, as manufacturers
are reluctant to disclose the implementations used. These new
features added to GPUs are the result of the simulation of
different architectural solutions carried out by manufacturers

*Corresponding author: youness.pc4@gmail.com

to determine their validity and performance. The complexity
and performance of today's GPUs present significant
challenges when exploring new architectural solutions or
refining certain parts of the processor.
 GPU computing needs are increasing exponentially such as
physical simulation [3], risk calculation for financial
institutions, weather forecasting, video and audio encoding
[4]. So, GPU computing has brought a huge advantage over
the CPU in terms of performance (speed and energy
efficiency). It is therefore one of the most interesting areas of
research and development in modern computing. The GPU is
a graphics processing unit that mainly allows us to run high
quality graphics, which is the essential demand of the modern
computing world. The main task of the GPU is to calculate
3D functions, this type of calculations is very difficult to do
on the CPU (central processing unit), the GPU can help us to

EAI Endorsed Transactions
on Internet of Things Research Article

EAI Endorsed Transactions on
Internet of Things

10 2020 - 02 2021 | Volume 6 | Issue 24 | e3

mailto:https://creativecommons.org/licenses/by/4.0/
mailto:https://creativecommons.org/licenses/by/4.0/

Youness Rtal, Abdelkader Hadjoudja

2

work more efficiently because the evolution of the GPU over
the years has been oriented towards better floating point
performance. In 2006, NVIDIA introduced its massively
parallel architecture called "CUDA" and changed the whole
perspective of GPU programming. The CUDA architecture
consists of several processor cores that work together to
consume all the data provided in the application. The use of
the GPU to process non-graphical objects is known as the
general-purpose graphics processing unit or GPGPU, which
is used to perform very complex mathematical operations in
parallel to achieve low temporal complexity. The arithmetic
power of the GPGPU is the result of its highly specialized
computing architecture. [8-9]
 A computer necessarily has several processes competing
for time processor, this situation occurs when 2 or more
processes are in a ready state simultaneously. The Scheduler
(scheduler) is the part (a program) of the operating system.
responsible for adjusting the status of the processes (Loan,
Asset, etc.) and managing the transitions between these
processes. states; it is the allocator of the processor to the
different processes; it allocates the processor to the process
by head of Loans. In this paper, we will implement the two
operating system algorithms SJR (Shortest Job First) and
SRT (Shortest Remaining Time) on GPU and CPU
processors using the CUDA C programming language in
order to compare the different performances of the resulting
implementation; the rest of our paper is organized as follows:
in section 2, we present the CUDA architecture and the
hardware used. In section 3, we list the operating system
objectives and programming criteria. In section 4, we present
the types of planning. Section 5 presents the SRT and SJF
algorithms and their advantages and disadvantages. In section
6, we explain the performance of the scheduling algorithms.
Section 7 presents the experimental design and the
implementation steps. In the last section, we review the
results of the implementation of the SRT and SJF algorithms
on the GPU and CPU.

2. CUDA architecture and the hardware
used

The CUDA environment is a parallel computing platform and
programming model invented by NVIDIA [1]. 1] It allows to
significantly increase computing performance by exploiting
the power of the graphics processing unit (GPU). CUDA C or
C ++ is an extension of the C or C ++ programming languages
for general computing. CUDA is well adapted and useful for
highly parallel algorithms. It is necessary to have multiple
threads in order to increase the performance of the algorithms
while running on the GPU. Normally, the higher the number
of threads, the better the performance. The main idea of
CUDA is to have thousands of threads running in parallel. All
these threads execute the same code, called kernel. All these
threads are executed using the same instructions and different
data. Each thread knows its own ID address and based on this
ID address it determines the data elements it has to work on.
[2]A CUDA program consists of a few steps that are executed

on the host (CPU) or on a GPU device. In the host code, no
data parallelism phases are executed. In some cases, data
parallelism is weak in the host code. In the device code,
phases with high data parallelism are executed. A CUDA
program is a unified source code that includes both the host
and device code. The host code is simple C code compiled
using only the standard C compiler. It can be said to be an
ordinary CPU process. The device code is written using
CUDA keywords for parallel tasks, called kernels and their
associated data structures. In some cases, kernels can be run
on the CPU if no GPU device is available, but this
functionality is provided using an emulation function. The
CUDA SDK provides these features. The CUDA architecture
consists of three essential parts, which help the programmer
to efficiently use all the computing capabilities of the
graphics card on the system in question. The CUDA
architecture divides the GPU device into grids, blocks and
threads in a hierarchical structure, as shown in Figure 1. Since
there are several threads in a block and several blocks in a
grid and several grids in a single GPU, the parallelism that is
achieved using such a hierarchical architecture is very
important. [7.12]

Figure 1. Architecture of the CUDA program and these
memories

A grid is a group of many threads running the same kernel.
These threads are not synchronized. Each call to CUDA from
the CPU is made through a single grid. On multi-GPU
systems, grids cannot be shared between different GPUs as
they use many grids for maximum efficiency. The grids are
made up of many blocks. Each block is a logical unit
containing several coordination threads and a certain amount
of shared memory. The blocks are no longer shared between
the multiprocessors. Each block in a grid uses the same
program. A built-in variable "blockIdx" can be used to

EAI Endorsed Transactions on
Internet of Things

10 2020 - 02 2021 | Volume 6 | Issue 24 | e3

 A Comparative Study of the Implementation of SJF and SRT Algorithms on the GPU Processor Using CUDA

3

identify the current block. Blocks themselves are made up of
many threads that run on the individual cores of
multiprocessors, but unlike grids and blocks, they are not
limited to a single core, there are around 65,535 blocks in a
GPU. Like blocks, each thread has its own ID called
"threadIdx". Thread IDs can be 1D, 2D, or 3D depending on
the block dimensions. The thread ID is relative to the block
in which it is located. Threads have a certain amount of
register memory. [5, 10] Usually there can be 512 threads per
block.
The platform used in this study is a conventional computer,
dedicated to video games and equipped with an Intel Core 2
Duo E6750 processor and an NVIDIA GeForce 8500 GT
graphics card. All specifications for both platforms are
available in [14,15].
The processor is a dual core, clocked at 2.66 GHz and
considered entry level in 2007.
The graphics card has 16 streaming processors running at
450MHz and was also considered entry-level in 2007.
In terms of memory, the host has 2GB, while the device has
only 512MB.

3. Objectives and Scheduling Criteria
3.1. Objectives of a Scheduler
The main objectives of a Schedule are:

• Maximize CPU and GPU usage
• Present an acceptable response time
• Respect the equity between the processes according

to the scheduling criteria used.

3.2. Scheduling criteria

The goal of a scheduling algorithm is to identify the process
that will lead to the best possible system performance. Of
course, this is a subjective assessment in which various
criteria of varying relative importance are taken into account.
The scheduling policy determines the importance of each
criterion. Several algorithms have been proven in the
implementation of a scheduling policy. [13]
The following list reviews frequently used scheduling
criteria:
• CPU Usage: Percentage of time the CPU is running a

process. The importance of this criterion generally
varies depending on the degree of sharing of the system.

• Distributed use: Percentage of time during which all
resources are used (in addition to CPU, memory, I / O
device, etc.)

• Throughput: Number of processes that can be executed
by the system over a given period.

• Turnaround time: The average length of time it takes
for a process to run. The turnaround time of a process
includes all the time it spends in the system. It is
inversely proportional to the flow.

• Waiting time: The average time a process spends
waiting. Measuring performance by turnaround time

has one drawback: The production time of the process
increases the turnaround time; The wait time is
therefore a more precise measure of performance.

• Response Time: The average time it takes for the
system to start responding to user input.

• Fairness: degree to which all processes are given an
equal opportunity to perform.

• Priorities: Gives preferential treatment to processes
with a higher priority level.

4. Types of Scheduling
There are 2 types of scheduling [13]:
Preemptive Scheduling: With requisition where the Scheduler can
interrupt a running process if a new higher priority process is
inserted in the Loans queue.
Non-preemptive scheduling: Scheduling until completion: the
elected process retains control until the time allotted to it is used up
even if higher priority processes have reached the Loans list

5. The SJR and SRT algorithm
We are going, according to the problems which we have just
exposed and the partial solutions which have been envisaged,
to present here some realizations of schedulers while showing
for each one of them the advantages and the disadvantages
towards the system and towards the users. [13]

5.1. Shorter Work First (SJF)
The Shorter First technique (SJF for Shortest Job First) is still
a scheduling scheme without requisition (therefore unusable
in time-sharing) where the process with the lowest estimated
time of execution until completion takes priority. It is
therefore a technique that was created to partially overcome
the disadvantage of First In First Out which allowed the
execution of very long works before less important works,
only their order of arrival being considered.

SJF therefore favours short work to the detriment of the most
important. As a result, it leads to a much greater variance than
the First In First Out algorithm, in particular for long jobs.
SJF works so that the next run can complete (and therefore
exit the system) as soon as possible. This technique therefore
tends to reduce the number of pending jobs, which has the
consequence of reducing the average process waiting times.
 The main disadvantage of SJF is that it requires precise
knowledge of the execution time, a value that is usually not
possible to determine. The only way is to trust an estimate
given by the users themselves. This estimate may be good in
production environments where the same jobs are submitted
regularly, but it is rarely possible in development
environments.
 Knowledge of this scheduling scheme might tempt some to
intentionally underestimate execution time in order to take
advantage of undue priority. In order to avoid this kind of
"dishonesty", the user is warned that his work will be
abandoned if it is exceeded. This has two drawbacks:

EAI Endorsed Transactions on
Internet of Things

10 2020 - 02 2021 | Volume 6 | Issue 24 | e3

Youness Rtal, Abdelkader Hadjoudja

4

• Obligation for users to increase the estimates.
• Poor profitability of the processor (the time spent on

abandoned jobs quickly decreases performance).

A second possibility is therefore offered: to continue the
execution of the work during the estimated time increased, if
necessary, by a certain percentage (generally low) then to
"put aside" in the state in which it is. to resume execution
later. Of course, the user will be penalized by this wait but
also by an additional billing.

A third possibility is not to "set aside" the work, but to
continue its execution until completion by charging for the
excess time at a much higher rate. This solution is ultimately
better accepted because the supplement effectively
corresponds to better service.

5.2. The Shortest Remaining Time
algorithm (SRT)

The Shortest Remaining Time strategy (SRT for Shortest
Remaining Time) is the version with requisition of SJF
(therefore usable in timesharing) where, again, priority is
always given to the process with the lowest remaining
execution time (in considering new arrivals).
 In SRT, an active process can therefore be interrupted in
favour of a new process having an estimated execution time
shorter than the time required for the completion of the first.
Here again, and more particularly because of the requisition,
the "designer" must provide a deterrent about "clever" people
who know the scheduling strategy.
The cost of SRT is higher than that of SJF: it must take into
account the time already allocated to the running processes,
perform the switches on each arrival of a short job which will
be executed immediately before resuming the interrupted
process (unless even shorter labor occurs). Long jobs
experience a longer average wait and a larger variance than
in SJF.
 In theory SRT should offer a minimum waiting time, but
due to its own cost of operation, it is possible that in certain
situations, SJF is more efficient. In order to reduce this cost,
one can consider several refinements avoiding requisition in
borderline cases:
• suppose the current process is almost complete and a

job with a very low estimated execution time arrives.
Should there be requisition? In these cases, it is
possible to guarantee that a process in progress whose
remaining execution time is less than a threshold is
completed regardless of the arrivals;

• another example: the active process has an execution
time remaining slightly higher than the estimated time
of an incoming job. Here again, if SRT is applied "to
the letter", there is requisition. But if the cost of this
requisition is greater than the difference between the
two estimated times, this decision becomes absurd!

The conclusion of all this is that the "designers" of systems
must carefully assess the costs generated by sophisticated
mechanisms because they can in many cases defeat the
desired goal: saving time.

6. Performance of Scheduling Algorithms
The performance of an algorithm for a given set of processes
can be analysed if the appropriate process information is
provided. For example, data on the arrival of the process and
the time of execution of that process are needed to evaluate
these algorithms. We give some parameters to calculate for
the implementation of the two algorithms:

• Bust Time (BT) and Arrival Time (AT).
• Waiting time = start time – arrival time
• Turnaround Time = Waiting Time + Burst Time for

all processors.
• Average Waiting Time = Sum Waiting Time / number

of processors.
• Average Turnaround Time = Sum Turnaround Time /

number of processors.
• the acceleration is given by: Speedup = TS/TP ,

Where, TS is the time required to run the sequential
algorithm on CPU and TP is the time required to run
the parallel algorithm on GPU.

7. Experimental Setup and Implementation
The Software Development Kit or the SDK may be a good
way to learn a few about a CUDA, anyone will compile the
examples and can learn how the toolkit works. The SDK is
available at the NVIDA’s website and can becdownloaded
by any aspiring programmers who wants to learn about a
CUDA programming. Anyone who has some basic
knowledge about C programming can begin a CUDA
programming very quickly. No prior knowledge of graphics
programming is required to write CUDA codes. CUDA is
derived from C with some modifications that mode it works
on the GPU. CUDA is a C for GPU.

The main objective of the work is to analyse some
operating system scheduling algorithms on GPU and CPU.
The first criterion for evaluating the programming of the
central units is the waiting time and the burst time of the
processes which are in the same conditions. This paper
implemented some scheduling algorithms, namely Shortest-
Job-First (SJF) scheduling, Shortest Remaining Time (SRT)
scheduling, first on a single-threaded CPU environment and
calculated the execution time of each algorithm, then, the
same algorithms are implemented with NVIDIA's GPU
programming environment, CUDA v10.2. Then by
comparing the performance of these algorithms on both CPU
and GPU platforms using the CUDA language.
The steps to implement the CUDA code are as follows:
• Install visual studios as an environment for CUDA

programming.
• Install specific NVIDIA GPU drivers according to

GPU model and install the CUDA SDK.
• Write a program code according to a normal C / C ++

programming construct.

EAI Endorsed Transactions on
Internet of Things

10 2020 - 02 2021 | Volume 6 | Issue 24 | e3

 A Comparative Study of the Implementation of SJF and SRT Algorithms on the GPU Processor Using CUDA

5

• Change the written program into the CUDA parallel
code by using the library functions provided by the
SDK. The library functions are used to copy data from
host to device, change execution from CPU to GPU and
Vice versa, copy data from device to host.

• Allocate CPU memory.
• Allocate same amount of GPU memory using library

function “CudaMalloc”.
• Take data input in CPU memory.
• Copy data into GPU memory using library function

CudaMemCpy with parameter as
(CudaMemcpyHostToDevice).

• Perform processing in GPU memory using kernel
calls. Kernel calls are a way to transfer control from
CPU to GPU; they also specify the number of grids,
blocks and threads i.e. Parallelism is required for your
program.

• Copy final data in CPU memory using library function
CudaMemCpy with parameter as
(CudaMemcpyDeviceToHost).

• Free the GPU memory or other threads using library
function Cudafree.

 Setting up the environment and writing programs in CUDA
is a straightforward task. But it requires a deep knowledge of
architecture and knowledge of writing parallel codes. The
most important part of programming in CUDA is the kernel
calls in which the programmer must determine the parallelism
required by the program. Dividing data into the appropriate

number of threads is the main area that defines successful
code. [10]

8. Results and Discussions

In order to analyse the performance of the implemented SRT
 et SJF algorithms the speedup achieved on the execution with
respect to time was evaluated for all the test results. All the
tests on the algorithms were performed with the similar
number of processing nodes or processors and therefore, the
speedup in execution is not evaluated based on the number of
processors used but by analysing the speedup in execution
time because of the change in parallelizing approach taken up
in the program [9.11]
this implementation is based on the algorithm:

 forever
 p: = priority;
 if (state (p) ≠ ready) do

 p: = following (p);
 end − to − do

 restore the context of (p);
 to give a hand to (p);
 end-for

 In this program, we have assumed the list ordered by
decreasing priority starting from the entry <<priority>>, and
moreover looped. The results of the implementation of the
SJF and SRT algorithms are grouped together in table 1 and
the two figure 2 and 3:

Table 1. The different performances of the implementation of the SRT and SJF algorithms on GPU and CPU

Algorithm
Used

Process Burst Time
(BT)

Arrival
Time
(AT)

Waiting
Time
(WT)

Turnaround
Time

Average
Waiting Time

Average
Turnaround

Time

CPU
Time
𝐓𝐓𝐒𝐒 in
(ms)

GPU
Time
𝐓𝐓𝐏𝐏 in
(ms) CPU GPU CPU GPU

Shortest Job
First (SJF)

P2
P3
P4
P1
P5

12
8
4

10
6

0
3
4
8

10

0
19
7

20
4

12
27
11
30
10

10 10 18 18 0,992 0,0681

Shortest
Remaining
Time (SRT)

P2
P3
P4
P1
P5

12
8
4

10
6

0
3
5

10
12

18
4
0

20
3

30
12
4

30
9

9 9 17 17 0,879 0,054

EAI Endorsed Transactions on
Internet of Things

10 2020 - 02 2021 | Volume 6 | Issue 24 | e3

Youness Rtal, Abdelkader Hadjoudja

6

Figure 2. The execution time obtained by
implementing two algorithms on GPU and CPU

The results of Table 1 and Figure 2 show that for the same
data from the processors of two algorithms, SRT and SJF,
we have:
• GPU and CPU having the same average wait time

and the same average execution time.
• The average wait time executed on the GPU of the

SRT algorithm is higher than that of the SJF
algorithm.

• Average execution time calculated by the GPU of the
SRT algorithm smaller than the SJF algorithm.

• The execution time on the GPU of both algorithms is
about 14 to 17 times faster than the CPU.

• The GPU execution time of the SRT algorithm is
smaller than that of the SJF algorithm.

Figure 3. represents the Speedup of two algorithms
SRT and SJF

Figure 3: shows that the acceleration of SRT algorithms is
higher than that of the SJF algorithm, implying that the

acceleration factor of preemptive planning algorithms is
faster than that of non-preemptive planning algorithms.
The implementation results shown in Table 1 and Figures
2 and 3 explain that CPU processors process data
sequentially (task by task), while GPUs process data in
parallel (several tasks simultaneously), implying that the
performance of the implementation of two algorithms on
GPU is very high compared to the implementation on CPU.

9. Conclusion

In this paper, we have successfully presented a comparative
study of the implementation of SRT and SJF algorithms on
GPUs and CPUs using the CUDA C language, the latest
features of the NVIDIA CUDA SDK 10. 2, the results of
the implementation show that the execution time achieved
on the GPU for both algorithms is faster than on the CPU
(about 14 to 17 times) and the acceleration factor of the
SRT algorithm is higher than that of the SJF algorithm,
showing that the performance of SRT (Preemptive)
algorithms is more efficient than that of SJF (Non-
Preemptive) algorithms. This shows the efficiency of using
GPUs for parallel computing and obtaining the best
performance. Despite this implementation by CUDA C,
Nvidia still faces many challenges to keep CUDA C
faithful to parallel task programming on GPUs, the main
task being to convince programmers that it is a credible
platform. GPUs are gaining popularity in the scientific
computing community due to their high processing power
and easy availability and are becoming the preferred choice
of programmers due to the support offered to programmers
by models such as CUDA.

Abbreviations

The following abbreviations are used in this manuscript:
GPU Graphical Processing Unit.
CPU Central Processing Unit.
CUDA Compute Unified Device Architecture.
SJF Shorter Work First.
SRT Shortest Remaining Time.

References
[1] NVIDIA. NVIDIA CUDA Compute Unified Device

Architecture Programming Guide, Version 2.0, 2008.
[2] Wikipedia- http://en.wikipedia.org/wiki/CUDA.
[3] CalleLedjfors, “High Level GPU Programming”, Department

of Computer Science Lund University.2008.
[4] “CUDA C programming guide version 6.5”, NVDIA

Corporation, August 2014.
[5] Anthony Lippert – “NVIDIA GPU Architecture for General

Purpose Computing”.
[6] Danilo De Donno et al., “Introduction to GPU Computing

and CUDA Programming: A Case Study on FDTD,” IEEE
Antennas and Propagation Magazine, June 2010.

[7] Manish Arora, “The Architecture and Evolution of CPU-GPU
Systems for General Purpose-Computing “.

0,0681

0,054

0,992

0,879

0 0,5 1 1,5

Shortest Job First (SJF)

Shortest Remaining
Time (SRT)

Execution time (ms)

Al
go

rit
hm

s

CPU GPU

EAI Endorsed Transactions on
Internet of Things

10 2020 - 02 2021 | Volume 6 | Issue 24 | e3

http://en.wikipedia.org/wiki/CUDA

 A Comparative Study of the Implementation of SJF and SRT Algorithms on the GPU Processor Using CUDA

7

[8] David Tarditi, Sidd Puri, Jose Oglesby, “Accelerator: Using
Data Parallelism to Program GPUs for General-Purpose
Uses”, October 2006.

[9] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan,
Jeremy W. Sheaffer, Kevin Skadron, “A Performance Study
of General-Purpose Applications on Graphics Processors
Using-CUDA”.

[10] Yadav K., Mittal A., Ansari M. A., Vishwarup V., “Parallel
Implementation of Similarity Measures on GPU Architecture
using CUDA”.

[11] Maria Andreina F. Rodriguez, “CUDA: Speeding Up Parallel
Computing”.

[12] Jayshree Ghorpade, Jitendra Parande, Madhura Kulkarni,
Amit Bawaskar, “GPGPU PROCESSING IN CUDA
ARCHITECTURE” Advanced 12 Computing: An
International Journal (ACIJ), Vol.3, No.1, January 2012.

[13] M Merci - bibliothequer.com.
[14] http://ark.intel.com/Product.aspx?id=30784.
[15] http://www.nvidia.com/object/geforce_8500.html.

EAI Endorsed Transactions on
Internet of Things

10 2020 - 02 2021 | Volume 6 | Issue 24 | e3

	3. Objectives and Scheduling Criteria
	3.1. Objectives of a Scheduler
	3.2. Scheduling criteria

	4. Types of Scheduling
	5. The SJR and SRT algorithm
	5.1. Shorter Work First (SJF)
	The Shorter First technique (SJF for Shortest Job First) is still a scheduling scheme without requisition (therefore unusable in time-sharing) where the process with the lowest estimated time of execution until completion takes priority. It is therefo...
	5.2. The Shortest Remaining Time algorithm (SRT)

	6. Performance of Scheduling Algorithms
	7. Experimental Setup and Implementation
	The Software Development Kit or the SDK may be a good way to learn a few about a CUDA, anyone will compile the examples and can learn how the toolkit works. The SDK is available at the NVIDA’s website and can becdownloaded by any aspiring programmers ...
	8. Results and Discussions
	9. Conclusion
	Abbreviations

