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Abstract. As big data advances by leaps and bounds, a considerable amount of 
extremely valuable time series data has been accumulated in finance and industry, from 
which the regularity can be excavated and the future trend can be forecasted. Time series 
forecasting has obtained widespread application in numerous fields, particularly in 
financial contexts, and some deep learning methods, including RNN and LSTM, has 
showed better performance than traditional methods, such as ARIMA, in financial time 
series forecasting, yet the problem of translation lag in deep learning forecasting still 
exists. The models may do pseudo learning. In other words, they use the values of the 
most current historical data directly as the forecasting values. To resolve the issue, this 
paper designs a new loss function which considers the distance between forecasting and 
historical values and conducts an experiment on three stock index time series datasets 
with carrier of the LSTM model. The experimental results reveal that, compared with the 
traditional MSE loss function, the proposed loss function has higher forecasting accuracy. 
This research alleviates the translation lag problem triggered by pseudo learning and thus 
provides a new method for reducing the error of stock index time series forecasting. 

Keywords: Stock index forecasting; Long short-term memory; Loss function 
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1 Introduction 

Along with the development of big data, there has been plenty of data in finance, industry and 
other fields, of which time series data is an essential component. Time series contains a wealth 
of information formed as things develops, which is conducive to regularity excavation, 
phenomena comprehension and future trend forecasting from time series data. 

Time series forecasting is a system behavior of forecasting the future based on the current and 
historical information[1], which has showed enormous values in the fields of temperature 
forecasting[2], stock index forecasting[3], electricity generation forecasting[4], transportation 
forecasting[5]. Time series models can date back to 1920s when statisticians utilized traditional 
measurement models to address time series regression problems. Traditional approaches focus 
primarily on parametric models informed by domain experts and some of the classic time 
series analysis models include Autoregressive(AR), Moving Average(MA)[6], Autoregressive 
Moving Average(ARMA), Autoregressive Integrated Moving Average(ARIMA)[7]. 
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With the improvement of data availability and computing power in recent times, machine 
learning has played a key role in the time series forecasting models of the next generation. 
Modern machine learning methods has provided an approach to temporal dynamics learning in 
a purely data-driven manner[8]. Over the past few years, it has become possible to establish 
deeper models. Compared with the shallow network engineering, they manifest an obvious 
improvement in learning capacity. Until now, deep learning has produced a great many results 
in natural language processing, machine translation, voice recognition and other relevant 
domains. Deep learning works in the problem of time series forecasting and a series of models 
can continually enhance accuracy of time series forecasts, such as a powerful time series data 
model RNN[9] and LSTM that can handle the problem of long-distance dependency[10]. In the 
complex challenges, a single model shows a relatively low degree of fit to time series 
forecasting, and hence hybrid models are employed to further fit, such as CNN-LSTM[11] and 
Fast RNN[12]. The new models improve the accuracy of forecasting from the prospective of the 
structure. Nonetheless, they overlook the impact of translation lag problem caused by deep 
learning models for time series forecasting on the model accuracy. In the process of time 
series forecasting, the phenomenon of pseudo learning may occur and the model will take the 
value of the most current historical data directly as the forecasting value, influencing the 
accuracy of forecasting. Traditional methods transform the input historical data to mitigate the 
problem of pseudo learning, which, however, are inapplicable to deep learning models. In an 
effort to cope with the problem of pseudo learning, this paper proposes a new loss function 
that considers the distance between forecasting and historical values and evaluates it on three 
stock index time series datasets. The results indicate that the model has a higher forecasting 
accuracy than traditional methods and alleviates the problem of pseudo learning to some 
extent. 

In section 2, some concepts relevant to the experiment and computing methods of the new loss 
function are introduced. In section 3, three stock index time series datasets are used to conduct 
the experiment and the performance of the new loss function is evaluated. In section 4, the full 
paper is summarized.  

2 Research Methods 

2.1 Research Overview 

The main overview of the study is illustrated in Fig.1. The stock index data is taken from 
Investing.com as the time series data and then the data is processed, including normalization 
and sliding window processing. Normalization can convert data to the same scale for better 
application to model training and sliding window processing can convert time series data to 
the input X and the forecasting target value y to train the LSTM model. The input X is 
selectively logarized to from a logarithmically processed dataset and an unlogarithmically 
processed dataset and then the data is divided into training set, validation set and test set. 
Following that, MSE, loss஑, lossஒ and lossஓ are employed as the loss functions of the LSTM 
model. Tuning is performed on the validation set to select the optimal model parameters and 
the final forecasting result is obtained on the test set. The following subsection outlines the 
LSTM model, the four loss functions (i.e. MSE, loss஑, lossஒ and lossஓ) and the evaluation 
indicators used in this study. 



 
 
 
 

 

Fig. 1. The flowchart of this study 

2.2 Long Short-Term Memory 

Long Short-Term Memory (LSTM) is a kind of recurrent neural network (RNN) for 
processing sequential data. The core idea of LSTM is to introduce a structure called gate to 
control the flow of information. To be specific, LSTM includes an input gate, a forget gate and 
an output gate. The input gate determines to what extent the currently input information is 
incorporated into the memory cells, thereby controlling the storage of new information. The 
forget date determines what information in the memory cells should be kept or forgotten for 
the purpose of making room for new information. The output gate determines how to generate 
the final output according to the current input and the state of the memory cells. Additionally, 
LSTM has a cell state for storing long-term information. In every time step of LSTM, a new 
hidden state and a new cell state can be obtained after a series of calculations based on the 
input vector and the hidden state and the cell state in the last time step. Behind that, the input 
gate controls the importance of the input vector. The forget gate controls the importance of the 
cell state and the output gate controls the output of the hidden state. Compared with the 
traditional RNN, LSTM can avoid the problems of vanishing gradient and exploding gradient 
more effectively when handling long sequences and is more superior in capturing the long-
term dependency relationships. 

2.3 Loss Function 

MSE. Mean-Square Error (MSE) Loss is also known as L2 Paradigm Loss, which calculates 
the average of squared differences between actual and forecasting values. The formula, 
represented as equation (1), is as follows: 
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where Pన෡ is the i-th forecasting stock index value and P୧ is the i-th actual stock index value. N 
represents the number of samples. 



 
 
 
 

The loss function considering the distance between forecasting and historical values. The 
phenomenon of translation lag results from pseudo learning of the model. The model takes the 
most recent historical data as the forecasting value. Since the variation of the data between 
neighboring points in time in time series is not too large in reality, the resultant RMSE is 
acceptable. Despite that, the accuracy of such a model is low, which is obviously not an 
expected result. 

With the aim of dealing with the problem of translation lag in the results of time series 
forecasting to a certain degree and thus enhancing the accuracy of the model, this paper 
proposes a new loss function that takes into account the distance from the forecasting values to 
the historical values and penalizes the case in which the historical value is directly used as the 
forecasting value. The three forms of the loss function are expressed as shown in equations (2), 
(3), and (4). 
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where P୧
୲ is the actual value of the stock index of the i-th sample at moment t (the value at 

moment t needs to be forecasted) and P୧
୲ିଵ is the actual value of the stock index of the i-th 

sample at moment t-1. Pన
୲෡  is the forecasting value of the stock index of the i-th sample at 

moment t. N denotes the number of samples. λ is the hyper-parameter that represents the 
weight. 

It is worth noting that, for the first two formulas, the difference between the forecasting value 
and the most recent historical data is introduced into denominator. When the forecasting value 
is equal to the historical value on the day t-1 or t-2, the value of the loss function becomes 
larger and the value of the loss function becomes smaller in the opposite cases. Obviously, for 
the case that the historical value at moment t-1 is equal to that at moment t, loss஑ is equivalent 
to MSELoss and lossஒ is equivalent to MAELoss, which are traditional and commonly used 
loss functions. 

For the third formula, the difference between the forecasting value and the historical value is 
introduced on the basis of MSELoss. λ, a hyper-parameter representing the weight, takes 
values from [0, 0.01] and is far smaller than the variance of the forecasting and actual values, 
which enables the model to ignore the error with the historical values and to take the error 
with the actual values into account. 

2.4 Training Method 

This study places emphasis on the tuning and optimization of the internal parameters of the 
model. Through the error back propagation algorithm, loss functions serve to adjust the 
weights of the paths between neural units in neighboring layers of the model, which can be 



 
 
 
 

translated into tuning of the internal parameters of the model. Consequently, various loss 
functions will give rise to the difference in the tuning of the internal weight parameters of the 
model. 

As for the artificially set hyper-parameters, such as the number of neural units in each layer, 
the learning rate, etc., this study tunes the models with different loss functions on the 
validation set in the experiment and achieves the optimal performance of the model for each 
loss function under the same framework. After the tuning of the parameters and obtaining the 
best state of the models, the optimal models for each loss function are adopted and tested on 
the test set with the aim of comparing the results of the forecasts. 

2.5 Evaluation metrics 

In order to evaluate the accuracy of the models, three indicators are utilized: Root Mean 
Squared Error (RMSE), Mean Absolute Percent Error (MAPE), Coefficient of Determination 
(Rଶ). The three indicators haven been extensively applied to the evaluation of forecasting 
models. RMSE and MAPE can be expressed as shown in equations (5) and (6).: 
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where Pన෡ is the forecasting value of the i-th stock index and P୧ is the actual value of the i-th 
stock index. N represent the number of data items. 

Rଶ is the measure of linear correlation between variables and can be calculated as follows in 
equation(7): 
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where the meanings of P୧, Pన෡ and N are the same as those in RMSE. P is the mean value of the 
actual values of the stock indices. 

The more Rଶ close to 1, the higher the forecasting accuracy. The smaller RMSE and MAPE, 
the smaller the error. 

3 Experiment 

3.1 Experimental setting 

In this study, three typical and publicly available datasets of stock indices are used: Dow jones 
Industrial Average(DJIA), Hang Seng Index and FTSE China A50 Index. Data for the three 
time series indices are obtained from Investing.com. The analysis information of the three 
datasets is listed in table 1. For DJIA, Hang Seng Index and FTSE China A50 Index, in an 
effort to provide information for the model as much as possible, historical data including the 



 
 
 
 

closing price, the opening price, the highest price and the lowest price of the past 20 days are 
input into the model, and the forecasting values for all three datasets are the closing price. 

The information of the optimal hyper-parameters for the model using the MSE loss function 
on Dow jones Industrial Average is presented in table 2. It is a neural network involving a 
LSTM layer and two fully connected layers. The input layer includes 16×20×4 units and the 
output layer includes one unit. The first layer is the LSTM layer containing 128 units and the 
input size is 16×20×4 which can be explained by the batch_size 16, 20 days of historical data 
and 4 dimensions of the features. The following fully connected layer contains 16 units and 
the input size is 16×128, meaning that the outputs of the LSTM layer are the inputs of this 
layer and a 16×16 dimensional output vector is obtained through linear mapping of 
16×20×128 features. After that is an activation layer that activates the 16×16 dimensional 
vector with the ReLU activation function to get an output vector with the same dimension. 
Finally, there is a fully connected layer that maps the input vector to a scalar, namely the 
output of the network. 

It should be clear that the purpose of this experiment exists in validating the effect of the loss 
functions instead of finding out the optimal hyper-parameters of the LSTM-based forecasting 
model for the dataset of this paper. Significantly, for different datasets and different loss 
functions, the hyper-parameters of the model will be adjusted. The number of units per layer 
will change, but the number of layers of the model remains the same. 

Table 1. The stock index dataset. 

Time series Time range Train data Validation data Test data 

DJIA 
2013.01.02-
2020.12.31 

996 598 399 

Hang Seng Index 
2010.01.04-
2022.12.22 

996 598 399 

FTSE China A50 
Index 

2013.01.04-
2020.12.31 

979 588 392 

Table 2. The hyper-parameters of LSTM. 

Type Units Size Output 

LSTM(Input) 128 16ൈ20ൈ4 16ൈ20ൈ128 
FC 16 16ൈ128 16ൈ16 

ReLU  16ൈ16 16ൈ16 
FC(output) 1 16ൈ16 16ൈ1 

3.2 Result and Discussion 

In order to compare the effect of loss஑, lossஒ and lossஓ, this paper used the model with the 
loss function MSE as the baseline and undertakes the experiment on the three datasets. 
Moreover, logarithmically processed historical data is introduced as inputs to explore their 
utilities. Hence there are results of eight models in total. 

Table 3 shows the experimental results about using the non-logarithmically processed inputs 
on the three stock index time series datasets. As for DJIA, it is noticeable that the model using 
lossஓ  as the loss function is the best performer among the four models with non-



 
 
 
 

logarithmically processed inputs and that the three loss functions proposed in this paper 
outperform MSEloss on RMSE, MAPE and R2. On the dataset Hang Seng Index, the model 
using loss஑ shows the best performance and the three loss functions are superior to MSEloss 
in terms of the model performance. For FTSE China A50 Index, the models using lossஒ 
perform the best and additionally the three models using the proposed loss function still 
perform better than the model using MSEloss. Above statements fully validate that the 
proposed loss functions are conducive to a higher accuracy of the model. 

Although the proposed loss functions outperform the traditional MSEloss on the three datasets, 
the best performing loss function on different datasets varies. In other words, none of them can 
be absolutely better than the rest of the loss functions. The difference between loss஑ and lossஒ 
can be understood from the distinction between traditional MAEloss and MSEloss. MAEloss 
is robust to outliers, while MSEloss is more sensitive to the difference between forecasting 
and actual values and for MSEloss, a specific analytic solution that converges faster when 
using gradient descent can be obtained, whereas the difference between lossஓ  and the 
remaining two loss functions can be understood from the mathematical in that multiplication 
and division bring about different sensitivities. 

Table 3. The results without logarithmically processing input 

Loss  
Function 

DJIA Hang Seng Index FTSE China A50 Index 

 RMSE MAPE R2 RMSE MAPE R2 RMSE MAPE R2 

𝐌𝐒𝐄 500.7284 0.0134 0.9407 346.8709 0.0101 0.9513 284.9964 0.0133 0.9450 

𝐥𝐨𝐬𝐬𝛂 437.1530 0.0110 0.9548 333.9303 0.0097 0.9549 186.7635 0.0090 0.9764 

𝐥𝐨𝐬𝐬𝛃 454.2692 0.0124 0.9512 335.1524 0.0097 0.9546 184.6012 0.0089 0.9769 

𝐥𝐨𝐬𝐬𝛄 436.0320 0.0109 0.9551 336.5541 0.0097 0.9542 189.2545 0.0094 0.9757 

 
Table 4 lists the results with logarithmically processing inputs on the three stock index time 
series datasets. As for the dataset DJIA, the model utilizing lossஓ perform the best among the 
four models with logarithmically processing inputs and the three loss functions proposed in 
the paper are superior to MSEloss on RMSE, MAPE and Rଶ. On the dataset Hang Seng Index, 
the model using loss஑ is the best performer and the three loss functions proposed in the paper 
are superior to MSEloss on RMSE, MAPE and Rଶ. For the dataset FTSE China A50 Index, the 
model using lossஒ shows the best performance and among the models with logarithmically 
processing inputs, only loss஑ and lossஒ outperform MSEloss, while lossஓ perform worse than 
MSEloss, which may be explained by the different utilities (degree of influence) of the 
logarithmically processing inputs on MSEloss and the new proposed loss functions. 

Table 4. The results with logarithmically processing input 

Loss  
Function 

DJIA Hang Seng Index FTSE China A50 Index 

 RMSE MAPE R2 RMSE MAPE R2 RMSE MAPE R2 

ln&𝐌𝐒𝐄 460.2149 0.0117 0.9499 340.5883 0.0100 0.9531 199.2089 0.0097 0.9731 

ln&𝐥𝐨𝐬𝐬𝛂 442.9675 0.0109 0.9536 334.6221 0.0096 0.9547 189.9312 0.0092 0.9756 

ln&𝐥𝐨𝐬𝐬𝛃 435.0793 0.0109 0.9553 336.7311 0.0098 0.9541 174.5942 0.0085 0.9794 

ln&𝐥𝐨𝐬𝐬𝛄 434.5472 0.0110 0.9554 335.2438 0.0097 0.9545 232.6241 0.0112 0.9633 



 
 
 
 

The effects of logarithmically processing inputs on various loss functions are illustrated in 
Fig.2. In the subgraph(a), for MSEloss, lossஒ  and  lossஓ , logarithmically processing inputs 
improve the accuracy of the model, but the error of the model using  loss஑ increases after that. 
In the subgraph(b), logarithmically processing works for the models using MSEloss and  lossஓ, 
but it results in slight decrease of the performance of the models using  loss஑ and lossஒ. In the 
subgraph(c), logarithmically processing inputs exerts an adverse influence on the models 
using  loss஑ and lossஒ and only reduce the error of the models using MSEloss and lossஒ. 

Through horizontal comparative analysis, it can be summarized that for the three datasets, 
logarithmically processing inputs invariably enhances accuracy for MSEloss, but always 
negatively affect  loss஑  and the effects on lossஒ  and  lossஓ  are oscillating and unstable. It 
validates that logarithmically processing inputs has different effects on the models using 
different loss functions, which might be caused by the interaction of the newly proposed loss 
functions and logarithmically processing inputs. In a nutshell, logarithmically processing is 
less effective for the newly proposed loss functions and even induces decrease in accuracy, 
which may be clarified by the similar mechanism of logarithmically processing inputs and the 
newly proposed loss functions and by the duplicated and even conflicting utilities of them. 

 

Fig. 2. The comparison of whether to logarithmically process inputs on three datasets. 

Regarding the optimal results of the four models with non-logarithmically processing inputs 
on the three datasets, the average values of Rଶ  are 0.9457, 0.9620, 0.9609 and 0.9617 
respectively, which shows the superiority of the newly proposed loss functions over MSEloss. 
With respect to the optimal results of the four models with logarithmically processing inputs 
on the three datasets, the average values of Rଶ are 0.9587, 0.9613, 0.9629 and 0.9577, which 
unveils that the newly proposed loss functions are superior to MSEloss as well. 

4 Conclusion 

Aiming at the translation lag of the results of stock index time series forecasting, this paper 
proposes a new loss function that considers the distance between the forecasting and historical 



 
 
 
 

values and validate it on three datasets Dow jones Industrial Average(DJIA), Hang Seng Index 
and FTSE China A50 Index. The experimental results suggest that, on the three datasets used 
in this paper, the newly proposed loss function has smaller error and higher accuracy. 
Additionally, this paper explored the effects of logarithmically processing inputs on the 
forecasting results and then draws the conclusion that logarithmically processing inputs is 
partly effective for MSEloss but unstable for the results of the new loss function, which may 
be explained by the conflicting utilities. Despite the fact that more validation is needed on the 
applicability of the new loss function, this paper undoubtedly provides a new way for 
improving the accuracy of stock index time series forecasting. 

Acknowledgments. The authors thank the Laboratory of Finance and Information Technology 
at Harbin Institute of Technology, Weihai, for their invaluable support and assistance 
throughout this research endeavor. The expertise and guidance provided by the laboratory 
played an indispensable role in the successful completion of this work. 

References 

[1] De Gooijer, J.G., Hyndman, R.J., 25 years of time series forecasting, Int. J. Forecast. 22(3) (2006) 
443-473. 
[2] Hewage, P., Behera, A., Trovati, M. et al. Temporal convolutional neural (TCN) network for an 
effective weather forecasting using time-series data from the local weather station. Soft Comput 24, 
16453–16482 (2020) 
[3] Y. Kaneko, "A Time-series Analysis of How Google Trends Searches Affect Cryptocurrency 
Prices for Decentralized Finance and Non-Fungible Tokens," 2021 International Conference on Data 
Mining Workshop 
[4] R. Palma-Behnke, F. Valencia, J. Vega-Herrera and O. Núñez-Mata, "Synthetic Time Series 
Generation Model for Analysis of Power System Operation and Expansion with High Renewable 
Energy Penetration," in Journal of Modern Power Systems and Clean Energy, vol. 9, no. 4, pp. 849-
858, July 2021.  
[5] C. Ma, G. Dai and J. Zhou, "Short-Term Traffic Flow Prediction for Urban Road Sections Based 
on Time Series Analysis and LSTM_BILSTM Method," in IEEE Transactions on Intelligent 
Transportation Systems, vol. 23, no. 6, pp. 5615-5624, June 2022. 
[6] Box GEP, Jenkins GM. 1976Time series analysis: forecasting and control. San Francisco, CA: 
Holden-Day. Google Scholar 
[7] Box, G.E.P.; Pierce, D.A. Distribution of residual autocorrelations in autoregressive-integrated 
moving average time series models. 
[8] Ahmed NK, Atiya AF, Gayar NE, El-Shishiny H. 2010An empirical comparison of machine 
learning models for time series forecasting. Econ. Rev. 29, 594–621. 
[9] A.Graves, A. -r. Mohamed and G. Hinton, "Speech recognition with deep recurrent neural 
networks," 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 
Vancouver, BC, Canada, 2013, pp. 6645-6649. 
[10] Hochreiter, Sepp and Jürgen Schmidhuber. “Long Short-Term Memory.” Neural Computation 9 
(1997): 1735-1780. 
[11] Zhang, Jiaxuan and Shun Li. “Air quality index forecast in Beijing based on CNN-LSTM multi-
model.” Chemosphere (2022): 136180 . 



 
 
 
 

[12] M. A. Istiake Sunny, M. M. S. Maswood and A. G. Alharbi, "Deep Learning-Based Stock Price 
Prediction Using LSTM and Bi-Directional LSTM Model," 2020 2nd Novel Intelligent and Leading 
Emerging Sciences Conference (NILES), Giza, Egypt, 2020, pp. 87-92. 


