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Abstract.To enhance the precision of crude oil price prediction, this study 
introduces an innovative method that integrates the attention mechanism from 
transformer models with normal distribution functions. The incorporation of 
normal distribution functions  aids  in  capturing  the  inherent  volatility  within  
each segment of crude oil price data, thereby preserving the distinctive 
characteristics of historical data. This preservation is instrumental in achieving more 
accurate  predictions  of  future  crude  oil prices, consequently  facilitating  more  
reasoned  projections  of crude oil price trends. Our investigation is centered on 
the daily price data of West Texas light crude oil spanning from January 1, 2001, to 
January 1, 2023. Subsequently, an improved transformer model  was  employed  to  
train  and  predict  the  aforementioned dataset.  Comparative  analysis  against  the  
benchmark  model reveals  the  superior  predictive  performance of  the  enhanced 
transformer  model  in  comparison  to traditional  transformer models and LSTM 
models. Moreover, the research results have successfully withstood rigorous 
robustness testing, affirming the reliability of the proposed model. 
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1. Introduction  

As  a vital  chemical raw material  and  one  of the  world’s largest  traded  commodities,  the  
price  fluctuations  of  crude oil  exert  a  profound  impact  on  the  stability  of  the  global 
economy,  financial markets,  and various regions. Positioned as the world’s largest developing 
country, China’s relentless surge in crude oil demand is noteworthy. According to BP’s 2022 
World Energy  Statistical Yearbook, China consistently holds the top rank globally in annual 
crude oil consumption, vividly underscoring its substantial reliance on foreign crude oil[1].  
Consequently,  the  accurate  prediction  and  pricing  of international crude oil prices have 
evolved into fundamental concerns for China’s energy supply and demand security, as well as 
economic stability. 

Precisely forecasting crude oil prices and discerning their trends has become  a  strategic  
objective  for  government  de- partments,  enterprises,  and  other  investors,  aiming  to  for- 
mulate  more  scientifically  grounded  institutional  strategies, production investments, and risk 
mitigation plans. However, in contrast to ordinary commodities, crude oil exhibits intricate 
properties,  thereby  designating  the  international  crude  oil market as a typical complex 
nonlinear system. 
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2.Ease of Use 

One of the paramount benchmark oils in the international crude oil market is West Texas 
Medium crude oil. Analysis of  the  fluctuations  in  the  benchmark  oil  price  reveals  that 
changes  in  crude  oil prices  stem  from  a  complex  interplay of various  factors.  Currently,  
the  predominant  methods  can be broadly categorized into three groups. The first category 
encompasses  statistical  prediction  methods,  exemplified  by the ARIMA model[2]. These 
models leverage mathematical formulas to derive the linear relationships within WTI crude oil 
price data but fall short in capturing the nonlinear dynamics of crude oil prices. 

The  second  category  comprises  machine  learning-based prediction  methods,  predominantly  
featuring  support  vector machine  models  and  decision  tree  models.  However,  these 
models necessitate intricate feature engineering and exhibit a high dependence on training data, 
rendering them less adept at handling extensive datasets. 

The third category focuses on prediction methods based on deep learning, prominently 
incorporating recurrent neural networks (RNNs) [3]. Despite advancements like LSTM[4] and  
GRU[5],  experiments[6] have underscored limitations in  effectively capturing long-term 
dependencies,  with the LSTM model demonstrating a discernment capability limited to 
approximately 50 nearby labels out of a context size of 200 labels. 

Crucially, the prediction of crude oil price data often en- tails both  long-term  and  short-term  
repetitive patterns,  with modeling long-term dependencies emerging as a pivotal factor in 
enhancing model performance.Recently, the Transformer has  emerged  as  a  groundbreaking 
time  series prediction  ar- chitecture, leveraging attention mechanisms to process diverse data  
sets. The Transformer model’s distinctive feature is its ability  to  access  any  historical  data  
section,  regardless  of distance,  rendering  it  particularly  adept  at  capturing  circu- lar  
patterns  with  long-term  dependencies  in  crude  oil  price data.However,  the  self-attention  
mechanism  in  this  model matches  insensitive  data  in  queries  and  local  data,  leading to 
information loss during the prediction process and posing an optimization challenge.In response 
to the above-mentioned issues,  our  contributions  mainly  include  the  following  two points: 

 We  have  successfully applied the Transformer  model architecture to the problem of 
crude oil price prediction. We  used  technical  indicator  formulas  to  extract  data features  
related  to the financial attributes  of  crude  oil price  data  from the raw  data,  and  conducted  
extensive experiments using the generated data features to verify the potential value  of 
technical indicators in extracting financial related relationships from crude oil price data. 

 We add a normal distribution function to the self attention mechanism, calculate  the 
normal  distribution  for  each segment of data, and then input it into the self attention 
mechanism  layer  for  calculation, in  order to retain the non-stationary information of the data 
and improve the prediction accuracy of the model. 

3.Related work 

A key challenge in current domestic and international research on crude oil price prediction is 
that the obtained features cannot fully reflect the value of crude oil, which largely leads to low 



accuracy in crude oil price prediction. The inherent characteristics of crude oil price data, 
including nonlinearity, complexity, non stationarity, asymmetry, and long memory, pose 
significant obstacles to achieving accurate predictions. Dealing with these challenges is 
complex and arduous.The exploration of the internal influencing factors of crude oil reveals 
four key aspects: inventory, demand, supply, and technical indicators. It is worth noting that 
technical indicators are the key decision-making criteria for quantitative investment and play a 
crucial role in trading operations. Technical analysis of oil prices can reflect changes in market 
investor sentiment and convey implicit information about asset price fluctuations. Three 
commonly used technical analysis methods include moving average method, momentum 
method, and fluctuation method.In addition, to address the challenge of modeling long-term 
correlations in crude oil price data, a Transformer model architecture was adopted. This 
facilitates the extraction of cyclic patterns associated with long-term dependencies in the data. 
In addition, a normal distribution function is added to the self attention mechanism layer to 
preserve non-stationary information and improve the prediction accuracy of the model. 

3.1 Technical Indicators 

Technical indicators  are powerful tools for  analyzing  and predicting crude oil prices. 
They excel at tracking trends, fil- tering out noise in data, responding to market changes 
quickly, 

 and  uncovering  underlying  factors  influencing  price  shifts. This  study focuses  on three 
key types  of indicators—trend, momentum, and volatility—to address the challenges of un- 
certainty, instability,  asymmetry, nonlinearity,  and  long-term memory  in  crude  oil  price  
data.  To  enhance  the  crude  oil prediction model, efficiently capturing nonlinear dynamics in 
time series for optimal performance, we utilize trend indicators such as SMA (Simple Moving 
Average), EMA (Exponential Moving Average), and KAMA (Kaufman’s Adaptive Moving 
Average). Additionally, momentum oscillators like CCI (Commodity Channel Index) and 
fluctuation indicators such as ATR (Average True Range) are employed to extract key features. 

Moving Average (MA) is a widely used method for analyz- ing data points by calculating 
average values within different subsets  of  time  series.  SMA  represents a  simple  moving 
average,  EMA  stands  for  exponential  moving  average,  and KAMA is the Kaufman 
adaptive moving average. The specific calculation formula is as follows: 

 Simple moving average calculation formula: 
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 The formula for calculating the exponential moving average is: 
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 Kuffman Adaptive Moving Average Formula: 
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Ci represents the closing price of crude oil, T represents the interval between cycles, and p 
represents the index value.The momentum  indicator  is  used  to  determine  when  investment 



instruments have reached an oversold or overbought state, and its main purpose is to detect the 
beginning and end of trends in the time series. 

 The formula for calculating the momentum indicator CCI is as follows: 
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CCI represents  a  specific cycle value, while Ht, Lt,  and  Ct represent the highest, lowest, and 
closing prices, respectively. The volatility index is used to measure the volatility in crude oil 
prices, mainly including the ATR index, which does not determine the direction of prices, but 
can provide important information on price differences and price fluctuations caused by many 
factors. 

 The calculation formula for ATR indicators is as follows: 
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Among  them,  Ht,  Lt,  and  Ct  are  the  highest,  lowest,  and closing prices, respectively, and 
T is the size of the selected time period. For historical  data  on  crude  oil prices,  feature 
extraction is performed using the above formula to obtain an alternative data feature set. 

3.2 Transformer model 

The Transformer model was originally designed for sequence to sequence tasks such as 
machine translation [7,9], and with the development of this field, it has evolved to find 
applications in time series prediction. This model architecture is suitable for contemporary 
neural networks, which accept a sequence of input data and transform it into another sequence - 
a process that is particularly effective in capturing the entire input sequence information and 
generating output sequences through transformation. 

The Transformer model is rooted in the concept of attention mechanisms and inspired by 
human visual attention regulation mechanisms, allowing networks to focus on specific aspects 
of input sequences during encoding and decoding processes. This method significantly 
improves decoding efficiency. Compared to LSTM models, Transformer excels at using 
distributed GPUs for parallel training, processing lengthy texts, and capturing extended 
semantic correlations. 

Despite these advantages, the Transformer model has a tendency to flatten time series data in its 
self attention mechanism, which may lead to information loss of the original data. Therefore, 
unlike traditional methods, while using self attention mechanisms, special attention is paid to 
the inherent non stationarity within the original sequence. This ensures the preservation of non-
stationary information present in the original data, as shown in the model structure diagram in 
Figure 1. The non-stationary attention mechanism module is used to capture non-stationary 
information. 



3.3 Non-stationary Attention 

In a typical self-attention mechanism, the model generates the  same  stationary  input  mean  
and  variance  for  each  seg- ment of time series data. This uniform treatment may cause the 
model to allocate identical attention, overlooking certain information  associated  with  non-
stationarity.  This  results  in the  issue  of excessive  stationarity.  To  address  this  problem 
stemming from the self-attention mechanism calculations, non- stationary factors are introduced 
concurrently with inputting time  series data. These factors  are integrated to replace the non-
stationary data information, mitigating the impact of over- stationarity in the model. 

 

Fig.  1. From  the structure diagram of the Transformer, it can be seen that the model mainly 
relies on the self attention mechanism to calculate the input and output models of the network 

structure. For the self attention mechanism, it  generates  the  query  matrix  Q,  key  matrix  K,  and  
value  matrix  V  from the  input  vector  of each  encoder.  In  this  study,  the  input  part  of  the  

self attention  mechanism  is  modified  by  adding  non-stationary  factors  w1  and w2, Optimizing 
parameters through linear layers to obtain the optimal non- stationary factor. 

self-attention The main form of the calculation formula for the general self attention 
mechanism is as follows: 
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Here, dk is the size of the  input  dimension.  However,  due to the addition of attention 
mechanism, the order constraint of the Transformer on the original sequence of the sequence 
disappears, resulting in the loss of order based information in the original sequence. To solve 



this problem, the Transformer also  encodes  the  positional  information  in  the  original  se- 
quence, which is called positional encoding. The mathematical expression for positional 
encoding is as follows: 
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Here, pos is the position of the original data in the sequence.When  it  is  in  an  even  position,  
sine  is  used  for  position encoding. When it is in an odd position, cosine is used for position 
encoding. i is the  sequence number of the original data’s position in the sequence, and dmodel  
is the dimension used by  the  model.  The position  encoding  is  mainly based on 
trigonometric functions  and  difference product formulas, which can express position 
information. We will input x=[x1,x2, x3, x4,..., xs]T. After positional encoding, we can obtain 
Q=[q1,  q2,  q3,...,  qs]T. Assuming  that  the  mean  of Q  is  δ and the variance is µ, then the Q 
and K of each input data segment can be transformed into general attention mechanisms as 
follows: 
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Simplify the above formula: 
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Because  the  mean  δx and  variance  µQ of  each  input  data segment,  which  means  that  
the  non-stationary  factor  is  not a scalar, we use relative values for estimation and two linear 
layers to estimate the value of the non-stationary factor. 
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4.Experiment 

We conducted comparative experiments with commonly used models to evaluate the 
performance of the proposed method on crude oil price prediction benchmarks and further 
validate its effectiveness. The overall experimental flowchart is shown in Figure 2. 



 

Fig. 2.  This flowchart describes the overall process of this research experiment 

4.1 Data 

The dataset selected the WTI international crude oil trading data from 2001 to 2023 as the basic 
dataset, and Figure 3 shows the WTI crude oil price data with daily intervals. This dataset has 
13 data features collected at time intervals of day, hour, and week. Non stationarity testing was 
conducted on this dataset. 

 

Fig. 3. Data trend chart 

Table 1.Data Analysis 

Dataset Variable Number Frequency Total ADF 
WTI oil 16 1 Hour 12000 -10.32 
WTI oil 16 1 Day 8400 -2.23 
WTI oil 16 1 Week 1200 -1.46  



In the data analysis stage, the enhanced Dickey Fuller (ADF) test statistic [12] was used to 
evaluate crude oil price data from different intervals. The evaluation results are shown in 
Table 1. The application of ADF test aims to evaluate the inherent non-stationary 
characteristics of crude oil prices, affirming the theoretical rationality of research methods in 
solving non-stationary problems. This rigorous testing process enhances the credibility and 
effectiveness of our approach to dealing with the unique challenges posed by the non-
stationary nature of crude oil price data. Next, we plan to explore more statistical tests and 
analyses to further validate the robustness of our research methods. 

4.2 Indicator results 

This experiment comprehensively compared the Arima model [2], Xgboost model [10], LSTM 
[4,11] model, and NS Transformer [8] model without including additional data features, thus 
verifying the effectiveness of the proposed method. The key indicators evaluated in the 
experiment include RMSE, MSE, MAE, and R2. The values of these indicators are shown in 
Table 2, and the experimental results show that the predictive performance achieved in this 
study is superior to other models. This strong comparison highlights the effectiveness of our 
method of predicting crude oil prices. Looking ahead, our goal is to explore additional technical 
indicators and refining methods in greater depth to further enhance the predictive ability and 
applicability of our model, thereby addressing the inherent complexity in crude oil price data. 

Table 2.Indicator Results 

Model Name MSE MAE R2 
ARIMA 18.3776 4.2869 0.8905 
Xgboost 3.8974 1.9741 0.9768 
LSTM 4.231 2.057 0.9322 

Ns-Transformer 2.6732 1.6349 0.9743 
ours 1.867 1.3663 0.9876 

4.3 Analysis of prediction result graph 

To further underscore the superior performance of this study in comparison to other models, a 
comparison between predicted values and true values was conducted and visually represented. 
Figure 4 depicts the prediction results of the LSTM  model  with  additional data features. The 
graphical representation indicates a substantial enhancement compared to using LSTM alone, 
although the results exhibit a tendency towards relative stability. In Figure 5, the visualization 
of the ns-Transformer model’s prediction effects reveals its effec- tiveness in handling non-
stationary elements compared to the LSTM model. However, there are still deviations in 
accuracy observed for certain prediction points. Figure 6 presents the predicted results of this 
study, showcasing a notable improve- ment compared to the first two sets of prediction 
outcomes. 



 

Fig. 4. LSTM prediction effect diagram 

 

Fig. 5. Ns-transformer prediction effect diagram 

 

Fig. 6. The prediction effect diagram of this research method 

5. Conclusions 

This article delves into the challenge of predicting crude oil prices by considering their intrinsic 
characteristics. Diverging from prior research, it incorporates a more comprehensive set of data  
features that pertain  to the  commodity attributes of crude oil prices, while also acknowledging 
the non-stationary nature inherent in crude oil price data. Employing an effective method to 



preserve the non-stationary information of the data,the  study  aims  to  enhance  the  
predictability  of  crude  oil prices  and  the  overall predictive  capability  of  the model.The  
experiments  conducted demonstrate  the  efficacy  of our method on crude oil price data. In the 
future, we intend to explore  additional  relevant  technical  indicators  and  employ more  
effective  methods to address  data  stabilization  issues associated with crude oil prices. 
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