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Abstract: Cloud computing is a technology facilitating broad access to diverse computing 
services, predominantly reliant on centralized mechanisms for resource allocation. This 
study introduces a decentralized platform, harnessing crowdsensing and machine learning, 
for cloud provisioning and pricing. It involves a blockchain-based trading platform, ena-
bling sellers (primary users) to auction their cloud resources to buyers (secondary users) 
while considering buyer reputations. To incentivize crowd sensors in gathering and sharing 
information about available cloud resources, an incentive mechanism is implemented. The 
pricing is estimated through a supervised machine learning algorithm, specifically linear 
regression, incorporating critical values and the Vickrey-Clarke-Groves (VCG) algorithm. 
Results indicate that supervised linear regression is a superior approach for enhancing 
overall utilization. This research presents a robust methodology for integrating cloud com-
puting and machine learning in practical pricing decisions.  

Keywords: Cloud Computing, Blockchain, Crowdsensing, Incentive Mechanism, Super-
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1. Introduction 

With the rapid development of cloud computing technology, it has become increasingly im-
portant as a technology that facilitates broad access to a wide range of computing services. The 
centralised resource allocation mechanism of cloud computing is a key factor that plays an im-
portant role in its commercial applications [1], which provides users with efficient and flexible 
computing resource management. However, in order to further drive innovation in the field of 
cloud computing, this study introduces an emerging technology based on a decentralised plat-
form that aims to provide more intelligent cloud services and pricing by integrating crowdsens-
ing and machine learning. 

With the development of cloud computing, research on combining applications with blockchain 
and introducing machine learning algorithms to provide smart pricing is becoming increasingly 
popular. In the early days of the rise of cloud computing, researchers mainly studied the ad-
vantages and limitations of centralised resource allocation mechanisms [2]. Along with the rise 
of blockchain technology, researchers began to think about how to apply it in cloud computing, 
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especially the potential applications in secure transactions [3,4]. Crowd sensing is an important 
channel for participants to access data and services, and incentives are a means of achieving 
crowd sensing, which addresses the utility maximisation problem faced by each of the providers 
and participants[5].In order to motivate and attract participants to cloud computing, more and 
more people have begun to study crowd-sensing and incentives [6,7],Incentive mechanism 
based on reputation theory has also been extensively studied [8].With the rapid development of 
machine learning, its application in the field of cloud computing has attracted wide attention, 
especially the application of supervised linear regression algorithm in cloud computing[9], such 
as the classification and analysis of crowdsourced information,pricing, etc.[10]. On the other 
hand, in order to achieve computational efficiency, bid authenticity and competition fairness, 
auction pricing model is often applied to cloud resource auctions [11,12]. 

This study mainly relies on a blockchain-based trading platform that connects sellers and buyers 
by integrating cloud computing and machine learning, enabling sellers (primary users) to auc-
tion their cloud resources to buyers (secondary users) while considering the reputation of the 
buyers. It also motivates crowd sensors to collect and share cloud resource information through 
incentives to further improve resource utilisation. In terms of pricing, pricing is estimated 
through supervised machine learning algorithms, especially linear regression, combined with 
critical value and Vickery-Clark-Groves (VCG) algorithms. With this research, we present a 
powerful approach for integrating cloud computing and machine learning in real-world pricing 
decisions, bringing a higher level of intelligence and efficiency to the field of cloud services. 

This paper is structured as follows: Section 2 depicts the decentralized cloud trading platform. 
Section 3 proposes a machine learning mechanism for cloud pricing: the supervised linear re-
gression. Section 4 illustrates the pricing algorithm. Section 5 addresses and verifies the proce-
dures for training and testing the supervised linear regression. Section 6  is the conclusion. 

2. The Blockchain-based Cloud Trading Platform 

2.1 Incentive Mechanism in Crowdsensing 

Crowdsensing is an interactive and participatory sensing network formed through devices such 
as smartphones, laptops and wearable devices, with participants publishing information. It ena-
bles data collection, information analysis and resource sharing, and is an important way to ac-
cess environmental data and services. Incentives Mechanism participants to engage in sensing 
tasks by designing methods that encourage the provision of high quality and reliable information. 
The cloud server solves the problem of information authenticity by recruiting the lowest cost 
sensors whose incentives should motivate high quality data, which can be solved by using rep-
utation values. The server sets the reputation value according to the difficulty of the task to 
ensure that the task is completed and the smart contract automatically releases the reward to 
protect the sensor's rights and interests. 

2.2 The Procedure of Cloud Sensing 

In this study, the blockchain platform is an alliance system consisting of primary user (seller 
PU), secondary user (buyer SU), cloud server S, and cloud sensor CS. The perception task is 
processed by S, which sets a credit value according to the task difficulty to ensure that the task 



 

is completed. The blockchain-based cloud sensing system has a physical layer, a transport layer 
and an application layer. The physical layer includes CS and PU, the transport layer connects 
the physical layer and the application layer, and the blockchain network is located at the 
transport layer. Transactions can be added to the block after verifying the original sensing data. 
The application layer consists of SU and S, where SU looks for the idle PU and S handles the 
authenticated SU requests.Its operation process is as follows:(1) Multiple SUS send a request to 
S, and the winner pays S's service fee and PU access fee.(2) The cloud server determines the 
cloud-aware task according to the request and reputation value. The higher the reputation value, 
the more difficult the task and the more reward.(3)S issues tasks with smart contracts, specifying 
mission credit and rewards for each SU.(4)CS provides quotes for different tasks, and CS with 
high reputation can perform more tasks.(5)S selects a certain number of CS to complete the task, 
broadcasts the results and records them on the blockchain.(6)CS completes the processing and 
transmits the unprocessed data to the miner, who processes the data and records it on the block-
chain.(7)S rewards CS, SU can use cloud services. Smart contracts automatically reward CS 
and adjust reputation values after verification. When the task is complete, the transaction is 
closed. 

3. The Supervised Linear Regression Algorithms 

Aiming to distribute the sensing rewards fairly, the rewards to each CS are based on the reputa-
tion value; a CS will obtain more rewards if the sensor works more. This will effectively stim-
ulate CS's willingness to join in cloud sensing. 

3.1 A Hedonic Regression Model of Cloud Pricing 

The pricing metrics include the reputation, the cloud features, and the time of the same item 
from different customers’ bids. The proposed hedonic regression model is shown in equation 
(1): 

          P = f (R , C , T ), (1) 

Where, P  is price, R  is the reputation of a certain cloud service, C  is cloud feature attributes, 
T  is time trend, i represents a certain cloud service, t represents a specific time. 

3.2 The Allocation Model of Cloud 

This paper is designed based on the auction pricing mechanism.Auction design consists of two 
components: resource allocation and price estimation, and a reliable auction needs to fulfil both 
truthfulness and accuracy requirements. Truthfulness means that users cannot benefit from false 
bids, and accuracy requires that the allocation strategy is the optimal solution or at least very 
close to the optimal solution [13]. In cloud computing, resource allocation is an NP problem. If 
possible, algorithms will be used to obtain the optimal solution; otherwise, approximate or heu-
ristic algorithms will be used as a viable solution to the NP-hard problem [14]. The next sections 
describe and explain cloud reallocation and pricing in detail. 



 

Assume that there are m users in the set U. U = {1, 2, …, m}, user i ∈ U. User i proposes 
resources requests K . k  is a certain cloud resource, r = 1, 2, …, n. User i’s resource request 

K k , R , R  is the reputation value of user i on resource k . 

Definition 1. Monotonicity:  If the request submitted by a user (B ) can be allocated, any other 
request (B ) from the same user will be allocated on the condition of B B . This is the mon-
otonicity of resource allocation. 

Definition 2. Critical Value: If the request submitted by a user is allocated, there exists a crit-
ical value (CV ). If the user bid B CV , the request can be satisfied; otherwise, it cannot be 
satisfied. 

Lemma 1. If the distribution of resources in the auction mechanism is consistent with the prin-
ciple of monotonicity, and the ultimate price adheres to the critical value, then the mechanism 
can be considered truthful. 

The VCG auction mechanism is realistic because it relies on the optimal allocation solution. 
However, the final price obtained using VCG cannot be computed in polynomial time. In this 
study, supervised learning classification and regression are used to design cloud resource allo-
cation. The basic principle is to select some requests from all user requests and estimate the 
optimal allocation and price. By fitting the optimal policy, the model is trained to be applied to 
all users to predict the resource allocation. In this section, we design resource allocation based 
on linear regression algorithm (LN) and construct price algorithm based on critical value theory.  

3.3 The LN Algorithm of Cloud Allocation 

In the auction design, the hypothesis function (h k )(equation (2)) is constructed according to 
the SU's request for different resources. 

ℎ k θ θ k θ k ⋯ θ k θ k θ k ⋯

θ k  
(2) 

The goal of the supervised linear regression is to find the rules that SU wins, it is θ
θ θ … θ ∈ ℝ . The optimal strategy and the final price of each winning SU will be 

calculated. p  is the final price from SU . If SU  wins, p 0, otherwise, p 0. 

According to the optimal solution and all SUs’ requests, the matrix of SU request is K = 
k , k , … , k . The vector of the optimal allocation is X = x , x , … , x . The vector the 

SUs’ bidding is B = b , b , … , b . The vector of the final price is P = p , p , … , p . We 
have F (θ),see equation(3), 

F θ ∑ x h k p λ ∑ θ  (3) 

To get Min  F θ , θ  can be solved by the normal equation based on the above function. 
Hence,see equation(4), 
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(4) 

Then, we use the Sigmoid Function to estimate whether an SU’s bid wins or not.  

P , W ∈ 0,1  (5) 

P  (see equation(5)) is the probability of an SU winning the bid. If an SU wants to win the bid, 
b h k . Hence, W 0.5 means that an SU has a strong chance of winning the resources 
being bided for. 

4. The Pricing Algorithms 

4.1 The Modified VCG Pricing Algorithm 

A reliable auction mechanism will ensure that the price paid by buyers is optimal. The final 
price proposed in this study is based on the critical value. The estimated winning set W  is used 
to calculate the final price. Specifically, p  is the maximum and p  is the minimum. When 
p p δ, the final price that an SU needs to pay is p .  

4.2 Proof of Truthfulness 

Lemma 2. The supervised linear regression is monotonicity. 

Proof. Suppose P  is the probability that the last SU can be satisfied for the expected request. 
Based on the estimation function (Last Function), we have equation(6) 

          P P  (6) 

So, 

b h k ln 1 P /P  (7) 

This indicates that an SU will win the bidding if the SU’s bid satisfies the above function. If an 
SU’s bid is greater than b (see equation(7)), the SU can be guaranteed to obtain the requested 
cloud resources. Definition 1 presents the identical tone of monotonicity.  

Lemma 3. The final price algorithm satisfies the theory of critical value. 

Proof. When b p , an SU will win the bid; when b p , an SU will lose the bid. There 
exists a critical value (Definition 2). Thus, the final price that the SU needs to pay is p , if 
p p δ. 

Theorem 1. The cloud allocation design proposed is truthfulness. 



 

Proof. According to Lemma 1, the supervised linear regression algorithm satisfies resource al-
location monotonicity.Also, the final price algorithm satisfies the theory of critical value.There-
fore, the proposed cloud allocation design is truthfulness. 

5. The Procedure of Training and Testing 

5.1 Resource Allocation Algorithm Training 

In the training tests, SU requests are simulated using the DAS-2 open source dataset. Experi-
mental platform: Intel Core i7 6500U CPU, 16GB memory, 1TB DDR storage. The experi-
mental conditions include (1) simulating SU requests using CPU, memory, and storage infor-
mation; (2) randomly generating integers from 1 to 100 to simulate bids with preset resource 
reputation values; (3) solving the optimal allocation using IBM CPLEX; (4) solving the optimal 
price to pay based on the VCG mechanism; and (5) programming to implement the algorithm. 
The test selected 5000 records as SU requests and generated corresponding bids. We calculated 
the resource density of each SU (d ),see equation(8), 

d
b

∑ 1
c ∗ k

, ∀i 1,2, … , m 
(8) 

Based on resource density, SU requests are sorted in descending order to form total samples. 
The system samples 500 samples at a time, with a total of 20 sample sets, of which 17 are 
training sets and 3 are cross-validation sets. The predictive models from the training set are 
substituted into the validation set in the test and the best model is selected to estimate all SU 
requests. The models were evaluated using Prediction Accuracy (PA) and Prediction Error (PE) 
with PA + PE = 1. PA is defined as the number of SUs with the same feasible and optimal 
solution divided by the total number of SUs,it's calculation is shown in equation(9), 

P
1, P V   

 0, P V    
 

(9) 

PA = ∑ P x  

V  represents the predicted value of the last allocated SU, P represents the probability of a SU 
winning in the resource reallocation. The greater the value P , the higher the probability that a 
SU wins the bid. To solve θ in LN, the coefficient λ needs to be adjusted appropriately to ensure 
higher prediction accuracy in the cross-validation set. Figure 1 shows the change in the predic-
tion error rate with λ when fitting the model in the training set to the cross-validation set. For 
LN, when λ=3, the prediction error rate is the smallest at 1.4% (Figure 1(a)). Similarly, for LG, 
when λ= {30, 40}, the prediction error rate is the smallest at 3.2%, (Figure 1(b)).  



 

 

Figure 1. Comparison of Estimated Error Rate between LN and LG. 

5.2 Comparison of training Time among the Three Algorithms 

To verify the effect of the LN algorithm proposed in this paper, it is compared with the Algo-
rithm of Logistic Regression (LG) and the Algorithm of Support Vector Machine (SVM) .The 
LG algorithm does not compute the final price, which is an important factor of the hypothesis 
function (h k ) that is constructed according to the SU's request for different resources. θ
θ θ … θ ∈ ℝ , the conditions are shown in equation(10): 

The function F (θ) is shown in equation(11), 

F 𝜃 ∑ 𝑥 lg ℎ 𝑘 1 𝑥 lg 1 ℎ 𝑘 ∑ 𝜃  (11) 

Then, the estimated winning probability is equation (12), 

𝑃 , 𝑊 ∈ 0,1  (12) 

The SVM algorithm was also used for comparison, see Equation (13), 

         min C∑ x COST θ f 1 x ∗ COST θ f ∑ θ  

COST x
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16

x
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, x 1 

(13) 
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h k g f k  
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f 1f f … f  

f exp 
R R

2σ
 

∀j 1,2, … , m 

When using SVM to predict resource reallocation, C and σ are important parameters. C indicates 
the accuracy of the estimation boundary, and σ indicates the range of influence of each value. 
The advantage of SVM is that when a small sample training set is used for training, it can also 
obtain good estimation accuracy, 

θ θ θ … θ  (14) 

According to SU requests, the estimation function is shown in equation(15), 

          P θ θ f θ f ⋯ θ f , P ∈ ℝ (15) 

We compared the training times among the three algorithms (Figure 2). When the training set 
size was the same, the SVM’s training time was the longest, and the LG’s time was the shortest. 
The LN’s speed was in the middle. Among the three algorithms, the LN had the smallest error 
rate. The main reason is that its cost function has the characteristics of the optimal payment 
price. Compared to LG and SVM, an extra factor needs to be considered in LN to give a higher 
prediction accuracy. Overall, the proposed LN was found to be qualified and can be imple-
mented in the decentralized auction design. 

 

Figure 2. Comparison of Training Time among the Three Algorithms 
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5.3 Analysis of Resource Allocation Forecast Results 

After obtaining the optimal prediction models of the three algorithms, 5 test sets were randomly 
generated, for instance, 1000, 2000, 3000, 4000, and 5000 SU requests. The social welfare ob-
tained by the two algorithms (LG and SVM), based on supervised learning, was lower than the 
proposed optimal strategy, but was very close (Figure 3). This shows that the optimal allocation 
solution has specific pattern. It can be classified by a supervised learning algorithm and can be 
fitted by a regression model.  

 

Figure 3. Comparison of Social Welfare 

Figure 4 shows the prediction accuracy of different algorithms relative to the optimal allocation. 
The accuracy can reflect the fairness of an important indicator of the algorithm in resource re-
allocation. All predictions based on supervised learning algorithms had a high accuracy rate 
(above 95%). Among them, the accuracy of the LN algorithm was above 97%, and the proposed 
optimal strategy had the highest accuracy among all of the testing sets. 

 

Figure 4. Comparison of Prediction Accuracy 

Figure 5 shows three resource utilizations in different algorithms, given the resource capacities 
of the CPU, the RAM, and the storage. Based on the results, LN and LG had similar good per-
formances, but the optimal strategy performed the best among the three resource utilizations -- 
in detail, CPU (100%), RAM (60%), and storage (100%).  

The supervised linear regression (LN) performed very well in the test. Consistent with the pre-
vious theoretical study, the hypothesis function of the linear regression had the characteristics 
of the optimal payment. Also, the linear regression had the extra dimension of variable in the 
calculation. Hence, the accuracy of the prediction was higher. 
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Figure 5. Comparison of Resources Utilization 

6. Conclusion 

Key factors in the study of cloud computing resource allocation and pricing include user com-
petition and reputation value. Future research should explore different metrics, taking into ac-
count NP difficulty and computational complexity. This study uses reputation value as a pricing 
metric but stresses the potential importance of security and network externalities. To improve 
algorithmic accuracy, more parameters are introduced, although this may increase complexity. 
Blockchain-based transaction mechanisms encounter challenges such as high costs, limited data 
storage, inefficient communication, and platform selection. Our research concentrates on real-
locating cloud resources to secondary users via a blockchain-based crowdsensing system, which 
delivers adaptable offers. By exploring the decentralised crowdsensing process, reputation in-
centives, and implementing supervised linear regression algorithms, we have effectively con-
verted the issue of redistributing and pricing cloud resources into a problem of training and 
classification. Utilising the supervised linear algorithm's parameters has enabled us to provide 
optimal auction design strategies and guarantee the precise selection of successful users. Overall, 
our proposed model demonstrates strong performance with regard to accuracy, realism, social 
welfare, and resource utilization, and presents promising avenues for further research in the 
domain of cloud computing. 
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