

Construction of Software Reliability Assessment Index
System Based on ICMM

Shizhuang Yin1,Yulu Shi2,Zhifeng You1 ,Quan Shi1,Shihan Tan1

Shi Yulu :1329760604@qq.com ,Yin shizhuang: yinshi@aeu.edu.cn ,
Shi quan :y18525742489@126.com ,Tan shihan:13106566155@163.com

Communication author: You Zhifeng:18525742489@163.com

1Department of Equipment Command and Management, Army Engineering University, Shijiazhuang
050003, China

2People's Liberation Army (PLA) Factory No. 3302, Shijiazhuang 050003, China

Abstract: To address the problem of imperfect index system and strong uncertainty of
expert scoring in the process of software reliability assessment, the influencing factor set
of software node reliability is formed respectively by consulting the literature and experts;
the influencing factor set determined by the experts is initially screened by the improved
quality house and improved software maturity algorithm, and the obviously unreasonable
or repeated factors are removed; the weights of different experts are determined to
establish the index system of software node reliability assessment more precisely. By
determining the weights of different experts, the software node reliability assessment
index system is established more accurately. The construction of software reliability
index system can provide a theoretical basis for the improvement of node destruction
resistance, and the accurate classification of node state can provide data support for the
overall network destruction resistance.

Keywords: ICMM, Software Reliability, IAHP, Expert Weights

1 Introduction

With the transformation of war mode from "information" to "intelligence" under the condition
of high technology, artificial intelligence and information technology are widely used in
weapon system and automated information system, and the core of artificial intelligence and
information technology is the software in weapon equipment[1] . The proportion of software
in the realization of the functions of weapons and equipment is getting bigger and bigger, and
some software is no longer an accessory to the weapons, but is gradually replacing the
functions originally realised by the hardware. In order to better describe this type of equipment,
Professor Gan Mao zhi introduced the concept of software-intensive equipment from abroad.
"Software-intensive equipment[2] " refers to a type of equipment in which software is in a
dominant position in the fields of equipment development costs, development time or
equipment functional characteristics. The scale and complexity of this type of equipment will
increase rapidly with the wide application of artificial intelligence and information technology,
and it plays an important role in modern military struggle, changing the form and process of
war[3] .

MSIEID 2023, December 08-10, Guangzhou, People's Republic of China
Copyright © 2024 EAI
DOI 10.4108/eai.8-12-2023.2344738

SIS system is composed of software subsystems and hardware subsystems, while hardware
equipment nodes and software functional nodes constitute the basis of the whole equipment
network, and when the state of nodes changes, the performance of equipment will also be
affected. Existing complex network destructive research will nodes simply differentiated into
damage and intact two states, which is inconsistent with the actual situation, reducing the
accuracy of equipment state assessment. This paper focuses on the establishment of the SIS
software node state assessment index system. And combined with the characteristics of
software nodes to establish the indicator system and classification model. The construction of
the node indicator system and the analysis of influencing factors can provide a theoretical
basis for the improvement of node destruction resistance, and the accurate classification of
node status can provide data support for the overall destruction resistance of the network.

2 Software Maturity Model CMM

Maturity is a common measure of productivity and quality of software organizations[4] and is
often used to assess the degree of development of an entity's actions, thus providing a
scientific basis for decision-making. Accurate assessment of the maturity of software nodes
enhances the defense capability of the network and improves the ability to carry tasks and
operations in cyberspace[5].

The CMM model builds a standard framework for describing the maturity of a software
organization’s capabilities, covering five software organization maturity levels from immature
to mature. As shown in Figure 1, the entire evaluation of the CMM operates in sequential top-
down steps: each level, except Level 1, contains multiple Key Process Areas (KPAs) for
achieving the objectives of that level. Figure 1 shows the CMM hierarchy.

Initial
stage

1

2 Repeatable
stage

3 Defined level

4 Quantitative
management

5

Low

Optimization
level

The characteristics of the software process are
disorderly. Few processes are well defined, and success
often depends on the efforts of individuals or groups.

A basic project management process is established to
track cost, schedule, and functional features. The necessary
process discipline has been developed to repeat the success
of previous similar application projects.

Software processes in both management and
engineering activities have been documented, standardized
and integrated into the organization's standard software
processes. All projects use approved standard software
processes to develop and maintain software.

Collect detailed metrics of software process and
product quality, and have quantitative understanding and
control of software process and product.

The quantitative feedback of the process and
advanced new ideas and technologies promote the
continuous improvement of the process.

High

Figure 1 Schematic diagram of software maturity hierarchy based on CMM

Based on the characteristics of software-intensive equipment and the purpose of assessment,
the following basic principles should be followed when constructing a system of software-
intensive equipment destruction resistance indicators:

Purposefulness: The purpose of the assessment is clear and ensures that the work undertaken
serves the purpose of the assessment. The purpose of the assessment could be to assess the
level of resistance of software-intensive equipment or to assess differences in resistance
between different software-intensive equipment.

Hierarchy: Software-intensive equipment destructiveness involves elements at multiple levels,
including hardware, software and network. When establishing the indicator system, these
elements should be divided into levels so that the structure of the indicator system is clear and
it is easy to carry out a hierarchical assessment of anti-destructiveness to ensure that key
information is not omitted.

Scientific: Through scientific analyses, ensure that the indicator system should be able to truly
and accurately reflect the actual situation of software-intensive equipment resistance to
destruction, and that the indicators should be as objective as possible.

Completeness: Considering all kinds of factors affecting the anti-destructiveness of software-
intensive equipment, covering hardware, software, network and other aspects of the equipment,
to ensure that the assessment indicator system can comprehensively and systematically reflect
the construction level of anti-destructiveness of software-intensive equipment. The
construction of a complete indicator system enables it to comprehensively assess the anti-
destructiveness of software-intensive equipment from all sides.

Simplicity: Under the premise of ensuring the completeness of the indicator system, the main
influencing factors are selected, important indicators are highlighted, and too many indicators
are avoided in order to improve the efficiency of the assessment.

Sensitivity: The assessment indicators should be sensitive, i.e., able to respond sensitively to
changes in software-intensive equipment resilience. The assessment indicators should be able
to capture key factors and trends in equipment resilience so that problems can be identified in
a timely manner and improvements can be made accordingly.

Operationalization: The assessment indicators should be able to provide concrete
recommendations and measures to guide practical work. The assessment indicators should not
only reflect the level of software-intensive equipment resilience, but also be able to provide
practical operational guidance for improving and upgrading resilience.

3 Constructing the set of factors influencing software maturity

By analyzing the current status of research on software assessment methods such as CMM, it
is found that most of the existing software assessment index systems are qualitative
assessments, and in order to achieve quantitative evaluation, it is first necessary to identify the
factors that affect software maturity. In this section, we refer to a survey report of 13 software
development organizations in literature [6], and combine the concept of key domains of CMM
to construct a set of factors influencing the maturity of software nodes, as shown in Table 1.

Table1 Set of factors affecting the maturity of software nodes

serial
number

Level 1 indicators
Secondary
indicators

factor

1

software maturity

1u

General Software
Features

software scale
2 software category
3 Ratio of reused code
4 programming language
5

Management of the
development

process

development management

6
Documentation describes the

frequency of change
7 Software Design Documentation
8 Phase Evaluation Criteria
9

Software Product
Quality Assurance

Test Methods
10 Test Coverage
11 Test Tools
12 Test document
13

Software
Engineering Practice

Design methodology
14 demand analysis
15 Detailed design

16
Proportion of highly qualified

programmers

17
organizational

capacity

Level of development effort
18 Level of development technology
19 work pressure
20 Size of the development workforce

The detailed description and definition of the factors influencing software maturity are as
follows

(1) Software Size: The number of function points or amount of code in a software system.
Quantitative methods can be used to measure the size of the software using the number of
lines, function points or requirements-based function points.

(2) Software Category: Software Category refers to the classification of software according to
its use or domain. For example, software can be divided into different categories such as
sound processing software, graphic image processing software, and so on.

(3) Code Reuse Ratio: Code Reuse Ratio refers to the proportion of reused code used in the
software development process. It can be calculated by the ratio of the number of lines of
reused code to the total number of lines of code.

(4) Programming Language: A programming language is a formal language used to write
computer programmers. The quantification method is based on the type and proportion of
programming languages used.

(5) Development Management: Development management refers to the activities of
organizing, planning, controlling and managing the software development process. The effect
of development management can be quantified through project progress, resource allocation,
risk management and other aspects.

(6) Specification Change Frequency: Specification change frequency refers to the frequency of
modification of specification documents in the software development process. The frequency
of change can be quantified by counting the number of versions of the specification file or the
number of changes in each version.

(7) Software Design Document: The software design document is a detailed description of the
design of the software system. The quality of the software design document can be quantified
by assessing the completeness, clarity and compliance of the document.

(8) Phase Evaluation Criteria: Phase Evaluation Criteria are criteria used to assess the
completion and quality of each phase of the software development process. Evaluation can be
carried out by defining and quantifying the evaluation indicators and criteria for each phase.

(9) Testing Method: The methods and techniques used to verify that a software system meets
the expected requirements. The effectiveness of the testing method can be quantified
according to the testing strategy, test case design and execution process.

(10) Test Coverage: the degree of coverage of test cases in the software system. The ratio of
executed test cases to the total number of test cases can be expressed.

(11) Testing Tool: A software tool that assists in testing activities. The degree of use and
effectiveness of testing tools can be quantified according to the type and use of testing tools.

(12) Testing Documentation: Documents that record testing activities. Usually use the
document is complete, accurate and timely and other characteristics to quantify the quality of
test documents.

(13) Design Method: Methods and techniques used in the software development process for
system design. The effectiveness of the method can be measured based on the type of design
method and the degree of application.

(14) Requirement Analysis: The process of sorting out, analyzing and defining the
requirements of a software system. It can be assessed by its consistency, completeness and
accuracy.

(15) Detailed design: that is, on the basis of the system design of the software system module
division, data structure design and other activities. The quality of detailed design can be
quantified by assessing the completeness, clarity and compliance of the detailed design
documents.

(16) Proportion of High-Quality Programmers: is the proportion of programmers with a high
level of skills and experience on the team. The proportion of High-Quality Programmers can
be quantified by counting the skill level and experience of team members.

(17) Development Effort: Development Effort is the amount of time, resources and effort
invested in the software development process. Development Effort can be quantified by
counting the working hours of the development team, project progress and resource
consumption.

(18) Development Technical Level (DTL): DTL refers to the level of technology and
methodology applied by the development team in the software development process. The

development technical level can be quantified by assessing the technical competence of the
team members, the technical tools and frameworks used in the project, and so on.

(19) Work Pressure: Work Pressure refers to the work intensity and pressure faced by the
development team in the software development process. Work pressure can be quantified
through questionnaires, interviews, or by assessing the workload and pressure feelings of team
members.

(20) Development Team Size: The size of the development team is the number of team
members involved in software development. The size of the development team can be
quantified by counting the number of people in the development team.

4 Initial screening of indicators

Initial screening of software node metrics was carried out using the AHP method.
The weights of R were calculated using the AHP method to determine the importance of
objectivity R1, utility R2, measurability R3, and criticality R4.The scale of proportions is
shown in Table 2.

Expertly assessed and obtained:

12 1

12 2

1 2

1

1

1

m

m

m m

a a

a a

a a

 
 
 
 
 
  




   


T (1)

Table2 The scale 1 to 9 in AHP

Factor x is better than factor y Quantized value

Equally important 1
Slightly more important 3

Obviously important 5

Strong importance 7

Extremely important 9
The median value of two adjacent judgments 2, 4,6,8

To test the consistency of the matrix T, the largest eigen root max
 of the matrix T is

calculated and then, the values of the consistency index CI and the test coefficient CR are
calculated with the formulas respectively:

 max ,
1

n CI
CI CR

n RI

 
 


 (2)

Where RI is the average random value of the consistency indicator, whose standard value is

determined by the order n , and the value ofRI is constant if n is constant. When 0.1CR 
meets the consistency requirements. After normalization, the relative importance weights of

each factor are calculated
 1 2, , , m   W

.

Expert's matrix of relationships between the 4 screening requirements and the 20 influencing

factors SR .

7 8 4 7 6 7 4 5 5 6 7 6 6 4 8 6 6 3 3 7
7 6 6 8 8 5 5 7 8 6 4 7 5 6 6 8 7 6 4 5

6 6 5 7 6 6 5 5 5 7 5 7 6 5 6 5 6 5 4 6
7 5 6 7 8 5 6 6 7 6 4 5 8 7 5 6 7 7 5 4

S

 
 
 
 
 
 

R
(3)

Eventually it can be calculated:

3
(0.120,0.107,0.098,0.132,0.129,0.097,0.090,0.108,0.119,

)0.097,0.070,0.128,0.091,0.088,0.093,0.101,0.102,0.086,0.063,0.081

 W

(4)

According to the index weight size sorting, and then select the corresponding proportion of
indicators, software node rough selection of the indicator system shown in Figure 2.

SIS software
node

maturity
evaluation

metrics

General Software

Features LI1

Software scale u11

Software category u12

Development management u21

Reuse code ratio u13

Programming language u14

Software Product Quality
Assurance LI3

Test method u31

Test coverage u32

Test document u33

Software Engineering

Practice LI4

Design methodology u41

Detailed design u42

Proportion of highly qualified
programmers u43

Organizational capacity
LI5

Development technology level u51

Frequency of changes in specifications
u22

Stage Evaluation Criteria u23

Software Process

Management LI2

Figure2 Rough selection index system for software node state evaluation

5 Software nodes Fine screening of reliability metrics

Software node refers to the principle of relative independence and clarity of function,
according to the maintenance requirements proposed by the user, the software system is
divided into a number of subsystems that can be identified by the user, called software nodes.
Software nodes can adopt different granularity according to the needs. In this paper, the nodes
are subsystems composed of a number of components that carry certain functions. As the
indexes of software node maturity assessment are more subjective compared to hardware
nodes, they are prone to problems such as redundant noise irregularities. Therefore, the data of
the software node is obtained by expert scoring, but the expert scoring process due to the
different levels of experts, the direct use of the scoring table of experts is prone to cause some
data distortion, in order to be able to effectively eliminate the error value that exists in the
scoring of experts, the choice of the scoring data of the experts is sorted, to determine the
weight of each expert in the scoring of the item, so as to make the scoring table obtained more
accurate.

For the nth indicator, the scoring results of different experts on the indicator are counted
separately, and the scoring results of the k expert on all indicators can be expressed as follows:

 1 2(, ,)k k k knH h h h= ⋅⋅⋅ (5)

The scoring results of all the experts were weighted to obtain an objective function of:

1

m

k k
k

W Hc
=

=å (6)

W is the objective function, i.e., the sum of scoring results. Substituting equation (5) into
equation (6), there is:

 1 2
1 1 1

(, , ,)
m m m

k k k k k kn
k k k

W h h hc c c
= = =

= ⋅⋅⋅å å å (7)

knh Indicates the scoring result of the expert on the indicator, and the expert weight
assessment model is shown in Figure 3, with the weights indicatingthe strength of
reasonableness.

Figure3 Expert scoring weight evaluation model

Among them:

1

m

k
k

W h
=
å＜ (8)

1

1
m

k
k

c
=

=å (9)

The absolute difference between the scoring results of the k expert and the i expert can be
expressed as follows:

2

1

()
n

ki k kj i ij
j

d h hc c
=

= -å (10)

The smaller the absolute difference between the scoring results of the experts indicates a good
consistency of opinion between the experts and a better rating, therefore, there is an
optimization model as follows:

2

1 1,

min()
m m

ki
k i i k

d d
= = ¹

= å å (11)

After combining Eq. (8) and (9) as the constraint function and Eq. (11) as the objective
function into the LaGrange function, there is the following functional relationship:

2

1 1, 1 1

(,) (() 2 (1))
m m n m

k kj i ij k
k i i k j k

L h hc l c c l c
= = ¹ = =

= - - -å å å å (12)

Calculated by differentiating the above LaGrange function with respect to  :

2

1 1, 1

(1) () ()
n m n

kj k kj ij i
j i i k j

dL
m h h h

d
c c l

c = = ¹ =

= - ⋅ ⋅ - ⋅ ⋅ -å å å (13)

Letting Eq. (13) be zero converts to a matrix P:

2
1 1 2 1

1 1 1

2
2 1 2 2

1 1 1

2
1 2

1 1 1

(1) () () ()

() (1) () ()

() () (1) ()

n n n

i i i i mi
i i i

n n n

i i i i mi
i i i

n n n

mi i mi i mi
i i i

m h h h h h

h h m h h h
P

h h h h m h

= = =

= = =

= = =

é ù
ê ú- ⋅ - ⋅ - ⋅
ê ú
ê ú
ê ú
ê ú- ⋅ - ⋅ - ⋅ê ú= ê ú
ê ú
ê ú
ê ú
ê ú- ⋅ - ⋅ - ⋅ê ú
ê úë û

å å å

å å å

å å å





   



 (14)

virtuous

1 2

(1,1, ,1)

(, , ,)

T

T
m

I

c c c c

ìï = ⋅⋅⋅ïíï = ⋅⋅⋅ïî
 (15)

there are

 0P Ic l- = (16)

Since
0kid , P is a positive definite invertible matrix, and since the weight coefficients are

not less than zero, it is obtained by combining Eq. (15) with the solution to Eq. (16):

1

1

1

1
T

T

I P I

P I

I P I

l

c

-

-

-

ìïï =ïïïíïï =ïïïî

 (17)

Finally, the weights of the experts were compared, the scores of the experts with an error of
more than 50% from the centroid data were removed, and the scores of the remaining experts
were fused and summed according to the weights to obtain the final matrix.

Based on the experts' scoring values for each software subsystem to determine the specific
values of the indicators for that software subsystem, and then use and expert weighting
method to synthesize each expert's opinion, and finally obtain a scoring table containing the
software subsystems, which includes the value of each indicator and the maturity level value
of the software node.

After the above adjustments, the assessment indicators were collated and summarized, and the
experts were repeatedly consulted, and the state assessment indicator system of software nodes
and hardware nodes was finally determined, as shown in Figure 4.

SIS
softwar
e node
maturit

y
evaluat

ion
metrics

General Software
Features LI1

Software scale u11

Software category u12

Development
management u21

Programming language
u14

Software Product
Quality Assurance LI3

Test method u31

Test coverage u32

Test document u33

Software Engineering
Practice LI4

Design methodology
u41

Proportion of highly
qualified programmers

u43

Organizational
capacity LI5

Development technology
level u51

Stage Evaluation
Criteria u23

Software Process
Management LI2

Figure 4 Final index system of software node

6 Conclusions

This paper establishes an index system for the state assessment of SIS software and hardware
nodes. Analyzing the SIS software node influence factors, 20 software node influence factors
are summarized by consulting the literature and expert consultation, etc. After that, the
indicators are finely screened through the initial screening of the IQFD algorithm and the
expert weighting method. It effectively solves the part of data distortion caused by subjective
influence in the process of expert scoring, and effectively removes the error value existing in
the expert scoring. Finally identified 14 software node indicators, for software nodes, the
assessment indicator system can include maturity, reliability, security and other indicators.
Maturity indicators can be used to assess the maturity of the development process, test
coverage, defect repair and other aspects of the software node. By constructing the software
and hardware assessment index system, the software nodes of software-intensive equipment
can be comprehensively assessed and analyzed. This helps to understand the status and

performance of the nodes, identify potential problems and weaknesses, and take corresponding
improvement and optimization measures to improve the overall performance and destruction
resistance of the equipment.

References

[1] CHEN A Lei, LIU Zhen, ZHOU Chang et al. Research on the Development of Typical
Intelligent Net Power Military Equipment in Foreign Countries[J]. Ship Electronic Countermeasures,
2023, 46(01): 14-21.
[2] Song Xuewen, Geng Huafang. Software-intensive equipment comprehensive security [M].
Beijing: National Defence Industry Press, 2011.
[3] LIU Mengyue , LI Ji'an,HUANG Maosheng. Research on software and hardware failure modes
of software-intensive equipment[J]. Electronic Product Reliability and Environmental
Testing,2017,35(04):42-48.
[4] CHEN Huiping,CHEN Jingyue. Static analysis of embedded software maturity based on
minimum confidence[J]. Journal of Jilin University (Information Science Edition),2021,39(05):596-
601.
[5] Zhang Xuan.The theory and practice of CMM software configuration management[J].
Communication World,2017(08):67-68.
[6] Xuemei Zhang, Hoang Pham. An Analysis of Factors Affecting Software Reliability. the
Journal of System and Software, 2000.50: 43-56

