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Abstract. To address the uncertainty surrounding travel and service times in home health 

care routing and scheduling problem, a budget uncertainty set was employed from the 

perspective of Robust Optimization. Considering time window and skill-level 

constraints, a multi-objective mixed-integer programming model was formulated with the 

objectives of minimizing costs, maximizing robustness and maximizing patient 

satisfaction. NSGA-Ⅲ was proposed to obtain the Pareto non-dominated solution set for 

this model. Research findings indicate that, compared with the exact model, the robust 

optimization model can indeed improve the robustness of the solution, and the lower the 

risk preference of the manager, the higher the robustness of the solution, however, this 

comes at the trade-off of higher total costs and diminished patient satisfaction. The 

number of caregivers significantly influences scheduling outcomes, with a constant 

number of caregivers showing a positive correlation between total costs and patient 

satisfaction, and a negative correlation between robustness and patient satisfaction. 

Keywords: home health care; robust optimization; multi-objective; route planning; 

NSGA-Ⅲ algorithm 

1 Introduction 

With the increasing aging population, the demand for Home Health Care (HHC) services is on 

the rise. In practical operation, managers need to plan routes for caregiver based on patient 

information, known as the Home Health Care Routing and Scheduling Problem (HHCRSP) [1], 

which forms the foundation for cost control and the provision of high-quality services. 

Traditional HHCRSP is typically characterized as an exact model[2]. However, in practice, 

travel and service times are influenced by factors such as traffic, weather, and the actual 

condition of the patients [3]. Consequently, the incorporation of uncertainties in travel and 

service times has emerged as a central focus in contemporary HHCRSP research. 

Currently, common approaches for handling uncertainty problems mainly include stochastic 

programming and robust optimization[4]. Among these, stochastic programming relies on 

historical data and distribution assumptions. However, it is challenging for enterprises to 

accurately estimate the probability distribution of these parameters in practice. In contrast, 

robust optimization methods typically use deterministic bounded sets (referred to as 

uncertainty sets) to describe the fluctuations of uncertain parameters, making them more 

suitable for addressing uncertainties with a lack of distribution information. Existing research 

in handling uncertain parameters in HHCRSP has experimented with various uncertainty sets. 
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Shi et al.[3] and Shahnejat-Bushehri et al.[5] have utilized budget uncertainty sets, while Shiri et 

al.[6] have established a multi-stage HHCRSP robust optimization model based on scenario-

based uncertainty sets. Hosseinpour-Sarkarizi et al. [7] have separately employed box 

uncertainty sets, polyhedral uncertainty sets, and ellipsoidal uncertainty sets, and have 

compared the results of these three uncertainty sets. 

The establishment of a robust model aims to enhance the robustness of the solution; however, 

this improvement also implies additional resource investment [8]. Therefore, managers expect 

to strike a balance between costs and robustness. Among the uncertainty sets used by the 

aforementioned scholars, the budget uncertainty set[9] can well meet this requirement. It allows 

managers to flexibly adjust the conservatism and optimality of solutions according to 

disturbance coefficients and risk preference coefficients. Notably, Shi et al. [3] and Shahnejat-

Bushehri et al.[5] have also employed budget uncertainty sets in their research, both their 

studies consider the total costs and the penalty of time window violation as objective function, 

and treating them as a single objective function optimized through a weighted-sum approach. 

However, this method is not conducive to observing the complex relationship between 

multiple objective functions, and the determination of weights is often difficult and 

subjective[10, 11]. In summary, within the robust studies of HHCRSP utilizing budget 

uncertainty sets, scholars predominantly focused on the single-objective model. However, a 

comprehensive exploration of the multi-objective robust model for HHCRSP and its 

corresponding Pareto non-inferior solution set has been notably absent in the existing 

literature. 

Considering patient satisfaction is crucial for maintaining long-term caregiver-patient 

relationships. Due to the uncertainties within HHCRSP, delays often occur between the 

scheduled start times of patient services and their expected time windows. This not only leads 

to the inability to provide time-sensitive medical services, such as medication administration 

or the supply of medical equipment[1], but can also result in continual delays or interruptions in 

subsequent services along the route. Consequently, scholars have regarded this aspect as a 

crucial metric for assessing patient satisfaction[10, 12, 13]. However, the studies conducted by the 

aforementioned scholars have overlooked the varying degrees of sensitivity to time among 

different patients, as well as the differences in patient tolerance for both early and delayed 

service starts. Additionally, related research has indicated that patient satisfaction is influenced 

by factors such as the skill level of caregiver [14] and their familiarity with the patients[15]. 

Based on these considerations, this paper employs a budget uncertainty set to describe the 

uncertain travel and service times in HHCRSP, taking into account time window and skill-

level constraints. It establishes a multi-objective HHCRSP robust optimization model that 

aims to minimize operational costs, maximize robustness, and maximize patient satisfaction. 

Concerning patient satisfaction, it comprehensively assesses service time satisfaction, the skill 

level of caregiver, and their familiarity with the patients, while considering variations in 

patients' sensitivity to time and their differing tolerance for early and delayed service starts. 

The NSGA-III algorithm is utilized to solve the model and obtain the Pareto non-dominated 

solution set.  



2 Mathematical model 

2.1 Problem Description 

Let N  represent the set of all points, {0} cN N=  , {1,2, , }cN n= is the set of patients, 0 

represent the HHC center. {1,2, , }K m=  is the set of caregivers,  Then a directed Euclidean 

graph is given ( , )G V A= , A  represents the set of arcs, {( , , ) : , , , }A i j k i V j V k K i j=    

, V N= . There is an HHC center, and caregivers depart from the HHC center and return 

within HHC center opening hours. Each patient can only be served by one caregiver and can 

only be served once. every caregiver k  have a skill level 
kq , meanwhile every patient i ’s 

service context p  also have a skill level ipq , The requirement is that the caregiver's skill level 

should be at least equal to the skill level necessary for the patient. The travel time and cost 

between node i  and node j  are expressed as ijt  and ijc , respectively. The service time of 

caregiver k  for patient i  is expressed as 
ikt . 

The patient's expected time window is [ , ]i ie l , There are tolerable time lengths A and B

,which means that the patient can accept the early start of service with time length A and the 

late start of service with time length B . If the caregiver arrives earlier than 'ie , they need to 

wait to start the service, while 'i ie e A= − , but there will be no waiting cost. If arrives late 

than 'il , then the patient cannot be served, 'i il l B= + . Since the patient's tolerance for early 

start of service is usually greater than that of late start of service, it is set A B . At the same 

time, due to the different sensitivity of patients to time, the time sensitivity of patients to early 

service is set to obey the normal distribution function 
2

1 1 1~ ( , )X N u  , while
1u A= , the time 

sensitivity of patients to delayed service initiation follows a normal distribution function 
2

2 2 2~ ( , )X N u  ,
2u B= . 

As for biological sample collection, such as urine or blood samples et al., 
isc  is used to 

describe that if a patient needs the caregiver to collect the biological samples and transfer it to 

the HHC center, then it is 1, otherwise it is 0. In this paper, considering uncertainties in the 

pathway and the limited time for sample processing, we opt the caregiver to collect samples 

and return directly to the HHC Center for conservative considerations. and the residence time 

at HHC Center is 
hhct . If the caregiver has other patients not served, they can depart from the 

HHC center again to the next patient. The model assumes that special circumstances such as 

road traffic accidents or natural disasters are not taken into account. 

 decision variable: 

ijkx , if caregiver k  travels from node i  to node j , it is 1, otherwise it is 0.  

iky , if caregiver k  serves the patient i , it is 1, otherwise it is 0. 

iks , the beginning service time of caregiver k  to the patient i . 



 

 

2.2 Objective function 

2.2.1 Cost  

The total costs include travel costs and labor costs, and labor costs include fixed costs and 

service costs. 
kcf  is the fixed cost of caregiver. 

qk  is the service cost per unit time for 

caregivers of different skill levels. 

0

i j ,

cos + + 
c

ij ijk k jk qk ik ijk

k K N N k K j N k K i j N

t c x cf x t x
      

=                            (1) 

2.2.2 Robustness 

Since HHCRSP is generally regarded as a Vehicle Routing Problem (VRP)[16], therefore, we 

adopt the best robustness metric proposed by Zhang Qian et al.[17] at vehicle routing problems 

in logistics distribution to measure the robustness of our model. 

' ( )i jk jk ji

jik

i N j N k K ik ji

l s t t
robustness x

t t  

− + +
=

+
                                    (2) 

2.2.3 Patient satisfaction 

We use a linear continuous function to describe the relationship between the patient 

satisfaction and the actual start time of service. Since patients prefer high-skill level and 

relatively familiar caregiver[18], the skill level satisfaction is represented by the ratio of the 

actual skill level difference and maximum skill level difference E  between patient and 

caregiver. In terms of familiarity, the initial familiarity level for caregivers serving patients is 

set to v . With an increasing number of service instances 
ikd , the incremental satisfaction 

gain will gradually decrease. Therefore, patient satisfaction is shown as follows. Figure 1 is 

the schematic diagram of patient satisfaction with service time. ( ( )S t is patient satisfaction of 

service time) 

 

Fig. 1. Schematic Diagram of Service Time Satisfaction  
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2.3 Constraint condition  

1, ,ijk c

k K j N

x i N
 

=              (5) 

, ,jk ijk c

i N

y x j N k K


=                              (6) 

1,ik c

k K

y i N


=            (7) 

0, , ,ihk hjk c

i N j N

x x h N k K
 

− =                      (8) 

0 0 0, ,
c c

i k jk

i N j N

x x k K
 

− =                 (9) 

, ,ip ik k c

k K

q y q i N


           (10) 

0 0 0 ,ke s l k K            (11) 

' ', ,i ik ie s l i N k K             (12) 

 (1 ) , , ,ik ik ij ijk jks t t M x s i j N k K+ + − −                   (13) 

{0,1}, {0,1}, , , .ijk ikx y i j N k K                       (14) 

Constraints (5) ensure that each patient can only be served once. Constraints (6) represents the 

relationship between 
ijkx  and 

jky . Constraints (7) mean that each patient can only be served 

by one caregiver. Constraints (8) denote that the caregiver leaves the patient after completing 

the service. Constraint (9) specifies that the caregiver's departures from and returns to the 

HHC center should be equal. Constraint (10) specifies that the caregiver's skill level should 

not be lower than the required skill level for the patient's service. Constraints (11) indicates 

that caregiver must start and end work within the time window of HHC center. Constraints 

(12) indicates that the actual service time of caregiver should be within the patient's tolerable 

time window. Constraints (13) expresses the relationship of actual arrival time between 

caregiver to the patients, while M  is a very large number. Constraints (14) means that 

decision variables are binary. 



 

 

 

 

 

2.4 Uncertain travel and service times  

2.4.1 Uncertain travel time 

Given an upper and lower bound on travel time, expressed as a continuous number of intervals 

[ , ]ij ijt t
, ijij ijt t t 

. Let ijt  be the maximum deviation in the travel time of caregiver, and 

=ij ijijt t t+
. There is a disturbed coefficient  0,1ij 

 represents the extent to which the travel 

time of the caregiver from i  to j  deviates from the lower bound, when 
=0ij

,indicates that 

the travel time is lower bound ijt
, when

1ij =
, means that the travel time is upper bounded. 

=
ij ij

ij

ij

t t

t


−
      (15) 

There is a manager's risk preference coefficient , used to regulate the level of conservatism 

in the travel time within robust model. The subsequent constraints are then introduced: 

1 1

=
ijk ijk

ij ij

ij

x x ij

t t

t


= =

−
    (16) 

Then we can assume that the travel time belongs to an uncertainty set 
1U .   

1

1

={ | ,0 1, }
ijk

ijij ij ij ij ij ij

x

U t t t t  
=

= +                 (17) 

2.4.2 Uncertain service time  

Given an upper and lower bound on service time [ , ]ikikt t , ikik ikt t t  . ikt  is the maximum 

deviation in service time for caregiver, ik ikikt t t= + . The disturbed coefficient  0,1ik  , 

indicates the extent to which the caregiver's service time for the patient deviates from the 

lower threshold. 
pt  Indicates the service time corresponding to each service content, where

=0ik , indicates that the patient's service time takes a lower bound 
ikt , 

ikt =
pt . When 1ik = , 

Indicates that the patient's service time takes an upper bound ikt . 

= ik ik

ik

ik

t t

t


−
 (18) 

Similarly, there is a manager's risk preference coefficient , used to regulate the level of 

conservatism in the service time within robust model.  

1 1

=
ijk ijk

ik ik

ik

x x ik

t t

t


= =

−
                                              (19) 

We can assume that the service time belongs to an uncertainty set: 
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3 Solution method 

Considering the model's status as an NP-hard problem, a multi-objective algorithm can 

effectively tackle the issue. NSGA-III, proposed by Deb and Jain[19] as an extension of the 

NSGA-II algorithm, replaces the crowding degree in NSGA-II with associative reference 

points. This adjustment ensures better preservation of high convergence and diversity while 

dealing with multi-objective optimization problems. NSGA-III is particularly suited for high-

dimensional objective optimization problems featuring three or more objective functions.  

We generate the initial solution based on the principles of time window constraints and skill 

level constraints, and encode it using real numbers. The crossover, mutation, and local search 

in the algorithm are inspired by the approach used by Li Yanfeng et al[18]. In terms of 

constraint handling, this paper employs the direct elimination method to remove solutions that 

do not meet the constraints of time window and skill level et al. 

4 Experiment 

In this section, a small-scale example is designed and programmed using MatlabR2020a 

software platform. All experiments are conducted on a computer with an Intel(R) Core 

(TM)i5-7200U CPU @ 2.50GHz.  

4.1 Introduction to the instances 

This section is based on the generation method of the standard Vehicle Routing Problem with 

Time Window (VRPTW) example proposed by Solomon[20], In a two-dimensional plane 
2[0,100 ] , random patient nodes are generated, with the coordinate of the HHC center being

(50,50) . A numerical example involving 15 patients and 6 caregivers was constructed. The 

skill levels are divided into three categories: high, medium, normal, each accounting for 1/3 of 

the total number of caregivers. The skill level of caregiver 1 and 2 is high, 3 and 4 is medium, 

5 and 6 is normal. HHC Center’s time window
0 0[ , ]e l  is [0min,540min] , and the travel 

distance between node i  and node j  is defined as the Euclidean distance. To simplify this 

problem, let the travel speed and travel cost as units 1, then 
ijt  and 

ijc  both equal to 
ijd .While 

the fixed cost 
kcf  of caregiver with different skill level of normal, medium and high is 80, 

100, 120, and the service cost per unit time qk  is 0.8, 1, 1.2, respectively. Other information 

can be obtained from Table 1. 

Table 1. Information on Patients 

patient coordinate p  
ipq  pt  

ie  il  
isc  ikd ( k =1,2, ,6) 

1 (52, 62) d medium 32 15 82 0 [0 0 0 0 0 1] 

2 (38, 85) a normal 42 75 190 0 [0 0 0 1 1 0] 

3 (28, 63) b normal 38 203 300 0 [1 0 1 1 0 0] 

4 (39, 52) c medium 46 310 430 1 [0 1 0 1 0 0] 

5 (55, 35) f high 55 21 88 0 [0 0 0 3 0 0] 

6 (72, 60) b normal 38 254 388 0 [0 0 1 0 0 0] 



 

 

 

 

 

7 (82, 81) b normal 38 342 422 0 [0 0 0 2 0 0] 

8 (92, 49) d medium 32 295 404 0 [0 0 0 0 0 0] 

9 (28, 42) e high 62 34 80 0 [1 2 0 1 2 1] 

10 (25, 12) b normal 38 65 125 0 [0 0 0 0 0 0] 

11 (9, 54) c medium 46 131 185 1 [1 0 0 0 0 0] 

12 (48, 30) d medium 32 92 210 0 [0 0 1 2 0 0] 

13 (60, 22) a normal 42 155 268 0 [0 0 0 2 0 2] 

14 (74, 39) f high 55 320 406 0 [0 0 0 1 0 0] 

15 (59, 40) e high 62 208 292 0 [2 2 0 0 0 0] 

4.2 Model comparison 

In this section, We set the parameters as follows: A =15, B =10, 
1u = A , 

2u = B ,
1 = 3 , 

2

=3, v =0.3, ijt =10, ikt =10, 
hhct =10. Additionally, set the parameters of the NSGA-III 

algorithm as follows: the initial population size: 100, number of iterations: 400, crossover 

probability: 0.9, mutation probability: 0.1, number of local search iterations:2. The avg. of the 

pareto non-dominated solutions and the routing and scheduling plan of the extreme non-

dominated solutions under various configurations of the manager's risk preference coefficients 

 and , are presented in Tables 1 and 2, respectively.  

Table 2. The Avg. of pareto non-dominated solutions under various configurations of Ω and Γ 

 =0, =0 =5, =5 =10, =10 =15, =15 

Avg. 

CO 1677.59 1691.94 1700.61 1704.92 

RO 22.73 23.25 24.24 24.40 

PS 24.48 23.95 22.93 22.72 

CO: cost; RO: robustness; PS: patient satisfaction 

Table 3. the routing and scheduling plan of the extreme non-dominated solutions under various 

configurations of Ω and Γ 

 Ω=0; Γ=0 Ω=5; Γ=5 Ω=10; Γ=10 Ω=15; Γ=15 

min CO 

CO 1544.08 1551.65 1551.65 1555.21 

RO 19.41 20.14 20.14 20.66 

PS 22.71 23.71 23.71 24.65 

routing and 

scheduling plan 

1{5,12,13,15,14,8} 

2{1,9,11,4} 

5{10,2,3,7,6} 

1{5,12,13,15,14,8} 

2{1,9,11,4} 

5{10,2,3,6,7} 

1{5,12,13,15,14,8} 

2{1,9,11,4} 

5{10,2,3,6,7} 

1{1,9,11,4} 

2{5,12,13,15,8,14} 

5{10,2,3,6,7} 

min RO 

CO 1881.13 1881.13 1881.13 1881.13 

RO 27.10 27.10 27.10 27.10 

PS 17.26 17.26 17.26 17.26 

routing and 

scheduling plan 

1{9,11,8} 

2{5,12,13,15,14} 

3{1,6,7} 

4{4} 

5{2,3} 

6{10} 

1{9,11,8} 

2{5,12,13,15,14} 

3{1,6,7} 

4{4} 

5{2,3} 

6{10} 

1{9,11,8} 

2{5,12,13,15,14} 

3{1,6,7} 

4{4} 

5{2,3} 

6{10} 

1{9,11,8} 

2{5,12,13,15,14} 

3{1,6,7} 

4{4} 

5{2,3} 

6{10} 

min PS 
CO 1691.83 1684.29 1745.77 1733.24 

RO 14.24 13.80 13.09 13.30 



 

 

 

 

 

PS 32.15 32.15 30.86 30.85 

routing and 

scheduling plan 

1{5,10,13,15,14,7} 

2{1,9,2,6,8,4} 

4{12,11,3} 

1{5,10,13,15,8,7} 

2{1,9,2,6,14,4} 

4{12,11,3} 

1{5,10,12,15,6,14} 

2{1,9,11,7,4} 

4{2,13,3,8} 

1{1,5,11,6,4} 

2{9,10,12,15,8,14} 

4{2,13,3,7} 

From Tables 2 and 3, it is evident that, compared to exact models, the robust optimization 

model exhibits an increase in the average robustness of Pareto non-dominated solutions as the 

values of  and  grow. Simultaneously, the average total costs improve, while the average 

patient satisfaction decreases. Within the Pareto extreme non-dominated solutions, as the grow 

of  and , the total costs decrease, and patient satisfaction increases. However, due to 

constraints such as the number of caregivers, time windows and skill levels, the values of the 

objective functions and scheduling schemes for the Pareto extreme non-dominated solutions 

optimized for robustness remain unchanged. 

The underlying rationale lies in the fact that as  and  increase, it signifies greater 

fluctuations in travel and service times, leading to some patients in the original schedule being 

unable to meet time window constraints. Consequently, it becomes necessary to re-plan routes 

and schedules. This may involve transferring patients from caregivers with higher skill levels 

to those with lower skill levels, increasing the number of caregivers, or adjusting the sequence 

of caregiver visits to patients. These adjustments result in an increase in total costs, an increase 

in robustness, a decrease in patient satisfaction of skill levels, and an increase in patient 

satisfaction of service time. When the decrease in patient satisfaction of skill levels surpasses 

the increase in satisfaction of service time, the overall patient satisfaction declines. 

4.3 Objective function relationship analysis 

In order to better comprehend and observe the relationships among various objective 

functions, Figure 2 illustrates a three-dimensional display of the Pareto frontiers of the model. 

With the set of parameters as follows: A =15, B =10, 
1u = A ,

2u = B ,  =3,  =3, 
1 =3, 

2

=3, v =0.3, ijt =10, ikt =10, 
hhct =10. Figure 3 is the projection plots of total costs versus 

patient satisfaction of service time(a), skill level(b), and familiarity(c). Figure 4 is the 

projection plots of robustness against patient satisfaction of service time(a), skill level(b), and 

familiarity(c). 

 



 

 

 

 

 

Fig. 2. Three-dimensional Display of the Pareto Front 

 
(a)                                                      (b) 

 
(c) 

Fig. 3. Projection plot of total costs with satisfaction of service time, skill level, and familiarity  

 
(a)                                                   (b) 
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Fig. 4. Projection of robustness with satisfaction of service time, skill level and familiarity 

Figure 2 illustrates that the Pareto non-inferior solutions display four distinct clusters, 

reflecting the constraints associated with the number of available caregivers in the given 

scenario. Specifically, these clusters represent instances where 3, 4, 5, and 6 caregivers are 

dispatched, thus delineating the corresponding dispatching scenarios. 

A more detailed analysis of Figures 3 and 4 reveals a consistent trend: as the number of 

caregivers varies, both costs and robustness exhibit an upward trend. Conversely, the 

satisfaction levels pertaining to service time and skill level experienced a simultaneous 

decline. However, under fixed caregiver constraints, the total costs demonstrate a positive 

correlation with the patient satisfaction of service time and skill level. Notably, a substantial 

negative correlation becomes apparent between robustness and the patient satisfaction of 

service time and skill level.  

5 Conclusion 

In this study, we employ a budget uncertainty set to address the uncertain travel time and 

service time in HHCRSP, then a HHCRSP multi-objective mixed integer programming model 

is established, and the NSGA-III algorithm is used to solve the Pareto non-dominated solution 

set of the model. Subsequently, a comparison is made between the exact model and the robust 

model under various risk preferences of the managers. In addition, we thoroughly explore the 

relationship among the three objectives involving total costs, robustness and patient 

satisfaction from the perspective of the Pareto frontier. 

The results demonstrate that robust optimization methods can significantly enhance the 

robustness of solutions. Moreover, as managers become more conservative, total costs 

increase, robustness improves, patient satisfaction of service time increases, and patient 

satisfaction of skill level decreases. Managers can flexibly adjust the values of  and  to 

attain suitable routing and scheduling schemes. In addition, with the increase of the number of 

caregivers, the total costs increase, the robustness of solution increases, however, both service 

time and skill level of patient satisfaction decreases. When the number of caregivers is fixed, 

total costs is positively correlated with patient satisfaction of service time and skill level, while 

robustness is negatively correlated with patient satisfaction of service time and skill level. 

For future investigations, we aspire to utilize larger-scale examples to rigorously test the 

algorithm's performance. Additionally, data in HHCRSP can be collected through big data 

analysis or internet of Things technology to better identify and monitor its uncertainty. 

Simultaneously, optimization and improvement of multi-objective algorithms are also worthy 

of consideration. 
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