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Abstract. In developing the bidding strategy for the day-ahead market, the virtual power 
plant needs to forecast the marginal day-ahead market clearing tariff, as well as the 
output of wind turbines and photovoltaic (PV) units within the virtual power plant. The 
characteristic scenarios comprising the key risk factors can be classified by 
simultaneously considering the time-period levels of the key risk factors affecting the 
above three uncertain variables over the historical statistical period and by performing a 
cluster analysis of the curve similarity representations based on the segmented bi-
directional pinch forcing theorem. By categorizing the results after predicting the values 
of the day-ahead key risk factors on a future date, i.e., the distribution of the three 
uncertain variables under the same category can be obtained, and the values of the 
uncertain variables can be predicted with a certain probability. The uncertain variables 
are brought into the objective function of virtual power plant bidding, the virtual power 
plant day-ahead bidding strategy can be obtained. The simulation results verify the 
effectiveness of the proposed method.  
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1 Introduction 

Virtual power plants, as entities with the ability to aggregate and manage distributed energy 
resources with efficient, flexible, and friendly grid-connection characteristics, are an important 
measure to deal with the problem of distributed energy access to the power syste m[1].Virtual 
power plants gain revenue by participating in the electric energy market and auxiliary service 
market. Virtual power plants gain revenue by participating in the electric energy market and 
auxiliary service market. Currently, virtual power plants participate in the market as price 
takers. Under this market mechanism, the decision of the virtual power plant to participate in 
the energy market is mainly based on the total amount of declarations and the allocation of 
generation within the virtual power plant through the estimated spot market price. 

Current research on bidding for virtual power plants focuses on the formulation of objective 
functions, which are divided into two-tier/multi-stage bidding models and single-tier bidding 
models. The upper and lower objective functions of the two-tier/multi-stage bidding model are 
mostly related to maximizing the revenue of the virtual power plant, minimizing the cost of 
purchasing electricity, minimizing the total cost of purchasing energy in the market and 
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minimizing the cost of scheduling, maximizing the total revenue of each market, minimizing 
the total cost of participation, maximizing the total profit, etc. [2-6]. Single-tier bidding 
models are mostly virtual power plant profit maximization, revenue maximization, etc [7]. 
Specific optimization methods used include master-slave game, Latin hypercube sampling 
method for generating scenarios, scenario reduction techniques, Monte Carlo, GAMS software 
and CPLEX solver, Copula function, particle swarm algorithm, stochastic planning methods, 
adaptive learning methods, robust optimization, artificial neural networks, etc [2-7]. The 
above methods involve some assumptions, such as the need to have or the ability to predict 
competitors' offer data when predicting spot market prices, the assumption that electricity 
price fluctuations are normally distributed, the assumption that various scenarios have equal 
probability of occurrence, and the assumption that the electricity price consists of the sum of 
the mean and random variables, which are more difficult to realize in the existing electricity 
market environment[8]. 

For the bidding strategy of virtual power plants participating in the day-ahead market as price 
takers, the model adopts a segmented bidirectional pinch forcing model to construct a curve 
similarity characterization between days and matrix clustering based on the characterization 
values. A day-ahead bidding model for virtual power plants based on the segmented bi-
directional pinch forcing theorem is developed based on the similar day method for estimating 
the uncertain electricity price and new energy output. 

2 Day-ahead bidding model for virtual power plants 

2.1 Objective function 

The profit maximization of the virtual power plant's participating in the day-ahead market is 
used as an objective function as follows 

profit revenue costmax P R C                                                 (1) 
where, profitP  represents proceeds from the virtual power plant; revenueR  and costC  are the 

revenues and costs of the virtual power plant, respectively. 

2.1.1 Revenue components.  

revenueR  include revenues from the virtual power plant's participation in the day-ahead market 
and revenues from the virtual power plant's sales of electricity to users: 
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where, ,lmp tP  and , pott sQ  are the day-ahead marginal market clearing tariff for time period t and 

the electricity sold by the virtual power plant for time period t, respectively; tP  and ,dr tP  are 

the pre-demand response tariff and the post-demand response tariff, respectively; 0,dr tQ and 

,dr tQ are the original load and the responding load at time period t, respectively; , ,dr t prQ is the 

actual responding amount of user; 
 
is the coefficient of demand elasticity. 

 



 
 
 
 
 
 

2.1.2 Cost components. 

The total cost of the virtual power plant includes the cost of purchasing power in the day-
ahead market, the cost of the gas-fired unit, and the degradation cost of the energy storage. 
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where, pe_costC  is  the cost of purchasing power in the day-ahead market; gas_costC  and de_costC  are  

the cost of the gas-fired unit and the degradation cost of the energy storage. , wsftQ  is the total 

predicted wind and photovoltaic power generation in the virtual power plant at time period t 
ahead of the day.  ch,et,P  and ,dis,tP e  are the charging and discharging power of the energy storage 

devices in the virtual power plant at time period t, respectively; dis  is is the discharge 

efficiency; ,n jk  is the slope of the generation cost of the n-th gas turbine at section j; , , ,outn j tP  is 

the output of the nth gas turbine at time period t in segment j.  , ,startn t  and , ,stopn t  are binary 

variables for the start and stop of the n-th gas turbine at time period t, respectively; startnC ,  and 

stopnC ,  are start and stop costs for the n-th gas turbine, respectively; the value of the marginal 

aging cost jC  for the battery storage cycle depth segment j is tentatively set at $0.009/(kWh). 

2.2 Constraints on the objective function 

The internal power balance constraints of the virtual power plant are shown below: 

,w ,s ,gas ,dis ,sale , ,ch+ + + = +t t t t t dr t tQ Q Q Q Q Q Q                                 (4) 
where, ,wtQ , ,stQ , ,gastQ and ,distQ  are  the generation of electricity from wind, photovoltaic, and 

gas units and the discharge of energy storage facilities in the virtual power plant at time period 
t,respectively;  ,chtQ  is the charging capacity of the energy storage facility in the virtual power 

plant for time period t. 

The constraints for the gas unit are shown below: 
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where, , ,workn t and , -1,workn t  are  binary variables for whether the nth gas turbine is working at 

time period t and time period t-1, respectively;  , ,startn t and , ,stopn t  are the binary variables for 

whether the n-th gas turbine starts and stops at time period t, respectively; max
nP and min

nP  are 

the maximum and minimum output power of the n-th gas turbine, respectively; ,n tP and , -1n tP  

are the output of the n-th gas turbine at time period t and time period t-1, respectively; u
nr and

d
nr  are the upward and downward ramping power of the n-th gas turbine, respectively; u

nt  and
d
nt  are the minimum on and off times of the n-th gas turbine, respectively; , initialu

nt  and , initiald
nt  are 

the initial on and off times of the n-th gas turbine, respectively. 

The constraints of the energy storage facility are shown below: 
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where, max
disP  and max

chP  are the maximum charging and discharging power of the battery storage, 

respectively; dis
tI  and ch

tI  are binary variables for discharge and charge, respectively; ,t je  and 

1,t je    are the energy stored by the energy storage in the cyclic depth segment j in time periods 

t and t-1, respectively; je  is the charging capacity of the energy storage facility in the virtual 

power plant for time period t; maxE  and minE  are the maximum charging and discharging 
power of the battery storage, respectively. 

The wind/PV constraints are shown below: 

,w/s ,w/s max0 t tP P  ，                                                   (7) 

where, je  is the output power of the wind/photovoltaic unit in time period t; ,w/s maxtP ，  is the 

maximum power generated by the wind/photovoltaic unit. 



 
 
 
 
 
 

The demand response constraints are shown below: 
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, , , ,
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where, max
,dr tQ  is upper limit of transferable load for users; drP  is the upper limit on the 

amount of tariff change offered by the virtual power plant to demand response loads. 

3 Model Uncertainty Variables Handling Based on Segmented 
Bidirectional Pinch Forcing Theorem 

The electricity price and wind and PV unit output in the day-ahead market are uncertain 
variables. In this paper, we first select the key risk factors affecting the above three uncertain 
variables, combine the key risk factors as the labels of the day-ahead trading days there, and 
then use the segmented bidirectional pinch forcing theorem, combined with the matrix cluster 
analysis method, to cluster the labels, and the elements within the same cluster set are treated 
as similar days to each other, and it is assumed that as long as the labels of a day-ahead trading 
day in the future fall in a certain cluster set. The day-ahead market price of electricity and the 
output of wind power and photovoltaic units on this trading day are within the interval with 
the highest frequency of the distribution consisting of similar days under this cluster set. 

3.1 Segmented bi-directional pinch forcing theorem and clustering 

In this paper, temperature, primary energy price index, wind speed and solar intensity are 
selected as the key risk factors affecting the day-ahead market price of electricity and the 
output of wind and photovoltaic units, which are denoted by A, B, C and E, respectively. The 
historical statistical date is denoted by d ( =1,2, ,d D ) and the 24 periods of each day-ahead 

trading day is denoted by t ( =0,1,2, ,23t  ). 

3.1.1 Segmented bi-directional pinch forcing theorem.  

The curves for the key risk factors need to be normalized first. 

In the case of key risk factor A, for example, the normalization of the d-day curve for the 
previous trading day is treated as follows: 
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                            (9) 
where, , , ,A d t oL  and , ,A d tL  are the temperature curves of d-day during the historical statistical 
period at time period t and the normalized temperature curves.  
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AU  is the set of normalized temperature curves for the trading days before the statistical 

period; ,A dL  is the normalized temperature curve of the day before trading day d; , ,A d tL  is the 
normalized temperature curve of the day before trading day d at time period t. 

After the curve normalization process, the base curve needs to be determined. Divide the 
simultaneous curves into a set, shown by , ,A d tU : 

 , , ,1, , , , ,, , ,A d t A t A d t A D tU L L L  
                                          (11) 

Arbitrarily selecting a curve in the set AU  as a benchmark curve, and here selecting ,A dL , each 

of the 24 segments , ,A d tL  in ,A dL  is a benchmark curve for the same time period, i.e., the set of 

time-phased benchmark curves for which ,A dL  is selected as a benchmark curve is as follows: 

 , , ,0 , , , ,23, , , ,A D A D A D t A DU L L L  
                                   (12) 

Next, the segmented bidirectional pinch forcing model is constructed. Arbitrarily choosing a 
time period t to analyze the similarity of the curves for all the same time periods t in the 
statistical period within the set , ,A d tU  is achieved using a segmented bi-directional pinch 
forcing model, constructing the model objective function as follows:  
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                                    (13) 
where, , ,A D ta  and , ,A D tb  are the downshift and upshift coefficients of the curve, respectively; 

, , , ,A D t A D ta L  and , , , ,A D t A D tb L  are the curves that have the same shape as the curve , ,A D tL  in segment 

t of the base price curve and lie below and above, respectively; , ,A D ts  is the value that 

characterizes the similarity between the curves, the smaller it is, the closer , ,A D ta  and , ,A D tb  are, 

the closer , , , ,A D t A D ta L  and , , , ,A D t A D tb L  are to the base curve , ,A D tL , and when it is 0 the objective 

function is optimal, i.e., it is completely overlapped. 

By constructing a segmented bidirectional pinch model for all time periods, a set of curves 
with similarity  ,0 , ,, ,A A A t A TS S S S    can be obtained: 
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The segmented two-way pinch forcing model is constructed for all time periods to obtain the 

set of simultaneous curve similarity，  ,1 , ,, ,A A A d A DR R R R  
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Similarly, the set of curve similarities, BS , CS , ES , BR , CR , ER , can be obtained for the 

other key risk factors B, C, and E. 

3.1.2 Cluster analysis of matrices.  

Based on the previous steps the 4-dimensional key risk factor segmented curve similarity 
characterization matrix for D days (i.e., D samples) can be obtained, and in the case of day d, 

the curve matrix dS  for day d is: 
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                            (16) 
Therefore, the D samples were subjected to a cluster analysis of the matrix to classify the 
similarity curves considering the four dimensions into one group. The samples were clustered 
using K-means clustering algorithm [11]. 

3.2 Uncertain variable prediction based on similarity days 

3.2.1 Predicting segment values for key risk factors. 

Assuming that the segmented key risk factor values for a day in a given year are similar to the 
segmented risk factor values for the same day in a calendar year, the composite weighted 
average of the segmented key risk factor values for the same day in a calendar year can be 
used to estimate the risk factor values for future segments for the same day. Therefore, the 
following model is used to predict the segmented key risk factor values for a future date: 
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where f ,,A tD  is the value of the temperature in the time period of the forecast day; , ,i A tx
 is 

the value of the temperature in the time period of the same day in the i-th year and forecast 

day of the statistical period t; ik
 is the weight of the i-th year of the statistical period (n years 



 
 
 
 
 
 

in total); ,A ta
 is the percentage of the adjustment of the temperature in the recent past; 

, 1,A m tx   is the value of the risk factor of the temperature in the time period of the day of the 

recent adjustment; ,1, 1,A m tx   is the value of the risk factor of the temperature in the time 

period of the same day in the year prior to the day of the recent adjustment. The adjustment 

factor ,A ta  is added here to take into account the overall variation between years in the 

prediction of the risk factor values. 

Similarly, the segmented values of the other key risk factors f ,,B tD , f ,,C tD and f ,,C tD ,  for a 

future date can be obtained. after section 3.1 the set of curve similarities, f ,AS , f ,BS , f ,CS ,  

f ,ES , f ,AR , f ,BR , f ,CR ,  f ,ER , can be obtained for the prediction date, and also the curve 

matrix fS  for the prediction date can be obtained: 
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                                 (18) 
The resulting curve matrix is categorized into the matrix classification results obtained in 3.1.2. 

3.2.2 Prediction of Uncertain Variables and Day Ahead Bidding Decision Making.  

A histogram of the frequency distribution of electricity price, wind power output, and PV 
output for all sample days in the classification where the curve matrix is located is composed. 
By identifying the highest interval of frequency, the value of uncertain variables on the 
forecast day can be predicted. The prediction results of uncertain variables are substituted into 
the virtual power plant day-ahead bidding model to develop day-ahead bidding decisions. 

4 Simulation analysis 

A virtual power plant containing gas-fired units, energy storage facilities, wind power, 
photovoltaic, and demand response loads is used as an example for arithmetic analysis. The 
parameters of the gas unit are adopted from Appendix A of literature [3]; the parameters of the 
energy storage facility are adopted from literature [9]; and the demand response tariff is 
designed according to the conclusion of literature [10], i.e., the peak-to-valley difference is 
$0.5/kWh. The demand response elasticity coefficient is designed using the parameters of 
literature [11]. 

4.1 Predicted results for uncertain variables 

For simplicity of calculation, the 24 time periods were divided into peak, flat and valley 
periods, and the temperature, primary energy price, wind speed and sunlight intensity were 
selected as samples for the whole year of a certain year. Among them, the temperature, wind 
speed and sunlight intensity are selected as the temperature, wind speed and sunlight intensity 



 
 
 
 
 
 

of a certain year in province G (using the amount of solar radiation reaching the horizontal 
surface of the earth's surface minus the amount reflected from the earth's surface). Primary 
energy prices are selected from the power coal prices in the same year and simulated in the 
dataset (more data need to be simulated because the power coal prices are published on a 
weekly basis and are processed in a randomized manner ± 0.5% on the basis of the source 
data). And statistics on the weighted average marginal clearing price of electricity in the peak 
and trough segments of the market before the day of the virtual power plant in this year, the 
turbine output within the virtual power plant and the PV unit output. The source data of 
temperature, primary energy price, wind speed, and light intensity are data processed and 
similarity matrices are obtained using equations (9) to (15) with a matrix size of 1098 × 4.  

Cluster analysis of three times four-dimensional key risk factor portfolio similarity matrices 
were performed separately, and this example uses K-means clustering algorithm with 
Euclidean distance squared for clustering and the number of clusters was categorized into 3 
classes. The temperature, primary energy price, wind speed, and light intensity for the 
predicted daily peak, flat, and valley hours are -3.43℃, $493.50/ton, 2.26 m/s, and 8,818,985 
MJ/m2; -5.05℃,  $497.25/ton, 1.53 m/s, and 8,707,584 MJ/m2; and -6.58℃, $494.82/ton, 
1.70 m/s, and 0 MJ/m2, respectively. s, 0 MJ/m2. After the data processing of Eqs. (9) to (15), 
the categorization was performed using Matlab. According to the classification results, the 
intervals with the highest frequency in the distribution of tariffs, wind turbine output, and 
photovoltaic turbine output for the second category of the peak section, the first category of 
the flat section, and the second category of the valley section are identified, respectively, 
which are automatically realized using Matlab's histogram function. Take the peak section as 
an example, as shown in the figure 1. In addition, the highest frequency intervals 
corresponding to the electricity price, wind turbine output, and PV unit output for the first 
category of the flat section and the second category of the valley section are [360,390], [10,20], 
[6,8], [300,330], [0,20], and [0,0], respectively. Thus taking the midpoint of the interval gives 
the predicted levels of tariffs, wind turbine output, and PV unit output during peak, flat, and 
valley hours as [405,10,37.5], [375,15,7], and [315,10,0], respectively. 
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Figure 1. Distribution of electricity price, wind power output, and PV output under the second type of 
curve in the peak period. 



 
 
 
 
 
 

4.2 Bidding decision making 

As an example, the bidding decision making for the peak period is formulated using Matlab 
software by defining the objective function and constraints and outputting a feasible domain as 
shown in Fig. 2. Among them, each dimension represents: the amount of peak-segment bids in 
the market before the virtual power plant day, the peak-segment customer demand response 
tariff formulated by the virtual power plant, the load after the customer demand response, the 
power of energy storage charging/discharging in the peak-segment, and the output level of the 
gas unit. Where the x-axis, y-axis and z-axis represent the three axes in the five-dimensional 
space, respectively, with colors distinguishing the values of the other dimensions. 

 
Figure 2. Feasible domain of the objective function. 

The optimal solution is: the bidding output of the virtual power plant during peak hours is 
265.7MWh, the user demand response electricity price set by the virtual power plant during 
peak hours is 1418 yuan/MWh, the load after user demand response is 4.2MW, the power 
discharged during peak hours is 10MW, and the output of the gas turbine is 5.7MW. The 
profit of the virtual power plant is 28685 yuan. The actual profit of the virtual power plant is 
within a deviation of 9% of the simulated profit, and the model is effective. 

5 Conclusion 

In this study, based on the segmental pinch forcing theorem and cluster analysis, we set up a 
method to predict the uncertain variables affecting the bidding strategy of the virtual power 
plant, and construct the objective function and constraints model of the virtual power plant, 
and finally derive the feasible domain of the prediction results, and obtain the bidding strategy 
to maximize the profit of the virtual power plant through the software. The use of multi-
dimensional data and data normalization, similar multi-dimensional data matrix clustered into 
one class, helps the virtual power plant in the decision-making in the consideration of the 
distribution of electricity prices, wind power output, photovoltaic output in a similar market 
environment, the data is not simulated by the normal distribution, with authenticity and 
reliability, closer to the market real clearing situation. The virtual power plant can achieve the 
purpose of rationally adjusting the bidding strategy according to the day-ahead marginal 
clearing tariff by setting the internal demand response tariffs and allocating the output 
situation of gas units and energy storage facilities.Positioning tables. 
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