Analysis Of Factors Causing Delay Maintenace In Completing Using Failure Mode Effect Analysis (FMEA) Method

Ayu Martina¹, Edy Suwondo²

Air Marshal Suryadarma Aerospace University, Jakarta, Indonesia¹ Bandung Institute of Technology, Bandung, Indonesia²

Ayumartina75@gmail.com1esuwondo@ae.itb.ac.id 2

Abstract. Air transportation in Indonesia has experienced delays in completing maintenance based on a predetermined schedule. The TAT (Turn Around Time) indicator is used to measure the performance in completing the maintenance. This research aims to determine the factors that cause maintenance delays on the B737NG aircraft and minimize TAT delays. There are three main factors that cause the delays in completion of treatment, namely due to lack of manpower, the process of waiting for material supplies, and the length of time to process the findings. In order to strengthen the result of the analysis, this research uses the method with the support of FMEA (Failure Mode Effect Analysis) to develop a table for calculating the RPN values or risk priority scale. FMEA is a systematic method of identifying and preventing product and process problems before they occur. So, the calculation results show that the highest RPN value is not paying attention on the ratio of work to manpower, which gives an RPN value of 216. Then a solution is recommended to reduce the RPN to a value of 168 where the aim is to reduce the TAT delay in completing the maintenance of aircraft.

Keywords: Delay maintenance, Turn Around Time, FMEA, Aircraft B737NG

1. Introduction

PT XYZ one of the factors that can use cause flights not to be on time is the unavailability of aircraft on schedule that have been determined based on the Turn Around Time (TAT) indicator. TAT is the maintenance time interval required for a job a job to start entering the system until the process is complate, which shows a work cycle. On 2021 data from PT XYZ this analysis focus on the Boeing 737NG type because this type is the most popular type used in the world of aviation. It can be concluded that PT XYZ experienced an avarage delay of 10 days in completing C-check maintenance. Therefore, it is necessary to identify the causes of the problem and solutions to handle TAT delays in completing C-check maintenance on Boeing 737NG aircraft.

2. Literature Review

2.1 Aircraft Maintenance

Maintenance- is an activity carried out with the aim of maintaining and/or returning an aircraft to a certain condition so that it can carry out its functions and meet certain performance standards. Performance standards are limits for determining the failure or functioning of a system. Based on the time the maintenance is carried out, aircraft maintenance can be devided into 2, namely corrective and preventive maintenance.^[1] This corrective maintenance is also carried out if no effective and efficient preventive maintenance is found for the consequences of non-safety failure. Preventive maintenance is included in scheduled maintenance while corrective maintenance carried out at intervals of flight hours, flight cycle and aircraft age, for example C-check maintenance.

2.2 C-Check Maintenance

Some of the maintenance packages included in scheduled maintenance activities are Acheck, C-check, and D-check. C-check maintenance is a type of aircraft maintenace package a predetermined time limit and is included in the heavy maintenance category so that the aircraft must enter the hangar. C-check maintenance is carried out on average every 24 months or 6,000 flight hours^[2].

2.3 Failure Mode Effect Analysis (FMEA)

FMEA is a systematic method for identifying and preventing product and process problems before they occur. FMEA is focused on preventing defects, improving security, and increasing customer satisfaction. Ideally, FMEA is performed in the product design or process development stage, although performing FMEA on existing product and processes can also yield substantial benefits.

Preventing process and product problems before they occur is the goal of FMEA. Used in both the design and manufacturing processes, they substantially reduce cost by identifying product and process improvements early in the development process when changes are relatively easy and cheap to make. The result is a more robust process because the need for after-the-fact corrective action and late change crises will be reduced or eliminated. The goal of FMEA isnto look for all the ways a process or product could fail. Product failure occurs when the product does not function as intended or when it malfunctions in some way. Even the simplest products have many opportunities to fail. The FMEA process is a way to identify failures, effects, and risks in a process or product, and then eliminate or reduce them ^[3].

Evaluate the risk of failure

The relative risk of failure and its impact are determined by three factors:

- Severity = Consequences of failure if it occurs.
- Occurrence = Probability or frequency of failure.
- Detection = The probability that a failure is detected before the impact of the effect is realized.

Assessing RPN

Using data and knowladge about the process or product, each potential failure mode and effect is rated in each of these three factors on a scale ranging from 1 to 1000, from low to high. By multiplying the ratings for the three factors (Saverity* Occurrence*Detection) results in an RPN (Risk Priority Number) that will be determined for each potential failure mode and effect.All product, design and process FMEAs follow these ten steps ^[3]:

- 1. Process or product overview
- 2. Brainstorm potential failure modes
- 3. List the potential effects of each failure mode
- 4. Assign a serious rating to each effect
- 5. Set an occurrence rating for each failure mode
- 6. Assign detection ratings to each failure mode and/or effect
- 7. Calculate the RPN for each effect
- 8. Prioritize failure modes for action
- 9. Take action to eliminate or reduce high-risk failure modes
- 10. Calculate the resulting RPN when failure modes are reduced or eliminated.

3. Data Processing and Evaluation of Treatment Delays C-Checks

3.1 Research Analysis Flow

Fig. 1. Research flow diagram

3.2 Processing and Analysis of Aircraft Number Data

Check maintenance and other maintenance throughout 2021 on several types of aircraft at PT XYZ. Other treatments such as A-Check, Structural Check, and Interval Check. The maintenance schedule includes four different types of aircraft, namely B737-800NG, B737-900ER, A330-300, and B737 Max. This final assignment only focuses on the Boeing 737NG type with the number of aircraft carrying out C-Check reaching 19 aircraft out of a total of 65 aircraft types.

A/C Type	C O D E	A/C REG.	STA.	CAT	DESC	MHRS PHASE	DUE	PLAN DATE DOCK IN	REV TARG ET	TARG ET DATE	TAT PLAN	DELAY	TOTAL AOG MAINT
					PHASE 29	152,00	6-Mar				36	217	36
B737-	Е	PK-	DTH	AD	PHASE 29	164,00	4-Jul		20 Novi	16 4 mm			
900ER	R	ZJG	ып	Ar	SWING COMPAS	TBA	17-Oct	11 Iviar	Nov 21	16 Apr			
					PHASE 30	208,00	1-Nov						
B737-	N	PK-	ртц	C- CHECK	C03 CHECK	3691,07	1-Jul	30 Jun	30 Nov	05 Aug	36	117	152
800	G	ZJQ	DIII	AP	PHASE 29	164,00	11-Sep		21				155
B737-	Е	PK-	DTU	C- CHECK	C05 CHECK	500,00	15-Oct	10.0.4	07	22.014	12	15	29
900ER	R	ZFL	він	AP	PHASE 43	185,00	25- Nov	10 Oct	21	23 OKt	13	15	28
B737-	N	PK-	DTU	C- CHECK	C03 CHECK	3691,07	28-Sep	27.6	19 Nor	2.2	26	17	53
800	G	ZJS	він	AP	PHASE 29	152,00	25- Nov	27 Sep	21	2 INOV	36	17	
				C- CHECK	C03 CHECK	3691,07	14-Apr						
B737-	Е	PK-	DTU		PHASE 28	152,00	14-Apr	12 Oct	26	19 Nov	38	7	45
900ER	R	ZJJ	він	АР	PHASE 29	164,00	12- Aug		Nov 21			7	
					PHASE 30	208,00	10- Dec	1					

 Table 1. PT XYZ maintenance document schedule [Source: Processed data]

Table 2. C-check Data [Source: Processed data]

NO	TASK CARD	DESC	TOTAL WAKTU	ACTUAL	REASON OF DELAY	Delay
	1	Maint. Preparation	02:15	02:25	-	
	2 B789-20-110-01-01-MLI	GENERAL VISUAL INSPECTION OF EXTERNAL (COWL OPEN) HARNESS CONDITION AND SECURITY LEFT ENGINE	01:10	02:31	-	
	3 B789-20-470-00-01-MLI	INSPECT THE IDG POWER FEEDER WIRING AND CONNECTED EWIS ENGINE NO 1	06:19	00:36	-	
	4 B789-21-100-00-01-MLI	RESTORATION OF THE PRIMARY AND SECONDARY HEAT EXCHANGERS	03:00	03:00	-	
	5 B789-21-150-00-01-MLI	RESTORE CABIN TEMPERATURE SENSOR FILTER	01:35	04:08	-	
	6 B789-23-054-00-01-MLI	FUNCTIONAL CHECK OF THE VOICE RECORDER INDEPENDENT POWER SUPPLY	00:21	00:48	-	
	7 B789-23-056-00-01-MLI	FUNCTIONAL CHECK OF THE VOICE RECORDER INDEPENDENT POWER SUPPLY MAINT. REPORT	01:30	01:50	-	
	8 B789-23-080-00-01	OPERATIONAL CHECK OF OXYGEN MASK MICROPHONE	01:10	01:16	-	
	9 B789-24-010-01-01-MLI	SERVICING OF IDG OIL-LEFT IDG	01:28	01:26	-	
1	0 B789-24-010-02-01-MLI	SERVICING OF IDG OIL-RIGHT IDG	08:17	02:08	-	
1	1 B789-24-040-01-01-MLI	REPLACE LEFT IDG CHARGE AND SCAVENGE FILTERS	08:17	02:08	Material	27 days
1	2 B789-24-040-02-01-MLI	REPLACE RIGHT IDG CHARGE AND SCAVENGE FILTERS	23:09	02:16	Manpower	18,49
1	3 B789-24-050-01-01-MLI	FUNCTIONAL CHECK OF LEFT QAD	23:09	20:14	-	
1	4 B789-24-060-01-01-MLI	GENERAL VISUAL INSPECTION OF LEFT ENGINE IDG SURFACE AIR COOLED OIL COOLER	01:00	01:00	-	
1	5 B789-25-040-00-01-MLI	DETAIL VISUAL INSPECTION OF PASSENGER SEAT BELTS	00:56	01:33	-	
1	6 B789-25-070-00-01-MLI	INSPECT PASSENGER SEAT BACK RECLINE MECHANISMS	01:23	01:23	-	
1	7 B789-25-090-00-01-MLI	INSPECT ATTENDANT SEAT HARNESS	02:39	02:33	-	
1	8 B789-25-100-00-01-MLI	INSPECT ATTENDANT SEAT HARNESS	01:00	01:00	-	
1	9 B789-25-130-00-01-MLI	INSPECT LAVATORY WASTE COMPARTMENT FLAPPER DOOR AND SPRING AND ACCESS DOOR	00:37	00:16	-	
2	0 B789-25-330-00-01-MLI	OPERATIONAL CHECK OF THE POWER MEGAPHONES	00:44	01:13	-	
2	1 B789-25-370-00-01-MLI	VISUALLY CHECK DETACHABLE EMERGENCY EQUIPMENT	00:30	00:05	-	
2	2 B789-25-380-00-01-MLI	OPERATIONAL CHECK OF THE EMERGENCY FLASHLIGHTS	00:30	00:05	-	
2	3 B789-25-400-00-01-MLI	DETAILED INSPECTION OF THE SMOKE HOODS	00:44	01:13	-	
2	4 B789-26-010-00-01-MLI	OPERATIONAL CHECK OF LAVATORY SMOKE DETECTOR	00:44	01:13	-	
2	5 B789-26-018-00-01-MLI	OPERATIONAL CHECK OF WING AND LOWER AFT BODY OVERHEAT DETECTION	00:20	00:33	Manpower	85,07
2	6 B789-26-050-00-01-MLI	VISUAL CHECK OF ENGINE FIRE BOTTLE PRESSURE GAUGES	04:55	85:15:00	-	
2	7 B789-26-300-00-01-MLI	DETAIL VISUAL INSPECTION OF THE LAVATORY FIRE BOTTLE FUSIBLE TIPS AND DISCHARGE TUBES	06:19	00:36	-	
2	8 B789-26-310-00-01-MLI	VISUAL CHECK OF THE LAVATORY HEAT SENSITIVE TAPE	00:30	00:50	-	
2	9 B789-26-550-02-01-MLI	CENTER WING REAR SPAR VAPOR WEB	01:00	01:00	-	
3	0 B789-27-099-00-01-MLI	ELEVATOR BALANCE TAB FREEPLAY FUNCTIONAL CHECK	00:43	00:46	-	

Table 3. C-check Data (Con't)

81 B789-70-810-02-01-MLI	GVI OF POWERPLANT NO.2	00:27	01:08	Finding	10 days
82 B789-71-010-01-01-MLI	DET INSPECTION OF THE LEFT INLET COWLS INNER SURFACE	01:20	01:33	-	
83 B789-72-020-01-01-MLI	DET INSPECTION OF THE LEFT ENGINE INLET AND FAN BLADES	03:20	17:00	Finding	4 days
84 B789-72-025-01-01-MLI	LEFT ENGINE FAN BLADES DOVETAIL LUBRICATION	06:19	00:35	Finding & Material	9 days
85 B789-72-070-02-01-MLI	VCK OF RIGHT ENGINE TRANSFER/ACCESSORY GEARBOX MOUNT FLANGES	06:19	00:35	Finding	7 days
86 B789-72-100-02-01-MLI	VCK OF RIGHT ENGINE ATTACHMENT BOLTS FOR THE THRUST MOUNT FITTINGS	06:19	00:35		
87 B789-72-110-02-01-MLI	VCK OF RIGHT ENGINE THRUST MOUNT FITTINGS	02:16	11:35	-	
88 B789-72-180-01-01-MLI	DET OF THE LEFT ENGINE COMBUSTION CHAMBER	02:21	09:09	Manpower	6,05
89 B789-72-200-01-02-MLI	BORESCOPE INSPECTION LEFT ENGINE HPT NOZZLE	01:31	10:09		
90 B789-72-210-01-01-MLI	INSPECTION OF THE LEFT ENGINE HPT BLADES	02:16	04:46	-	
91 B789-72-300-01-01-MLI	VCK OF THE LEFT ENGINE STAGE AFT MOUNTS CLEVIS	10:29	04:22		
92 B789-74-020-01-01-MLI	DET OF THE BOTH LEFT ENGINE IGNITION LEADS	08:54	01:30	-	
93 B789-78-050-02-01-MLI	RIGHT ENGINE T/R FAN DUCT WALLS	04:20	01:53	-	
94 B789-78-070-01-01-MLI	VCK OF THE LEFT ENGINE BLOCKER DOORS	03:30	03:50	Finding	28 days
95 B789-78-080-01-01-MLI	DET OF LEFT ENGINE BULLNOSE SEAL AND RETAINER	02:59	02:01	-	
96 B789-78-100-01-01-MLI	LEFT ENGINE T/R FIRE SEAL	03:20	03:33		
97 B789-78-120-01-01-MLI	OPC OF LEFT ENGINE BITE CHECK THE EAU	01:03	01:16	-	
98 B789-78-130-01-01-MLI	OPC OF THE LEFT ENGINE LIGHT INDICATION SYSTEM	01:03	01:16	-	
99 B789-80-010-01-01-MLI	DET VISUAL INSPECTION OF THE LEFT ENGINE STARTER	00:19	00:31	-	
100 B789-80-010-02-01-MLI	DET VISUAL INSPECTION OF THE RIGHT ENGINE STARTER	00:19	00:31	-	

4. Analysis of Evaluation Results for Delay in Treatment C-Check

4.1 Define Stage

Define stage, at this stage a definition of the root of the problem which is the cause of the C-check delay will be carried out the maintenance.

Aircraft Type	Number of Aircraft	Delay (Days)	Percentage (%)
B737-800 NG	19	10	0.53
B737-900 ER	29	38	1.31
A330-300	8	24	3
B737 Max	9	369	41
Total	65	441	11.46

 Table 4. Percentage of delay C-check [Source: Processed data]

It was concluded that from 4 types of aircraft with a total of 65 aircraft which achieved a total delay of 441 days, the delay percentage reached 11.46%. Because the analysis focused on the B737-800NG type with a total of 19 aircraft experiencing a total TAT delay of 10 days and the maintenance delay percentage reached 0.53%. So, next an analysis was carried out regarding the factors causing delays in completing C-check on the Boeng 737NG aircraft type belongng to PT XYZ.

4.2 Measure Stage

To carry out analysis using FMEA, the RPN is determined by multiplying the ratings of Saverity, Occurrence, and Detection, the results of which are expressed in numerical form. Below is presented the rating data for Saverity, Occurrence, and Detection. Table 5 explain the saverity used to calculate the FMEA value.

Ratings	Category	Criteria
1	There are no	There is no <i>delay</i>
	consequences	
2	Very light	There was a delay of 1.5 hours which could cause an
		estimated loss of IDR 236 million
3	Light	There was a 3 hour <i>delay</i> which could cause an
		estimated loss of IDR 472.5 million
4	Very low	There was a delay of 1/2 day which could cause an
		estimated loss of IDR 750 million
5	Low	There was a delay of 1 day which could cause an
		estimated loss of up to IDR 1.5 billion
6	Currently	There was a delay of 3 days which could cause an
		estimated loss of IDR 4.5 billion
7	Tall	There was a delay of 7 days which could cause an
		estimated loss of IDR 10.5 billion
8	Very high	There was a delay of 10 days which could cause an
		estimated loss of up to IDR 15 billion
9	Dangerous	Delays often occur, so they can affect flight security
10	Very dangerous	There are always delays, which can have an impact
		on flight security

Table 5. Saverity of Delay [Source: Processed data]

It can be concluded to look for revenue based on saverity criteria, then assuming the aircraft type is B737NG, destination Jakarta-Surabaya with a time 1.5 hours for 6 take-offs a day, with an average ticket price of IDR 1,250,000 and the number of seats is 189 pax so that total revenue is obtained of 1.5 billion per-day.

Tabel 6 explains the occurrence to assess the frequency of causes of problems which is then used calculate the FMEA value.

Tab	ole 6. Occurrence	e of Delay [Source	Processed data]

Ratings	Category	Criteria			
1	There isn't any	There is no cause for <i>delay</i> at all during the C- <i>check maintenance completion period</i>			
2	Very low	<i>delay</i> occurs once per C-check maintenance period			
3	Light	delays occurs 3 times per C-check maintenance period			
4		delays occurs 5 times per C-check maintenance period			
5	Currently	delays occurs 7 times per C-check maintenance period			
6		<i>delay</i> problem 9 times per C-check maintenance period			
7	— 11	delays occurs 15 times per C-check maintenance period			
8	Tall	delays occurs 20 times per C-check maintenance period			
9	T T 1.1	There are often problems <i>with delays</i> per C-check maintenance period			
10	Very high	There is always a problem of <i>delays</i> per C check maintenance period			

Table 7 explains detection to assess whether the symptoms of the cause of the problem can be detected so that the problem can be avoided or prevented which is then used to calculate the FMEA value.

Ratings	Category	Criteria
1	Almost impossible	Material needs are only known after rare
		findings occur
2	Very rarely	Urgent material needs can be carried out by robbing
3	Seldom	Forecasting of C- check implementation
		was carried out with the help of the IT
		system
4	Very low	Increased work tasks due to the large
		number of findings
5	Low	Increased processing time after a finding is
		discovered
6	Currently	The need for manpower increased after the
		discovery
7	A bit high	When it is found that the material is not
		available in the warehouse
8	Tall	Unavailability of manpower when damage
		is discovered
9	Very high	During the inspection, a defect was found in
		the aircraft material
10	Almost certainly	There was a delay in the previous C- check
		work package

 Table 7. Detection of Delay [Source: Processed data]

The next step taken is to calculate each failure mode according to the rating for delays in completing the C-check in table 8 below.

		FMEA Process						A	ction Res	ult		
N	o Potential Failure Mode	Potential Effect of Failure	Severity	Occurrence	Detection	RPN	Rank	Recommended Action	Severity	Occurrence	Detection	RPN
	1 Pembuatan job cord yang tidak lengkap	Dapat menghambat proses perawatan	3	3	1	9	12	Melakukan training agar mekanik lebih teliti	2	3	1	6
	2 Banyaknya finding	Menambah waktu pekerjaan untuk perbaikan	8	4	2	64	3	Menentukan jadwal perbaikan secepat mungkin	7	4	2	56
	3 Menunggu approval penyediaan material	Menghambat persediaan material	6	3	2	36	9	Melakukan audit secepatnya agar spore port tepat waktu	5	3	2	30
	4 Stock material kosong	Tidak dapat dilakukan perbaikan	9	1	9	81	2	Selalu mengontrol persediaan material/melakukan robbing	8	1	8	64
	5 Membutuhkan skill khusus	Pekerjaan perawatan yang terbatas	1	1	1	1	13	None	1	1	1	1
	6 Perlu melakukan training khusus untuk lisensi	Pekerjaan perawatan yang terbatas	1	1	1	1	14	None	1	1	1	1
	7 Tidak memperhatikan rasio pekerjaan dengan manpower	Meningkatnya duration pekerjaan	9	3	8	216	1	Menambah tenaga kerja manpower untuk meminimalisir duration	, 7	3	8	168
	8 TAT yang tidak sesuai dengan jadwal	Meningkatnya waktu penyelesaian TAT	1	5	8	40	6	Menetapkan estimasi waktu TAT dari jauh-jauh hari	1	5	7	35
	9 Kebijakan dari PT. XYZ	Masih banyaknya kelonggaran maintenance	1	1	1	1	15	None	1	1	1	1
1	0 Stock di gudang kosong	Menghambat persediaan material	9	4	1	36	8	Menetapkan persediaan material dari jauh-jauh hari	8	4	1	32
1	1 Material belum direservasi	Menghambat reservasi material	9	3	1	27	10	Mempercepat reservasi penyediaan material	8	3	1	24
1	2 Stock gagal reservasi	Tidak dapat dilakukan perbaikan	9	1	2	18	11	Mempercepat reservasi penyediaan stock	8	1	2	16
1	3 Material mengalami defect	Menambah waktu perbaikan material	9	5	1	45	4	Melakukan perawatan rutin untuk meminimalisir defect	8	5	1	40
1	4 Repair order belum dibuat	Menghambat penyelesaian perawatan	10	2	2	40	7	Mempercepat pembuatan repair order	9	2	2	36
1	5 Shipping process part yang lama	Menambah waktu untuk persediaan port	7	3	2	42	5	Melakukan robbing	6	3	2	36

Table 8. FMEA [Source: Processed data]

From table 8, the FMEA analysis above can then be analysed using the Pareto diagram shown in table 9 and figure 2 with the aim of stating each failure mode which is the main priority in contributing to delays in completing the following C-check maintenance.

No	Potential Failure Mode	RPN	Cumulative	Grand	Cumulative
110	i otentiar i anure moue	INI IN	Total	Total	(%)
			Iotai	(100%)	(70)
1.	Requires special skills	1	1	0,15	0,15
2.	Need to do special training for licensing	1	2	0,15	0,30
3.	Policies from PT. XYZ	1	3	0,15	0,46
4.	Incomplate job cand creation	9	12	1,37	1,83
5.	Stock failed reservation	18	30	2,74	4,57
6.	Materials have not been reserved	27	57	4,11	8,68
7.	Waiting for approval for material supply	36	93	5,48	14,16
8.	Stock in warehouse is empty	36	129	5,48	19,63
9.	TATs that are not in accordance with the schedule	40	169	6,09	25,72
10.	Repair order has not been created	40	209	6,09	31,81
11.	Long shipping process part	42	251	6,39	38,20
12.	Materials have defects	45	296	6,85	45,05
13.	Number of findings	64	360	9,74	54,79
14.	Stock material is empty	81	441	12,33	67,12
15.	Does not pay attention to the ratio of work to manpower	216	657	32,88	100,00

 Table 9. Cumulative RPN Value [Source: Processed data]

From the results of the analysis using Pareto diagram which shows problems based on the number of failures, it is known that the ratio of workers to manpower is 216 and the cumulative percentage reaches 100%, which is at the highest level of the RPN.

4.3 Analyse Stage

Based on the results of interviews, observations and brainstorming that have been carried out to find the root cause of the delay in completing C-check maintenance using the fishbone diagram method in Figure 3 below.

Based on the results of the analysis using the fishbone diagram method, a calculation of the initial RPN value was obtained which was the cause of the biggest problem in delays in completing C-check maintenance in table 10.

Element	Solution	Severity	Occurrence	Detection	Initial RPN
Man	Not paying attention to the ratio of work to <i>manpower</i>	9	3	8	216
Material	Stock material is empty	9	1	9	81
Machine	Number of <i>findings</i>	8	4	2	64
Method	Creating incomplete job cards	3	3	1	9

4.4 Improve Stage

From the results of the explanation via fishbone diagram, the root cause of the delay will be analysed using FMEA method to determine the critical level and reduce the Risk Priority Number calculation which is explained in table 11 below.

Element	Solution	Severity	Occurrence	Detection	Final RPN
Man	Adding workers (HR) or <i>manpower</i> to minimize <i>the duration</i> (length of work)	7	3	8	168
Material	Always control the amount of material available and the time for material procurement well in advance so that it is on time	8	1	9	64
Machine	Set a repair schedule as quickly as possible so as not to extend the TAT time	7	4	2	56
Method	Conduct <i>training</i> so that mechanics are more thorough	2	3	1	6

Table 11. Final RPN Calculation Using the Fishbone Method

It can be concluded that reducing the RPN value can reduce the risk of delays in C-check maintenance on B737NG aircraft at PT.XYZ.

5. Conclusions and Suggestions

5.1 Conclusion

The conclusions obtained from the results of this final assignment are as follows.

a. TAT (Turn Around Time) delay of 10 days and the maintenance delay percentage reached 0.53% of the total 11.46% at the completion of one C-check maintenance period for the B737NG aircraft from the results of the scheduling analysis at PT XYZ.

- b. There are three main factors that cause delays in TAT from completing Ccheck maintenance which is determined based on the highest RPN value from the cumulative percentage of the Pareto diagram, namely not paying attention to the work to manpower ratio of 100%, empty material stock of 67.12%, and the number of findings amounting to 54.79%
- c. Check maintenance based on the factors above is to increase labor (HR) or manpower to minimize the duration (length of work), determine the estimated amount of material availability and material procurement time in advance so that on time, and determine the repair schedule as quickly as possible so as not to extend the TAT time.

5.2 Suggestions

- 1. From this analysis, it is recommended that we can analyse and optimize the aircraft maintenance process time using more C-check data to obtain more significant results.
- 2. Can be developed by carrying out software simulations to make research easier in a larger number of work tasks.

References

- D. Wahyuni, I. Budiman, J. Panama and Carine, "Waste Reduction in Aircraft Cabin Maintenance Activities with a Lean Manufacturing Approach," *EE Conference Series*, vol.2, no. 3, pp. 358-364,2019.
- 2. M. Mora, "Literature Review of Aircraft Maintenance Programs," *Journal of Civil Aviation Research*, vol.38, pp. 356-372,2012.
- 3. McDermott, RE, Mikulak, RJ, Beauregard, M, R. 2008. *The Basics of FMEA 2nd Edition*. CRC Press.
- 4. Trenggonowati, DL, Umyati, A., Patradhiani, R. 2021. *Analysis of the Application of Lean Six Sigma to Reduce C-CHECK Turn Around Time (TAT) in Aircraft Maintenance Services*. INTEGRATION Journal: Scientific Journal of Industrial Engineering.
- 5. PT XYZ Airline Internal Documents in 2021.