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Abstract. The aviation industry in Indonesia continues to expand resulting in concerns over 

the environmental impact of aircraft emissions have become paramount. This article pre-

sents a comprehensive analysis of future emission predictions using two advanced time 

series forecasting methods, Long Short-Term Memory (LSTM) and Gated Recurrent Unit 

(GRU), applied to historical aircraft emission data (Q3 2022 to Q3 2023). Leveraging the 

sequential nature of the data, LSTM and GRU networks are harnessed to model the intricate 

temporal dependencies and inherent seasonality present in the emission time series. The 

evaluation encompasses various performance metrics, including Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), and R-squared (R²), to gauge the models' pre-

dictive capabilities across different forecasting horizons. Results indicate that both LSTM 

and GRU methods demonstrate promising forecasting capabilities, outperforming tradi-

tional time series models. However, subtle distinctions emerge in their predictive effi-

ciency. LSTM exhibits superior performance in capturing long-term dependencies and han-

dling complex emission patterns, whereas GRU showcases efficiency in shorter forecasting 

horizons. Remarkably, the research uncovers the profound impact of ML, with the Long 

Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) methods emerging as the 

most potent tools with an accuracy reached up to 87%. 

Keywords: Aircraft emissions, Long-Short Term Memory (LSTM), Gate Recurrent Unit 

(GRU). 

1 Introduction 

Chemicals and many substances are radiatively and chemically active and transported across 

some areas of the world by the aircraft, which serve as high-altitude emissions vectors. These 

compounds cause a net global warming effect that accounts for 3.5% of anthropogenic emis-

sions' contribution to climate change. All nations, including Indonesia, are suffering from global 

warming. The World Meteorological Organization (WMO) reported that 2022 came in at num-

ber six on the list of the world's hottest years, and WMO predicted by the end of the year, global 

warming increased [WMO]. The aviation industry is under pressure to reduce its emissions. 

This is especially difficult for long-range aircraft, which consume 44% of aviation's kerosene 

[1]. The average temperature of an aircraft can be used to determine the climate impact [2]. The 

climatic response of aircraft emissions is affected by the state of the surrounding atmosphere 
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[1]. The emissions generated by the combustion of aircraft engines consist of various com-

pounds containing carbon. The Primary emissions from kerosene fuel combustion in most air-

craft engines are carbon dioxide, water, and trace molecules such nitrogen oxides (NOx), carbon 

monoxide (CO), unburned hydrocarbons (HC), and others [1]. Climate change was a serious 

issue, climate action, included in a series of 17 categories of SDGS (Sustainable Development 

Program Goals) which is the program initiated by the United Nation. Using a traditional statis-

tical method would be a more challenging way to notice the trends and patterns since the time-

series data of the emissions are non-stationary and have complex relationships. Therefore, Ma-

chine Learning would be the best tool to evaluate more into the results. 

 

Emission forecasting is a predictive methodology that centers around the utilization of Arti-

ficial Neural Networks (ANNs), employing a variety of techniques for resolution. ANNs, as a 

machine learning approach, emulate the mechanisms of biological neurons. In 1962, a multi-

layer perception (MLP) model was proposed which is a neural network with a fully-connected 

architecture with good performance [3]. Nevertheless, Artificial Neural Networks (ANNs) are 

not inherently designed for sequential data processing, a common requirement in time-series 

data. To address this limitation, Recurrent Neural Networks (RNNs) emerge as a suitable choice, 

offering the capability to anticipate outcomes, with nodes serving as memory cells to retain 

computations in case of prediction errors. This facilitates efficient backpropagation, enhancing 

data accuracy.  Recurrent Neural Networks (RNN) are able to perform their tasks based on some 

old information recorded in their memories. They are similar to a network that has a loop in 

them in order to keep track of old information [4].LSTM have the sufficient ability to solve the 

problem of long-term dependencies which general RNNs (Vanilla RNNs) cannot learn for the 

prediction [5]. The Gated Recurrent Unit (GRU), another type of RNN, offers a simpler struc-

ture compared to LSTM. This study incorporates foundational techniques such as Autoregres-

sive Integrated Moving Average (ARIMA), Multilayer Perceptron (MLP), and Random Forest 

(RF). These methodologies will be benchmarked against the LSTM-GRU approach to predict 

multi-emission levels of aircraft during flight phases Take-off, Climb, Approach, and Landing, 

potentially yielding significant data-driven refinements. Emission Index and fuel burning data 

taken from the aircraft type. Flight data obtained from flightradar24 based on 20 to 50 aircraft 

registrations on airlines in Indonesia. The calculation approach is from September 18, 2022, to 

September 21, 2023. Fuel combustion and emission index calculations for each type of aircraft 

engine are obtained from ICAO (International Civil Aviation Organization) Engine Emission 

Database. 

2 Aircraft Engine Emissions 

In the previous study, an analysis of Aircraft Gas Emission during Taxi-Out Operation with 

Single Engine Operation using actual operational data of aircraft at soekarno- Hatta Interna-

tional airport from January to July 2019 for all domestic and international flight with cargo 

routes. The calculation uses a hybrid approach or a combination of the advanced approach and 

the sophisticated approach calculations with a single engine taxing strategy for the calculation 

of aircraft gas emissions for three pollutants( HC,CO,NOx.) The calculation approach of using 

a single engine can produce a comparative emission and potential aircraft emission reduction 

for 37% until 40% depending on the type of pollutant. [6]. 



 

In the previous study,analysis of the growth of aircraft use against carbon emission loads 

at  juanda international airport using the overall movement of the aircraft, which has been pro-

jected through predictive methods using exponential smoothing techniques and linear econo-

metric regression analysis, showing less significant fluctuations and tending to show improve-

ment. The highest emissions come from carbon dioxide (CO2), in a massive quantities.Based 

on the analysis, known that the correlation analysis between population growth and forecasting 

of increased aircraft movements using the SPSS method with an accuracy rate of 90% and an 

error () of 10%. [7]. 

Aircraft emission measurement studies were also carried out at Pudong Shanghai Interna-

tional Airport using land-based aircraft operating data from the Aircraft Communication Ad-

dressing and Reporting System (ACARS) data set to obtain emission parameters specific to 

PVG (Shanghai Pudong International Airport) on various combinations of aircraft engines dur-

ing the taxi inbound and taxi outbound phases in the landing and take-off cycle (LTO). This 

emission parameter, along with the PVG-specific operating conditions, was then used to meas-

ure annual emissions in 2017.The analysis obtained emissions of HC, CO, NOx, NO, NO2, 

HONO, HNO2, SO2, BC, and PM2.5 emissions from aircraft activity in PVG measured using 

aircraft performance data. These emissions were found to be the very dominant source of emis-

sions at airports. [8]. 

3 Approach to Calculating Aircraft Engine Emissions 

There are three approaches that can be used to calculate aircraft emissions based on the 

availability of data and information. The first approach is the simple approach, the second is the 

advance approach, the third is the sophisticated approach.[9]. Based on research and previously 

obtained data, the calculation approach to be used is The Advanced Approach data and infor-

mation used, i.e. aircraft type, engine type, EI calculation and Time in Mode. This approach 

takes into account local conditions by integrating several aircraft performance calculations. (air-

craft performance). The results of the calculation of exhaust gas emissions from aircraft engines 

using this approach are more accurate than the simple approach. Nevertheless, the total emission 

calculations are still considered conservative. Each flight produces a huge amount of exhaust 

gas emissions that can be calculated based on the actual flight time. On this analysis the data 

calculations are performed only on flight phases Take-off, Climb, Approach, and Landing. 

Emission Index and fuel burning data are data taken from the type and type of aircraft. Flight 

data obtained from flightradar24 [10] based on flight registration information in indonesia.[11]. 

The calculation approach is from September 18, 2022, to September 21, 2023. Fuel combustion 

and emission index calculations for each type of aircraft engine are obtained from ICAO (Inter-

national Civil Aviation Organization) Engine Emission Database.[12]. 

 

 

 



Table 1 Parameter of Approaches to the Calculation of Emissions of Aircraft Engines 

 

uses this following formula: 

 𝐸𝑖𝑥 = 𝑇𝐼𝑀𝑥 ∗  𝐹𝑢𝑒𝑙 𝐹𝑙𝑜𝑤 ∗ 𝐸𝐼𝑥 (1) 

                                     

Eix = amount of the emissions in CO2 in a fight phase x, (g); 

      TIMx = The amount of time during flight phase x, (s); 

     Fuel burn = Fuel consumption, (gg/s); 

EIx = emission index in CO2, (g). 

 
Table 2 Approach to emission calculation using aircraft type and engine type. 

No Machine Type 

Fuel Flow 

Coefficient 

LTO (kg/s) 

Emission Produced LTO (g/kg) 

CO2 HC NOx 

1 CFM56-7B22E 2,127 634,696 18,0537 5856,01 

2 
CFM LEAP-

1A26 

1,815 
376,460 

9,88008 5572,886 

3 CFM56-5B4 
2,183 

 
222,275 

9,32448 6773,711 

4 CFM56-3B-2 2,248 800,894 25,6881 6903,048 

5 
Rolls Royce 

Trent 768-60 

6,063 
1033,74 

21,2652 27222,54 

6 
Rolls Royce 

Trent 772 

6,490 
997,417 

25,0791 31396,24 

7 
Rolls Royce 

Trent 7000-72 

5,213 
511,990 

0 37468,67 

8 V2527E-A5 2,252 564,530 14,0600 7139,755 

9 V2527-A5 2,056 283,136 14,0600 7139,755 

No Key Parameters The Advance Approach 

1 Aircraft Type 

Identify the type of aircraft taking-off 

and landing throughout Indonesia Air-

port using Flightradar24. 

2 Machine Type Identify group of aircraft type 

3 Time in Mode (TIM) 

Data Identification International Civil 

Organization (ICAO) certification 

Landing-Takeoff (LTO). 

4 Emissions Index (EI) 
International Civil Organization 

(ICAO) certification data bank values. 



 

4 Background of Long-Short Term Memory (LSTM) 

LSTM is a type of network that adopts the model of Recurrent Neural Network structure. 

Recurrent Neural Network itself is a type of Artificial Neural Network (ANN), a statistical 

model that imitates the way that neuron cells in the human brain works. The neurons are con-

nected through junctions called synapses. Each neuron receives thousands of connections with 

other neurons, constantly receiving incoming signals to reach the cell body. [8] Therefore, the 

architecture of the Artificial Neural Networks consist of the same parameters, there are nodes 

and multiple lines that connect each of the nodes. These lines have their own weights that control 

the calculations to affect the outputs. The earliest method of Artificial Neural Network is called 

Multilayer Perceptron. It has the same concept as ANN’s feed-forward or forward propagation. 

Just like how our brain works, it does not only consist of a pair of neurons, instead every neuron 

will be connected to millions of neurons, and these other neurons will be connected to other 

neurons, so we can say that it consists of multiple layers of neurons as we can see in figure 1. 

The architecture of the MLP is completely defined by an input layer, one or more hidden layers, 

and an output layer. Each layer consists of at least one neuron. The input vector is processed by 

the MLP in a forward direction, passing through each single layer. [9] Each of the lines that 

connect the nodes is composed of its own weights. These weights will be then calculated by an 

activation function to generate the results. If the prediction went wrong, the process will be then 

repeated by going back to its input node. For every iteration that happens, the weights will be 

changed to create a more accurate result. Every iteration that happens in the process is called an 

epoch. However, in this paper, the main architectures are the Long Short Term Memory method, 

which is an advanced method of Vanilla Recurrent Neural Network (Vanilla RNN) to learn the 

long-term and short-term of memories.  



 
Fig .1 Simple structure of Vanilla RNN 

The conventional Recurrent Neural Network (RNN) exhibits limitations in effectively han-

dling long-term memory processes. Within the framework of the basic RNN architecture, the 

model's capacity to account for long-term dependencies is notably constrained. The model pre-

dominantly relies on calculating derivatives of prior outputs with respect to certain weights in 

order to make predictions. However, the network's intrinsic structure does not adequately ac-

count for and incorporate long-term memory elements. Consequently, this deficiency impairs 

the overall efficacy of the RNN in predictive tasks. This leads to a generation of new methods 

adopted from the vanilla RNN itself. One of these methods is called LSTM (Long-Short Term 

Memory) which allows the machine to consider both long-term and short-term memories by 

creating a new path and retrieve the output from each cell stage to be processed later on. 



 

 
Fig 2 Structure of Long Short Term Memory 

 

LSTM (Long Short-Term Memory) was initially introduced by Hochreiter and Schmidhuber 

[Jurnal 13 Filip] as a specialized type of recurrent neural network designed to effectively capture 

and retain information across extended sequences. This architectural innovation achieves its 

capabilities by preserving a continuous flow of information through dedicated cell states, ensur-

ing the preservation of long-term data dependencies. Illustrated in the accompanying diagram, 

the LSTM architecture features distinct gates, namely the Forget Gate, Input Gate, and Output 

Gate. These gates play a pivotal role in mitigating the issue of gradient vanishing, a common 

challenge in conventional Recurrent Neural Network (RNN) systems, which arises from the 

diminishing gradients during backpropagation. This phenomenon results from the repeated ap-

plication of the same transformation to input data, causing a dwindling number of gradients or 

errors. These calculations incorporate the sigmoid and hyperbolic tangent (tanh) functions to 

determine the extent to which long-term dependencies should be retained, ultimately improving 

the accuracy of the output. The sigmoid and tanh functions play a crucial role in this process by 

regulating the proportion of information to be preserved. The sigmoid function, for instance, 

maps values to a range between 0 and 1, effectively acting as a gate for the retention of relevant 

information, while the tanh function, which maps values to a range between -1 and 1, helps in 

controlling and shaping the flow of information. These mechanisms contribute to enhancing the 

overall performance and predictive capabilities of the system. The sigmoid and tanh formula 

can be seen as below: 

 
𝜎 =

𝑒𝑥

𝑒𝑥 + 1
 

(2) 

 
𝑡𝑎𝑛ℎ =

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 +  𝑒−𝑥
 

(3) 

As for the LSTM, the simple formula derivation illustrated in Equation _____: 

 𝑖𝑡 = 𝜎(𝑊𝑖𝑋𝑖 + 𝑅𝑖ℎ𝑖 + 𝑏𝑖 )  (4) 



 𝑓𝑡 = 𝜎(𝑊𝑓𝑋𝑡 + 𝑅𝑓ℎ𝑡−1 + 𝑏𝑓 )  (5) 

 𝑂𝑡 = 𝜎(𝑊𝑜𝑋𝑡 + 𝑅𝑜ℎ𝑡−1 + 𝑏𝑜 )  (6) 

 𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑔𝑋𝑡 + 𝑅𝑔ℎ𝑡−1 + 𝑏𝑔 )  (7) 

 𝐶𝑡 = 𝐶𝑡−1𝑓𝑡 +  𝑔𝑡𝑖𝑡 (8) 

 ℎ𝑡 = tanh(𝐶𝑡) ∗ 𝑜𝑡 (9) 

In the context of the model's architecture, it is essential to delineate the role of the weight 

parameters denoted as 𝑊𝑓′ 𝑊𝑖′  𝑊𝑜′𝑊𝑔 ,which represent the input weights at each computational 

stage, while 𝑅𝑓′ 𝑅𝑖′  𝑅𝑜′  𝑅𝑔 ,symbolize the recurrent weights associated with each stage. These 

weight parameters, in conjunction with the sigmoid function denoted by, play a pivotal role in 

determining the degree to which long-term dependencies are retained, thereby contributing to 

the enhancement of prediction accuracy. The variables ℎ𝑡−1  and 𝐶𝑡−1 , initially set to zero, serve 

as the hidden state and cell state of thse model respectively and can be subject to modification 

based on the underlying previous conditions. The temporal indicators, 𝑡 and 𝑡 − 1, signify the 

current time step and the preceding step, respectively, which are instrumental in the prediction 

process. Additionally, the variable 𝑔𝑡  represents a measure of potential long-term memory, 

playing a vital role in specifying the proportion of this information to be retained. 
These parameters undergo a structured computation to ascertain the output of the long-term 

dependency score, culminating in the ultimate output for short-term dependency assessment. 

This is achieved by performing a multiplicative operation involving the hyperbolic tangent 

transformation of Ct (memory cell state) and ot, contributing significantly to the final output 

and capturing the dynamics of long-term and short-term dependencies within the model's con-

text. 

5 Application of Gated Recurrent Unit (GRU) 

GRU stands for Gated Recurrent Unit, a similar method to LSTM adopted from Recurrent 

Neural Network (RNN). This method uses two main gates, update gate and reset gate. Reset 

gate is responsible for deciding which data to remember and which to forget, a similar system 

as the forget and input gate of LSTM. Update gate is responsible to decide the quantity of the 

passed information to forget – similar to the tanh function of the input gate of LSTM. The struc-

ture of the figure 3 is shown below: 



 

 
Fig 3 Structure of Gated Recurrent Unit (GRU) 

The schematic representation differentiates between the reset gate, denoted by the red area, 

and the update gate, identified by the green section. It's noteworthy that the mathematical frame-

work employed in this methodology closely resembles that of the Long Short-Term Memory 

(LSTM) model, as depicted in the formula presented below: 

 𝑢𝑡 = 𝜎(𝑊𝑢𝑋𝑡 + 𝑅𝑢ℎ𝑡−1 + 𝑏𝑢 )  (10) 

 𝑟𝑡 = 𝜎(𝑊𝑟𝑋𝑡 +  𝑅𝑟ℎ𝑡−1 + 𝑏𝑟 )  (11) 

 𝐶𝑡 = tanh ((𝑅𝑐ℎ𝑡−1 ∗ 𝑟𝑡 + 𝑊𝑐 𝑥𝑐 ) +  𝑏𝑜 ) (12) 

 ℎ𝑡 = (𝑢𝑡 ∗ 𝐶𝑡−1) + ((1 − 𝑢𝑡 ) ∗  ℎ𝑡−1 )) (13) 

This model demonstrates the potential for enhanced efficiency when compared to LSTM. 

The streamlined design of the gates simplifies the process, facilitating swifter information flow. 

However, it is worth noting that GRU diverges from LSTM in that it lacks a dedicated cell state. 

Instead, it relies solely on the hidden state for information transfer. This distinction implies a 

trade-off, as it offers speed but reduces the ability to explicitly control the memory unit.  

6  Simulation and Results 

The simulation was conducted utilizing Keras, a specialized Application Programming In-

terface within the TensorFlow framework, tailored for addressing complex machine learning 

challenges. In tandem with Keras, two pivotal libraries were employed to streamline the process: 



Pandas, which served as a versatile data manipulation tool for enhancing data organization, and 

Numpy, instrumental for array transformations central to numerous computational tasks. Fur-

thermore, the visualization component was facilitated through the utilization of Matplotlib, a 

widely adopted Python library renowned for its graph plotting capabilities. 

 
Fig 4 Workflow of LSTM Emission Prediction 

6.1  The Dataset 

Recurrent Neural Network can only be implemented by using time-series data, thus in this 

paper we used data from FlightRadar24 and public dataset from International Civil Aviation 

Organization (ICAO). The range of the time-series span from 18th September 2022 to 21st Sep-

tember 2023 in this paper. The data then splitted into a 70:10:20 of training, validation, and 

testing data respectively with the features as shown below:  

 

 



 

Table 3 The parameter of approach method 

 

 

The dataset would then be splitted into 3 different categories, testing, training and validation 

data. These sets of data are required to perform a prediction model under the machine learning 

environment. Along with this simulation, these parameters are considered. The optimizer that 

was used in this research is the Adam optimizer, one of Keras’ algorithms to optimize the learn-

ing rates of each parameter, making the process converge faster. The input and output layer = 

10 (based on inputs – how many historical data to be processed on each step), along with two 

LSTM layers = 26 and 13 units, Dense Layer = 4 (based on the features). The similar model 

goes for GRU with 1 layer of input, 2 layers of GRU along with a Dropout layer to minimize 

possibilities of underfitting or overfitting, and 1 Dense layer as output. In order to optimize the 

learning rates of each gradient, we also deployed Adam Optimizer. The figure 5 below shows 

the visualization of the raw data without 

 

 
Fig 5 Raw Emission Time-series data 

By looking at the Loss – validation and training loss – we could determine whether the 

training process went well or not. The training loss and the validation loss have to be in a state 

where both of the values are close to each other. If the values of both losses do not tangent to 

each other, the prediction is going to be inaccurate due to either overfitting or underfitting, a 

state where one of the parameters is lower than the other. The paper used regularizer, a method 

done by adding a cost to the loss function associated with having large weights resulting in 

distribution of weight values to be regular by only taking small values to the weights. In this 

paper, the regularization used was L2 Regularization. 

 

Feature Summary 

Date Date recorded of flights. 

Fuel burn 
The fuel required in all flights in a particular date 

cumulatively. 

CO2 Value of CO2 emitted for all flights cumulatively. 

HC Value of HC emitted for all flights cumulatively. 

NOx Value of NOx emitted for all flights cumulatively. 



 
Fig 6 Train-test split (80% train) 

 
(a) 

 
(b) 

Fig 7 (a) LSTM and GRU trained data loss and validation loss progress (b) LSTM and 

GRU RMSE and accuracy on training progress. 



 

 

 
 

 
(a) 

 

 
(b) 

Fig 8 (a) The prediction of the emission flow with LSTM (b) The prediction of the emission 

flow with GRU. 

 

The result that we received did not meet our expectations as the predictions only have 48% 

for LSTM and 56% for GRU on average. However, this model can go up to 87% accuracy as it 

surges on iteration. LSTM took up 50 iterations in order to get the expected accuracy, as for 

GRU took up 200 iterations, which is not very desired. Therefore, we tend to scale up the quan-

tity of the inputs (the historical data) and increase the hidden layer by one. Figure 9 and Figure 

10 shows the result of the better RMSE and prediction which have an increasement by 2% for 



LSTM, as for GRU decrease by 4%. The model also shows a low number of RMSE reached 

down to 1.6% for LSTM and 1.1% for GRU. 

 

7. 

Conclusion  

The emissions generated by aircraft are subject to significant variability, primarily influenced 

by factors such as the specific flight parameters and the type of fuels employed. This variation 

in emissions has prompted the development of a machine learning model tailored for the avia-

tion sector. The proposed model aims to effectively suppress the unpredictable fluctuations in 

emissions, contributing for more sustainable aviation industry. By harnessing the power of data-

driven insights and real-time monitoring, this model has the potential to play a crucial role in 

mitigating the environmental impact of aviation, ultimately leading to a cleaner and more eco-

friendly future for air travel. Therefore, Emission Prediction based on LSTM and GRU model 

is proposed using some tuning to achieve a 87% accurate prediction of the data that were cumu-

latively generated in Indonesia. 
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