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Abstract. This paper presents a method for controlling and operating a multi-chillers
system: (1) Model-based control approach was used by MATLAB/SIMULINK to model
a building containing two non-identical chillers depending on thermal loads. (2) ON/OFF
all chillers alternately using the model reinforcement learning controller (RL-control) to
select the appropriate chiller for the building conditioning process. The results were in
terms of energy efficiency and performance of  the enhanced learning control for  the
chiller, and a control unit signal (PID) was applied to make a comparison with the signals
of  energy,  power,  and  temperatures.  After  comparison,  it  was  found that  the energy
saving through the proposed controller is 45% of the traditional (PID) strategy, where
can  the  proposed  strategy  control  for  the  chiller  appropriate  for  the  building's
conditioning process.

Keywords: Multi-chillers system, Reinforcement Learning, Model-based control, Chilled
water system.

1   Introduction

      The Heating, Ventilating, and Air Conditioning (HVAC) system is a vast field. In general,
the categories of building service and (HVAC) systems make up the main sources of energy
use in buildings, and it is estimated that HVAC is responsible for 50% of the building's total
energy consumption. Buildings are responsible for a considerable amount of energy use as the
global building strip currently consumes about 40% of the overall energy produced [1][2][3].
In the HVAC system same, the most energy-consumption portion is the chiller unit system,
that made up of chillers, pumps, cooling towers, and some other equipment. The chiller which
is widely used to provide the cooling load is one of the main energy-consuming equipment,
the energy consumption reduction of the multi-chillers system is of great importance in the
HVAC system [4].  Reinforcement  learning  (RL) was  initially  demonstrated  as  a  practical
approach  to  control  HVAC  systems  [5].  System  selection  depends  on  the  building
configuration, the environmental conditions, which HVAC design should consider different
agents such as load variations, operating precision, Energy preservation, and total cost, and
flexibility, etc. while selecting the equipment, and considered some standards that can be such
as environment alteration (e.g., temperature, humidity, and pressure). All water systems are
suitable for low-cost centralized HVAC systems in high-rise commercial applications, and it is
the ideal  solution to  replace  all  air  systems in high-rise buildings and is more  suitable  in
buildings requiring individual control [6][7].
Liu  and  Henze  (2006)  have  been  proposed  Simulated  RL,  a  hybrid  control  planner  that
combines aspects of model-based optimum control with model-free learning control ــــ is used
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to control the building. The feasibility performance testing demonstrated that employing both
active and negative thermal storage inventories, the hybrid control strategy can supply reliable
control. Using the measured data, the hybrid control technique realized an 8.3 % cost provides
during  the  basis  state  [8].  Dalamagkidis  et  al.  (2007)  the  RL  controller  is  created  and
simulated  in  the  MATLAB/SIMULINK  environment  [9].  Fan  et  al.  (2011)  proposed  an
optimal control strategy for a multi-chiller system based on the probability density distribution
of cooling load ratio,. At the same time, unnecessary chillers switch on/off behaviour can be
prevented [10]. Huang et al. (2015) suggested chiller scheduling based on cooling demands
Their  goal  was  to  control  the  on/off  the  multi-chiller  systems to  reduce  the  total  energy
consumption when compared with two existent sequence control methods—the optimal load
distribution technique and the critical  points reset  strategy based on cooling capacity [11].
Azuatalam et al. (2020) proposed a new RL architecture for the control HVAC system with
leveraging its demand response possible, design an active RL controller for a whole building
model in compared to a handcrafted baseline controller, simulation results show that using RL
for plain HVAC process will result in maximum weekly energy decreasing of up to 22% [12].
Yao et al. (2004) a mathematical model of optimal running for the refrigeration system are
developed,  the results showed that by applying the optimal model to the refrigeration system,
energy savings of up to 10% are possible [13]. Qiu et al. (2020) this approach is based on Q-
learning, a classic RL method, and it proposes a model-free optimal chiller loading method for
optimizing chiller operating by altering the set points of the chilled water exit temperature.
According to the simulation results, the proposed method can save 4.36 % of chiller energy
during the first refrigerating season when compared to the baseline control [14]. Qiu et al.
(2020) a model-free optimal control method depends on RL is proposed to control building
refrigerating water, [15]. Homod et al. (2021) the HVAC system established was adopted as
the  system  performance  model;  it  provided  dynamic  system  modelling,  simulation,  and
monitoring cooling system performance. The test results show that significant energy saving
through reducing  the system operation cost  and  that  by improving the  four variables:  the
cooling  water  supply  temperature  (Tcws)  from  the  chillers,  the  chilled  water  supply
temperature (Tchws) from the chillers, (Tchw) from the heat exchangers, and the supply air
temperature  of  the air  handling units (AHU) [16].  The main objectives  were  to study the
operating strategies of chillers alternately as follows:

1. A  model-based  control  approach  was  used  by  MATLAB/Simulink  to  model  a
building containing two non-identical chillers depending on thermal loads.

2. ON/OFF for all chillers alternately using the model reinforcement learning controller
(RL-control) to select the appropriate chiller for the building conditioning process.

HVAC system modelling is necessary to study and organize energy-consuming and kind of
internal environment [17]. In general, three types of modelling are used for HVAC systems:

a) The black  box models:  The black-box model  concept  is  an  appropriate  transport
function  model  to  the  input/output  real  model  data  to  produce  polynomials
coefficient, and relevance between the input and output variables is identified using
mathematical techniques. Use of the black-box model is at times preferred because it
is  simple to  construct  and  there  is  no requirement  to  know the  system’s  internal
structure  [18][19].  Black-box  models  are  simple  to  build  and  computationally
efficient [20].

b) The white box models: The system models are created utilizing the governing laws
and  extensive  understanding  of  the  underlying  process  in  this  type  of  approach,



which is  known as  a  physics-based  method.  Mathematical  models  are  commonly
used to represent the processing signal in the realm of HVAC system modelling. This
signal,  however,  is  formed  using  conservation  rules  such  as  components,  mass,
momentum, and energy balance [18][19][20].

c) The Gray box models: Compared to black-box models and white-box models, these
models have good precision and better generalization capabilities, but they are also
the  hardest  to  build.  For  some  (HVAC)  subsystems,  the  underlying  physical
phenomenon may be difficult to represent [17][18][19].

2   Chillers

       Chillers are important commercial components as they expand the cooling capabilities of
(HVAC) systems. When choosing a chiller, you must correspond to the requirements for the
cooling temperature and how efficient they are. For large complexes of buildings used large
chiller  or  multiple chillers  to produce chilled water  that  can be provided to meet the air-
conditioning  demands  of  the  different  buildings  [21][22].  And  to  meet  different  load
requirements, air-conditioned buildings contain several  centralized refrigeration systems for
multi chillers. Different types of chillers are used in (HVAC) systems, the chiller may be the
best choice for one application, but it may be too expensive or inconvenient for another [22]
[23].
Air-cooled chillers (Direct chillers): These chillers remove heat from the refrigerant by using
fans that push air through tubes to condense the hot refrigerant. Air is a poor conductor of heat
as compared to water, so air-cooled chillers are larger and less effective. Air-cooled devices
have a higher compressor ratio, which means they use less energy to cool per watt [24][25].
Water-cooled chillers (Indirect chillers): This type of chiller removes heat utilizing pumps that
send water through the condenser to recycle the water from the cooling tower to condense the
refrigerant.  They work well  in medium and large commercial  HVAC installations because
they aren’t affected by the ambient temperature. These chillers are more efficient because of
water’s high heat capacity but cost more to install and maintain [25].
In HVAC plants of medium-high refrigeration capacity, multiple chiller systems (MCSs) are
often adopted, these systems consistency of multiple chillers, as the arrangement of chillers
are differentiated through performance. The series arrangement is better because it can transfer
heat, but it is not with a better efficiency than Parallel. Every chiller can be operated at various
capacities to meet various refrigeration demands [26][27].
One of the most important problems with MCSs is to save more energy by reducing the total
electrical  energy  consumption  of  the  chillers,  since  the  electrical  consumption  of  MCSs
increases  significantly  when  the  chillers  are  poorly  handled;  improving  the  efficiency  of
MCSs may result in substantial energy savings. The amount of energy saved by converting
from a single chiller to a multi-chiller cooling plant varies depending on the type of building
and environment [28].
The use of multiple chillers compared to a single chiller provides some advantages such as
operational flexibility, standby capacity, maintenance is less disruptive, as well as using more
than one chiller is better economical and reducing energy cost in the case of partial loading.
Also, the coefficient of performance (COP) is better and will give high efficiency, as if we use
one chiller and with high capacity, its cost will be high as well, and because these systems



depend on many factors including (capacity, partial load efficiency of each chiller, selection of
refrigeration unit, refrigeration circuit design, type and number of compressors), etc [21].

3   Reinforcement Learning (RL)

Reinforcement learning (RL) is a branch of machine learning that studies how software agents
should behave in each environment to maximize the concept of cumulative reward.  Along
with  supervised  and  unsupervised  learning,  the  RL is  one  of  three  fundamental  machine
learning paradigms. In the RL domain, we will only provide our algorithms with a (reward
function),  which  refers  to  a  learning  factor  when  it  is  performing  well,  and  when  it  is
performing poorly, the learning algorithm’s task is to know how to choose actions over time to
obtain big rewards. The goal of "RL" is to guide the agent to determine what action to take
that  maximizes  (or  minimizes)  the  sum  of  all  RL  signals  (the  numerical  reward)  or
punishment, it receives over time, called the total expected reward [29].

Fig. 1. RL Agent-Environment Interaction.

According to Fig. 1. If the agent performs one of many possible acts on the environment, it
arrives in one of many possible states and is rewarded or punished for that specific action.
This reward is intended to provide feedback to the agent about how well it is performing at
each decision time step [12].
Markov Decision Processes (MDPs) are a fundamental formalism for reinforcement learning
(RL). The method of sequential agent-environment interactions including state, actions, and
rewards in the RL trouble can be expressed as an MDP since it includes sequential decision
making, the problem consists of sequential decisions that an action (A) must be taken in each
state (S) that is by the agent [30][31].
The major components for the RL system are agent, state, action, policy, reward signal, value
function, and model. Agent: In RL, an agent learns to accomplish an objective by reacting
with the environment repeatedly. State (s): (RL) concentrated on learning how good it is for
the agent to be in each state in the long run. State indicates the current position returned by the
environment.  Action  (a):  actions  are  the  Agent's  method  for  reacting  to  and  varying  its
environment, and thus transporting between states. Any action the Agent takes results in a
reward  from  the  environment  [30][32].  Policy  (π):  a  policy  is  the  learning  agent's  way  of
behaviour at a specific time. Simply the policy maps something that perceived states of the
environment to actions to be taken when in those states. The policy is the essence of the "RL"
agent in the mean that it is a strategy that applies by the agent to determine the next action



based on the current state. Finding the optimal policy is the basic object of the (RL) process
[31]. Reward signal (R): the reward signal (R) refers to how good or poor an occurrence is, and
it determines the problem's target, which is for the agent to increase the total reward obtained.
The better action is chosen by values of states or actions because the higher value gets about
the biggest amount of reward in the long run. The learning agent will then be able to optimize
the  total  reward  it  gets.  Depending  on  the  action  taken,  the  agent  receives  a  positive  or
negative reward [30][31]. Value function (V): The value function is an expectation of the future
overall rewards, specifies which is good in the long run. The state-value function Vπ (s) is the
predicted return when beginning from a state "s" [31].
Model-based methods, such as dynamic programming, require a model of the environment,
whereas  model-free  methods  are  learning  without  one.  Model-based  methods  study  the
transmission and reward models from reaction to the environment and then utilize the learned
model to compute the optimal policy through value iteration.. Model-free methods optimize
the value function instantly from the observed experiment and do not depend on the transition
and reward models, value functions are learned by trial and error [30].

4  Description of the Building

The Basra International Airport building model was chosen to study the operating strategies of
chillers alternately. This building includes 2-chillers "York" and the type of gas used is R-
134a. Fig. 2, photo of the real  system (chiller 1) in Basra International  Airport. The basic
information about the building and chiller system is listed in Table 1:

Table 1. Building and Chillers System Data.
Building location Basra, Iraq
Cooling system 
Pump system 
Chillers 
Setpoint of temperature   
Compressor
Capacity
Cooling towers

Water-cooled
The primary pump, the secondary pump 
2 units
5.6°C
Centrifugal Chiller
1900 ton
6 units



Fig. 2. Photo of the Real System (Chiller 1) in Basra International Airport.

Fig. 3. Simulation of the Cooling System.

4.1. Building structure, simulation of cooling system

The proposed  model  was  built  to  determine  the suitable  chiller  for  a  building  adaptation
process using a model-based control approach. The major advantage of choosing model-based
learning. As shown in Fig. 3, the model of the cooling system for an airport building by using
MATLAB / SIMULINK. This model represents the products of the solutions (white box), the
mathematical  model.  First,  the  thermal  loads  of  the  airport  building  are  calculated.  By
calculating these loads, we find the signals of energy, power, and temperatures. The method
recommended  is  for  a  chilled  water  system  with  non-identical  units  (i.e.,  non-identical
chillers).  The  chilled  water  system should  also  be  disconnected  (constant  primary  chilled



water flow rate and variable secondary chilled water flow rate). This study depended on the
computation of heating and cooling loads for opaque surfaces [33].

4.1.1. Opaque surfaces
The  rate  of  energy  stored  can  be  calculated  by  applying  the  basic  theory  of  energy
conservation to the HVAC process [33]:    
                                                    
                                                                                                                                                                   (1)

Where denotes the rate of change in the system's total stored energy, and ,  denotes the rate of
net energy transfer. The left-hand side of  Eq. 2  represents the cumulative rate of energy of
opaque surfaces, through the control volume from inside to outside [33].
       
                                                                                                                                                   (2)

 is the heat capacitance (J/K), and and are the heat gains. The surface area ,  and the surface
cooling factor determine how much heat enters ) through the control volume across opaque
surfaces. Thus, it is possible to write it mathematically as follows [34]:
                                                                   
                                                                                                                                                   (3)

                                                                                                                                                   (4)

Where  represents the building -factor, W/(m2.K),   represents the cooling design temperature
differential  (◦C),  ,  ,  and  represent  the opaque surface cooling factors,  and  represents  the
cooling daily range (K) [33].
 
                                                                                                                                                   (5)

The heat transfer due to convection into the conditioned area is represented by the second part
in Eq. 2. For convection heat transmission, Newton's law of cooling is as follows [35]:

                                                                                                                                                   (6)

As a result, using Eq. 2, apply the RL approach to the entire building. The time-dependent
thermal balance equation can be explained using the empirical formula [36]:

                                                                                                                                                   (7)

The empirical formula given in Eq. 7, the temperature varies for the opaque surfaces of the
building,  given  by  a  linear  combination  of   and  .  This  method  works  well  for  thin,
homogenous building materials, but for thick, heavy materials, the equation shows a variance
in mistakes, and the only way to eliminate these errors is to offer a larger number of nodes in



the equation, such as  , , , …, ,   the temperature curve must be expressed as a linear set of
functions to be approximated to  , , , …, ,  [33].

                                                                                                                                                   (8)

We take the Laplace transformation for both sides of Eq. 8 and assume initial conditions are
zero, and to simplify the expression further it is possible to use the transfer function in the
spatial domain (s-domain) [33].

                                                                                                                                                   (9)

Where, 
                                                          
                                                                      . 

In Eq. 9, Outdoor temperature (), thermal resistance and solar radiation incident (), and room
temperature () are the inputs for the opaque internal temperature surface (), () is the function of
thermal resistance and external temperature  (◦C),  and () is the function of thermal resistance
[33].

4.1.2. Transparent Fenestration Surfaces

This area's heat transport differs from that of opaque surfaces. We can utilize it in Eq. 2. To
calculate the heat gain, the following factors are used: area  and surface cooling factor  [35].

                                                                                                                               (10)

Where  is a given by                                                                                        ,     is the
fenestration  cooling load (W),  is  fenestration  area  (m2),  is  the  surface  refrigeration  factor
(W/m2),  is  the  fenestration  NFRC  heat  U-factor  (W/(m2.K)),  NFRC  is  the  National
Fenestration Rating Council, and  is the refrigeration design difference in temperature (K), DR
stands for cooling daily range (K), PXI stands for peak exterior irradiance (W/m2), SHGC
stands for fenestration rated, IAC stands for internal shading attenuation coefficient, and  [34].
The following formula is used to calculate PXI:

                                                                                                                                                 (11)

                                                                                                                                                 (12)

Where PXI is the peak exterior irradiance (W/m2), , , and  are the peak total, diffuse, and
direct irradiance (W/m2),  is the transmission of exterior attachment, and is the fraction [33].
The  values,,   and   are  based  on  two  surface  conditions:  horizontal  surfaces  and  vertical
surfaces. 
For horizontal surfaces [33]:
                                                                                                                                                 (13)



For vertical surfaces [33]: 
                                                                                                                                                  

(14)
                                                                                                                                                 (15)

Where L is the site latitude, and °N is the exposure. 
For any fenestration shadowed by nearby for peak hours, the fraction  can be taken as 1. An
estimated equation provides simple overhang shading [33]:

                                                                                                                                                 (16)

Where  is the shade line factor,  is the depth of overhang (from the plane of fenestration) (m),
is the vertical distance from the top of the fenestration to the overhang (m), and is the height of
the fenestration (m).                   
The following is how  values are calculated [33]:

                                                                                                                                             (17)

Where   the  interior  attenuation  coefficient,   is  the  shade  fraction,  and   is  the  interior
attenuation coeff. [33].

The heat gain through a fenestration is given as [34].

 
(18)

The transfer function can be determined using the same approach as the opaque surfaces after
obtaining the heat transmitted into the control volume. The outcome is the glass's internal
temperature , which is defined as [33]:

                             (19)

Outdoor temperature , indoor temperature , and conditioned place location  are used as inputs,
and the result is inside glass temperature .  

                                                    ,       
                                                                 ,                                                  

                     
                                       ,                                                      [33].      

4.1.3. Slab floors

The slab floor is a significant thermal capacitance storage capacity. It is the greatest and also
most complex to calculate the building's several components. Eq. 2, energy conservation law
can be rewritten like this [35]:



                                                                                                                                                 (20)

Where  and  are the heat gain and lossof the slab, respectively (W) and  is the heat capacitance
of slab (J/K).
According to [37] heat gain is largely through the perimeter, rather than the floor and earth
[38].
Overall heat loss/gain is more almost related to the length of the perimeter than to the area of
the floor, and it may be computed by the following equation for both unheated and heated slab
floors [33].

                                                                                   (21)

Where  is the heat gain through slab floors (W),  is the heat loss of the perimeter, W/ (m.K),  is
the perimeter or exposed edge of the floor (m),  is the inside slab floor temperature, and  is the
outdoor temp. [33].
The ASHRAE organization calculated the heat loss from a concrete slab floor using the same
procedures as for opaque and fenestration surfaces [39]. As a result, the heat production of the
control volume is as shown in Eq. 22.

                                                                                                                                                 (22)

Where is the area of the slab (m2),                                                 is cooling factor (W/m2),
given by

Where  is the effective surface conductivity, which includes slab covering substance resistance
, like carpet (Representative  values can be found in [40].
Eqs. 21 and 22 are substituted into Eq. 20 to produce the slab floor transfer function, and then
after simplifying the expression, Laplace transformation is used on both sides of the resultant
equation [34].
As illustrated below, the slab floors insides are slabbed floors area () and outside temperature ,
while the slab floors outcomes are internal slab floors temperature [33].

                                                                                                                                                 (23)

Where
                                           
                                           is the heat capacitance of slab floors (J/k) [33].   

4.2. Building System Control of the Reinforcement Learning (RL) Process 

Reinforcement Learning (RL) is a framework in which an agent interacts with its environment
and learns the best set of behaviours to achieve a goal, which is represented by a policy. RL
focuses  on the learning  agent  that  adjusts its  behaviours  in  response to  the environment's
reward to achieve a specified objective, such as getting the maximum amount of reward [41].
Instead of a priori  knowledge, the agent's  actions are based on his or her own experience
gained during the game. Research has been done in the field of building control to apply RL to
model-based control [15]. 
In this research, the environment is the model for the airport building described previously.
The agent's learning goal is expressed through a reward, which is a scalar feedback value that



quantifies how the agent is acting about the learning objective. A MDP is characterized by a
tuple (S, A, R, P,  𝛾), is used to formalize the agent-environment interaction. [41] stated S is

the set of states, A is the set of actions, r: S × A → R is the reward function, P is a state
transition probability matrix; the transition function specifies the probability of transition from
the state (𝑠) to state  on acting (a) and 𝛾 is a discount factor, 𝛾 ∈ [0, 1] [41].
The state-value function  is the predicted discounted return when beginning from a state "s"
[41].
                                                                                                         (24)

Where "Rt" represents the total rewards received during the period "t", "rt+k" represents the
signal of an instant return, and (γ) represents the discount rate, calculated inside the inqulaity
to check that (Rt) is limited [12].
                                                                                          (25)

                                                                                                   (26)

The (RL) agent uses an optimal strategy to discover the ideal state-value function. It may be
written as the sum of all state-values in Eqs. 27, 28, and 29. A set of equations known as the
"Bellman Optimality Equations" can resolve  into instant return and discounted future values
[12].

                                                                                                     (27)

                                                              (28)

                                                     (29)

The agent optimizes its policy π: S → P(A), which describes its behaviour in the environment,
where  P(A)  is  a  probability  distribution  among the  global  set  of  actions,  over  a  discrete
sequence of time steps. The goal of the policy improvement technique of optimal policy (π∗)
for better action that maximizes the projected discounted return [42].
In our problem, (energy, temperature) are state components, and the agent chooses an action
from a finite set of feasible actions that represent the chillers' capacity at each time step (0, 25,
40, and 65). As a result, the state of the environment is changed to st+1, and the agent receives
a reward. These incentives have a real-world value and can be good or negative, but they must
be constrained. The agent can detect all conceivable states of the environment. According to
the Markov transition model, the likelihood of transitioning from state (s) to state (s') after
acting an A is solely determined by the current state, not by the history of previous states.
Based on specific needs represented by the reinforcement function, a policy for an agent of the
building management system to work on the HVAC system is obtained in these trials. Each
episode is divided into numerous time steps t, with the building management system deciding
on an action to adjust the temperature inside the building based on its policy at each step [43].
The goal of  applying the RL algorithm to the HVAC management  system is  to  conserve
energy  while  maintaining comfort,  the reward  function's  learning  aim must  account  for  a
trade-off between the two components of comfort and main energy consumed. 

4.3. Chiller Operation



The HVAC system considers for more than 50% of a building’s total energy usage, chilled
water chillers represent 30-40% of the energy used for this system. As a result, chillers must
be run properly to increase energy efficiency. The chiller operates based on the refrigeration
load for the building (i.e., appropriately switching chillers ON/OFF) [44]. Furthermore, most
chillers'  operation  strategies  necessitate  reliable  real-time monitored  cooling  water  system
data. Chiller operation techniques are occasionally designed to improve chiller COP to reduce
energy  consumption and improve chiller  efficiency.  It  is  possible to  clarify  the following
chiller operation strategies:

1. Chilled water is turned ON/OFF based on measured cooling load data.
2. The cooling limit of the chiller exceeds the refrigeration load by a large quantity, and

based on the building cooling load, the chillers are turned ON/OFF.

The flowchart in Fig. 4, is based on the case presented that consists of a large chiller with a
capacity of (4.0 Mw) and a small chiller with a capacity of (2.5 Mw), with the chiller capacity
dictated by the system load. In other cases, the chiller's ON/OFF alternately is to increases the
partial load and improves energy efficiency. The structure with two non-identical chillers is
depicted in the diagram. When one or more chillers are in use, another chiller should not be
turned ON/OFF unless load exceeds the system's cooling load.

a) If the cooling load of the building is lower than the limit of the chillers, all chillers
are switched off.

b) The  small  chiller  is  operated  with  a  capacity  (2.5MW)  if  the  load  exceeds  the
capacity of this chiller.

c) If the load exceeds the limit of the small chiller, it will be off and the large radiator
with a capacity (4.0MW) is turned on.

d) If the load exceeds the limit of the large chiller, all chillers will be operated when the
building load is at its peak.      



Fig. 4. Workflow of the proposed method.                                                                                 

4.4. Chiller sequencing control

The goal of chiller sequencing control is to save enough cooling to maintain building indoor
thermal comfort while maintaining chiller plant high energy efficiency.
Fig.  5,  depicts  the  chiller  sequencing  control  principle,  with  the  x-axis  representing  the
building's cooling load (CL), given by: 

                                                                           (30)

Where   is  the  calculated  cooling  load  (kW),   is  the  specific  thermal  capacity  of  water
(J/kg.°C),   is the measured chilled water flow rate (kg/s),  ,   are the chilled water return and
supply temperatures (°C) respectively.

Each chiller's  ON/OFF status should be regulated at the start of each time step. To identify
suitable ON/OFF signals, the following rules are used:

a) If the system cooling load is less than 1 chiller's rated cooling capability, the entire
central chilled water system is shut off.

b) The cooling load on the system determines the number of chillers necessary; when
the cooling load on the system exceeds the current cooling capacity, an extra chiller
is activated.



c) The ON/OFF case of the main chilled water pump is synchronized with the condition
of the chillers. When the chiller is turned ON/OFF, the principal chilled water pump
is also turned ON/OFF.

The first phase entails selecting the chiller(s) based on the chillers' cooling capacity (CC) and
cooling load. In this method, the chiller partial load rate (PLR) is maximized; the COP of
centrifugal chillers is also tuned because the PLR of centrifugal chillers increases with the
COP.

Fig. 5. The basic principle of chiller sequencing control.

The buildings inside temperature setpoints from 20 °C to 24 °C in the second step [44].  After
we built the control model-based for the airport building, which is the product of the equations
of the mathematical model, we found the thermal load signal for a whole day (24 hours) for
the multiple chillers. We take the signal for this load and build an RL-control on, it as it learns
the ON/OFF process for each chiller, the energy and temperature indication will be (state), and
the action represents the capacity of the two chillers (2.5 MW, 4.0 MW) respectively. If the
building load exceeds the capacity of the first chiller (2.5 MW), then RL-control will operate
the second chiller (4.0 MW) instead of the first chiller, and when the building’s load exceeds
the capacity of the second chiller at the peak, RL-control will operate the two chillers together
and thus the capacity of the two chillers is (6.5 MW). The reason for our use of more than one
chiller is to conserve the largest amount of energy possible and reduce the energy consumed,
while when operating a single chiller and with a high capacity while the building load is low,
it will be exposed to faults or damage.  

5 Results and Discussion

      The HVAC system is simulated under the supervision of a mathematical model, and the
performance  of  the  RL-controller  and  the  PID  controller  is  compared  by  turning  the
mismatched chillers ON/OFF every 30 minutes for 24 hours.
In Fig. 3, a full-day Airport system operation is simulated every half-hour for various chillers
under the management of model-based control. The model results were discussed in terms of



energy  consumption,  the  controller's  learning  process,  control  actions,  and  system  water
temperature, as well as the load equations for opaque, transparent surfaces, and slab floors,
which were used to computr the building cooling load for 24 hours using model-based control.
These calculated cooling load results were to know the temperatures, power, and energy inside
the building.

Fig. 6. Signals of Energy.

Figs.  6,  7,  and  8  represent  the  signals  (energy,  power,  indoor  and  outdoor  temperatures)
coming out of the Simulink, changing with time, for the model of chillers with capacities (2.5
MW, 4.0 MW, and 6.5MW) respectively.   
Where Fig. 6, represents the energy signals and it is dependent on the cooling coil, which is
the thermal loads of the airport building, where we see these loads and how they work with
temperature and time and will be within 24 hours. As Fig. 7, it represents the power signals of
the HVAC system, which is the electrical power that the system dissipates over time. Fig. 8,
represents the temperatures of the building, where we note that the indoor temp. is less than
the outdoor temperature, and in this case, the HVAC system will not work and the difference
in temperatures depends on the insulation of the building, walls, and others.

Fig. 7. Signals of Power.



Fig. 8. Signals of Indoor & Outdoor Temperature.

Fig. 9, illustrates the cases of reinforcement learning for indoor and outdoor temperatures (°C)
with time (hours). The black line represents the temperature outside the building and the red
line is  the temperature  inside the building,  which is  within the limits of  thermal  comfort,
which is between 20 °C to 24 °C. The chiller plant must remove the cooling load accumulated
throughout the night as well as the potential heat of the air conditioning system at the start of
the day, resulting in a tremendous load met by chillers. The chillers should be turned on/off at
the maximum energy-efficient point, which is usually less than 100 percent, according to the
chiller sequencing control. When the cooling load is plainly changing, this is fair for chiller
energy  efficiency.  In  comparison  with  Fig.  10,  where  the  reinforcement  learning  of  the
building's internal temperature using multiple HVAC systems, the traditional building control
proportional integral derivative (PID) was used for the HVAC system and it was within the
comfort limits of the building, but it was not stable compared with the reinforcement learning
when the ON/OFF control.
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Fig. 9. RL States of Outdoor & Indoor Temperature.
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Fig. 10. RL States of Outdoor & Indoor Temperature with PID Controller

As shown in Fig. 11, the performance comparison between the three control strategies for the
response step, is the reinforcement  learning for the energy-based multi-HVAC system, the
traditional  HVAC  system  with  the  controller  (PID)  in  addition  to  the  real  or  calculated
response to the building strength. After  comparing the performance,  we found that  saving
energy through the proposed controller is (45% ) from the traditional strategy.
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Fig. 12. Reinforcement Learning Control Action of the HVAC system.
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Fig. 13. Reinforcement Learning Control Action of Multi HVAC System.

In Fig. 12, illustrating the HVAC system reinforcement learning (RL) control action for the
cooling load profile (MW) and time (hours), use the reinforcement learning to perform the
control with the building cooling load. This action features temperature control by adjusting
the flow rate of the cooling coil water related to indoor/ outdoor temperature indication. The
law of control is also based on the "ON/OFF” algorithm. While in Fig. 13, represents a control
based RL for multiple HVAC systems with a conventional "PID" control strategy for a real or
computed  building  cooling  load.  HVAC  systems  varies  the  cooling  profile  (energy
consumption) and the reinforcement learning of the control procedure is calculated utilizing
iterative techniques in the "MATLAB code". During the day, energy consumption increases,
this indicates an increase in the number of chillers by 100%, especially at peak to improving
energy efficiency.
Fig.  14,  shows the  value  function  for  energy  saving  in  the  case  of  multi-chillers  system
operation. The RL control algorithm was trained using iterators in the MATLAB code for
states and actions to the maximum value using the reward function to build the value function
by applying the Bellman Eq. 30. After optimizing the value function, we chose the best value
to guarantee the control policy. In addition, when agent rewarded after taking action for each
time  step  of  control  depends  on  the  energy  and  temperature,  if  a  low  outdoor  temp.  is
maintained and to avoid punishing the agent for taking heavy action, there is no need to turn



on the chiller because it is considered energy consumption. For Fig. 15, consider the existing
analysis which represents the best function of the control policy for actions (0, 2.5, 4.0, and
6.5) to find the best suitable chiller for the building conditioning process and the best possible
efficiency. The best action applied to operate the chiller suitable for the building cooling load
is the best policy than calculating the maximum value function from the Bellman equation.
Therefore, the optimum energy efficiency for cooling the building is obtained when both small
and large chillers are operated.
In conclusion, the reinforcement learning control technique suggested in this work has the
potential  to  conserve  more  energy.  Furthermore,  the  proposed  strategy's  energy-saving
effectiveness can be increased while maintaining internal thermal comfort. As a result,  the
proposed technique can slightly shorten the operating duration of the tiny chiller by removing
certain superfluous starting activities.

Fig. 14. Optimal value function.

Fig. 15. Best policy function.

6 Conclusion



         This  study  demonstrated  a  modelling  technique  for  HVAC  systems  using  the
MATLAB/Simulink  platform,  as  well  as  the  use  of  the  RL-controller  strategy  to  rise  the
energy efficiency of cooling load. To control the multi-chillers system, an ideal model-based
control strategy has been developed.  In this method, energy and temperature are the states,
chillers capacities are the actions, and the reward is energy savings, chilled water pumps, and
chillers.  A  model-based  simulation  is  performed  under  the  supervision  of  a  white  box
(mathematical model). The simulation results for 24 hours indicate that the proposed energy
and power controller (RL-Controller) can save 45% of the energy compared to the traditional
PID controller. This limited application in an airport terminal model cooling plant using non-
identical chillers; it takes a whole day to simulate the operation of the whole system which is
controlled every half hour by the proposed reinforcement learning control strategy. Where the
reinforcement learning control (RL-control) system for multiple chillers can improve system
stability  and  energy  efficiency.  Hence,  it  is  concluded  the  method  can  lower  the  energy
consumption of the building, which is acceptable for engineering applications.
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