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Abstract. Recognition of pulse repetition interval modulation (PRI) of a radar signal is important. It helps 

in identifying the radar’s functional purpose and assists in emitter identification. This paper discusses two 

methods, the gate time pulse method and feature extraction, used for PRI modulation recognition. These 

features are based on both sequential and statistical information of the pulse intervals. The extracted 

features can be used for emitter recognition by feeding the information in a neural network. 
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1. Introduction 

Advances in the radar technology result in the usage of complicated radar waveforms. The radar 

signal uses various pulse repetition frequencies (PRF) and is altered either intentionally or 

unintentionally. Measurement of the pulse repetition frequency provides information about the 

purpose of the radar. This forms an important step in electronic support (ES) receivers. The obtained 

information is further processed for emitter identification in radar intercept receivers. Modern radars 

are employed in secret operations during crisis and in electronic warfare. This increases the need for 

emitter identification having no prior knowledge of the transmitted waveform, to understand the 

radar’s purpose. Emitter identification helps in identifying possible threats from enemy and thus 

forms a necessary first step to counter the enemy threat emitters [2]. Previous methods for emitter 

recognition include passing the sorted pulse train and a delayed version through a coincident circuit. 

Another method uses the time of arrival of the incoming pulses while another method using 

autocorrelation function is discussed in [8]. All these methods are computationally very complex 

and result in overloading of the processor. Blanking is used in emitter recognition in a dense 

environment where pulses related to a particular emitter are blanked once that emitter has been 

recognized. Most of the radar waveforms can be classified in 6 major modulations types either fully 

or piece by piece fashion namely constant, staggered, jittered, sliding, dwell and switch and periodic 

PRI [1]. These different PRIs can be described using the function 

𝐹(𝑛) =  𝑡𝑛+1 − 𝑡𝑛 = 𝑥𝑛,       𝑓𝑜𝑟 𝑛 = 1,2, … 𝑁 − 1 

Where, 𝑡𝑛+1 − 𝑡𝑛 defined the time of arrival and 𝑥𝑛 is the pulse repetition interval.  Fig. 1 illustrates 

the same for all the six types of modulation PRIs. Jittered PRI here describes the random intentional 

variation of the PRI, and is different from unintentional PRI variation due to radar transmitters and 

receivers. 
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Figure 1a) Constant, b) Stagger, c) Jittered, d) Sliding, e) Dwell and Switch, and f) Periodic PRI. 

PRI recognition is done by using statistical properties like a histogram. This method however requires 

a high number of pulses and also loses the sequential properties of the waveform. Another difficulty 

faced with histogram-based PRI recognition is with choosing the right detection threshold and bin width. 

Also, histogram-based methods can identify constant, staggered and jittered PRI. Waveform recognition 

based on the sequence of the PRI is also done in [3] using a neural network classifier. 

This study aims to recognize all the mentioned PRI waveforms with arbitrary modulation parameters 

automatically. Here, 5 different features are chosen based on either statistical properties or the sequential 

properties of the waveform and a multi-layer perceptron (MLP) classifier is used. A pulse sorter is used 

along with time of arrival method and simulations are performed considering the noisy signal 

environment [6].  

However, in practical radars, the PRI is often varied to overcome blind speed in moving target indicator 

(MTI) and for anti-jamming techniques. The discussed method deems unfit for use in case of variable 

PRI methods and in dense environments [2]. Thus, for emitter recognition, gate time interval method is 

discussed which works well for variable PRI as well as in dense environments. Also, the computational 

complexity for this method is less than the feature selection method using neural network. 

 

2. Feature Selection 

Feature selection refers to selecting a unique quantifier to differential the waveforms amongst 

themselves. These features should provide good separation capability for waveforms of different class 

while maintaining invariability with parameter variation within the same category. Also, the computation 

required to calculate the selected features should be less so as to maintain real-time emitter identification. 

5 features are selected based on statistical and sequential information of the pulses and scaled between 

0-1. 

2.1 Features based on statistical properties  

Histogram-based PRI modulation recognition works well for constant, staggered and dwell and switch 

PRI but is complicated for periodic, jittered and sliding PRI as the histogram is based on the bin widths. 

The peak detection used in the histogram is very sensitive. 
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Figure 2: Removing the effect of unintentional jitter 

The unintentional jitter causes the pulse peak to leak into adjacent bin widths. Thus, the new technique 

is used in which the histogram bins are defined to include the unintentional jitter given by: 

𝑝𝑛 = 2. 𝑝. 𝑥𝑛  

Where, 𝑝 represents the maximum expected unintentional jitter and 𝑥𝑛 is the bin width. In this 

method, the pulses are sorted in ascending order and pulses belonging to the respective bins including 

the tolerances are collected. Fig. 2 shows the traditional histogram and the updated histogram for dwell 

and switch PRI. Unintentional jitter is seen in fig. 2a. An outliner is also seen which is due to a missing 

pulse. While in fig. 2b, the pulses are sorted and leaked pulses are also collected based on the maximum 

expected unintentional jitter. 

Feature 1: Single histogram peak 

Single histogram peak is the ratio of second highest peak and the highest peak in the modified 

histogram. It defines the amount of constant PRI present and is given by: 

𝑓1 =
𝑛𝑚𝑎𝑥−1

𝑛𝑚𝑎𝑥

 

Where, 𝑛𝑚𝑎𝑥 is the highest peak and 𝑛𝑚𝑎𝑥−1 is the second highest peak. The single histogram peak 

value for constant PRI is small. This is because the constant PRI consists of single strong peak in the 

histogram thus making 𝑛𝑚𝑎𝑥value very high and low 𝑛𝑚𝑎𝑥−1. Thus, this feature is used to distinguish 

constant PRI waveform from other waveforms. 

 Feature 2: Stable sum 

Stable sum uses the sequential difference histogram (SDIF) to calculate higher order histograms [7]. 

In a 𝑘𝑡ℎlevel histogram, where 𝑘 is the difference level, consisting of N pulses, the number of intervals 

is given by 

𝑀𝑘 = 𝑁 − 𝑘 − 1 

In this, the value of 𝑘 is varied and highest peak of these histograms are recorded. A high value of 

single peak as compared to others indicated presence of periodic pulse train. Thus, for this feature, the 

ratio of the highest peak to the total pulse intervals is calculated. This is given by: 

𝑓2 = max(𝑁𝑚𝑎𝑥
𝑘 𝑀𝑘⁄ )       𝑘 = 2,3 … 𝑘𝑚𝑎𝑥 

Where, 𝑘𝑚𝑎𝑥 is the highest difference level and 𝑁𝑚𝑎𝑥
𝑘  is the highest histogram value for given 𝑘. 

Stable sum is used to differentiate periodic waveforms from non-periodic waveforms. As seen from fig. 

[1] That staggered waveform is periodic while PRI in jittered waveform is random, hence, stable sum is 

used to differential between them. 

 

A. Features based on sequential information 
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Histogram-based features lead to ambiguity while separating all the discussed PRI waveforms. 

Therefore, new features are discussed. These features are based on the sequential information of the 

pulses. Eq. 1 is differentiated resulting in second difference time of arrival (TOA) [5] 

𝑧𝑛 = 𝑥𝑛+1 − 𝑥𝑛 ,        𝑛 = 1,2, … . 𝑁 − 2 

As the information required is the ordering of the pulses, therefore, above equation is transformed to 

a signum function as 

𝑠 = 𝑠𝑔𝑛(𝑧) 

Where,  

𝑠𝑔𝑛(𝑧𝑛) = {

−1        𝑓𝑜𝑟 𝑧𝑛 < −𝜖𝑛

0             𝑓𝑜𝑟 |𝑧𝑛| ≤ −𝜖𝑛

+1          𝑓𝑜𝑟 𝑧𝑛 > 𝜖𝑛  
 

Where, 𝜖𝑛 is the tolerance level for different bin widths 

Feature 3: Pulse interval changes 

Pulse interval changes is used to distinguish the stable pulse interval waveforms from those having 

continuous changes in pulse intervals. The feature is defined as the ratio of the amount of pulse interval 

changes with the number of pulses. 

𝑓3 = ∑
|𝑠𝑘|

𝑁 − 2

𝑁−2

𝑘=1

 

Where, 𝑠𝑘 is the 𝑘 − 𝑡ℎ element in vector s 

Feature 4: Directional pulse interval change 

To distinguish the pulses in which the pulse interval change either increases or decreases, i.e., changes 

in one direction only, this feature is used. It is given by: 

𝑓4 =
|∑ 𝑆𝑘

𝑁−2
𝑘=1 |

𝑁 − 2
⁄  

As seen from fig. 1, siding pulse waveform has pulse interval change in one direction only, increasing 

here, this feature is used to distinguish this waveform from others and has a high value for sliding PRI  

type waveform. 

Feature 5: Local extrema of pulse intervals 

In case, the pulse waveform has many local maxima and minima, this feature can be used. In this 

feature, the signum function is differentiated as: 

ℎ𝑘 = 𝑠𝑘+1 − 𝑠𝑘 ,      𝑘 = 1,2, … … 𝑁 − 3 

And the feature is given by: 

𝑓5 =
∑ |𝑠𝑔𝑛(ℎ𝑘)|𝑁−3

𝑘=1
𝑁 − 3

⁄  

Pulses with many local maxima and minima will have a higher value of this feature as compared to 

other pulses which do not have many local maxima and minima. As seen in fig. 1, staggered and jittered 

pulse waveform has many local maxima and minima, hence, is used to distinguish them from other 

waveform types. 

 

3. Limitations and Classification Capability  

It is assumed that the environment is constant during the observation period. Dwell and switch PRI 

type cannot be distinguished from constant PRI if less than one stage is simulated. Therefore, in case of 

Dwell and switch, two stages of stable pulse interval are simulated. Also, periodic PRIs having 

observation time less than one modulation period are not simulated.  
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Figure 3: Features and their values for different 

Fig. 3 shows the probability distribution for different features discussed above for all the mentioned 

waveforms. The features which do not overlap are able to distinguish the modulation type without any 

ambiguity.  

 
Figure 4: Separation capability of the features 

Table in figure 4 shows the performance of the features for different types of modulation PRI. The 

values given are 0,1 and X. The features with value 0 provide good separation from features with value 

0. And X essentially means it doesn’t provide good feature separation.  For eg, feature 1 has value 1 for 

all waveform type but constant PRI. Thus, this feature can be used to distinguish constant PRI type 

waveform [6]. Thus, it can be said that the selected features either individually or collectively can be 

used to identify the PRI modulation type and ultimately for emitter recognition. 

I. GATE TIME METHOD 
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In this method, the waveform data is first collected for the given observation period, T, which is then 

divided into gate intervals, 𝜏. The number of pulses occurring in the given gate pulse is recorded. After 

this, the relative frequency of the pulses in the gate interval is calculated as shown: 

𝑥𝑡 = 𝑛𝑡 − 𝑛𝑚𝑖𝑛  

Where, 𝑛𝑡 is the number of pulses in gate interval 𝑡 and 𝑛𝑚𝑖𝑛 is the minimum number of pulses 

recorded in any gate interval during the observation period. This recorded relative pulse gives 

information about the waveform type. Also, in the case of the dense environment, i.e. in the case of 

multiple emitters, the recorded pulses are found to be of the order of the number of emitters. 

The discussed method is a probabilistic method where the probability of occurrence of states are 

found and compared. The computational complexity offered using this method is less compared to the 

TOA method [4]. Here, it is assumed that the environment is kept constant during the observation period 

and the pulses are unsynchronized to consider a realistic scenario. A case of fixed PRI and variable will 

be discussed in detail below. 

II. EMITTERS WITH FIXED PRI 

In case of fixed PRI, the gate time, 𝜏, is selected as: 

𝑊𝑧 < 𝜏 < (𝑊 + 1)𝑧 

Where, 𝑧 is the PRI and 𝑊 represents a non negative integer. Let us assume the time from gate pulse 

to pulse starting time be 𝜃𝑡. Now, consider a case where PRI is given by 1.2 and gate pulse as shown. In 

this case, the values are given in table 

 
Figure 5: Gate time and pulse start time for fixed PRI 

Thus, it can be seen that 𝑥𝑡 = 0 if 0 < 𝜃𝑡 < 𝜏 − 𝑤𝑧 and 𝑥𝑡 = 1 if 𝜏 − 𝑤𝑧 < 𝜃𝑡 ≤ 𝑧 

 

In this case, the states for 𝑥𝑡 is 0 and 1 with probabilities, 

𝑝0 =
(𝑤 + 1)𝑧 − 𝜏

𝑧
 𝑎𝑛𝑑 𝑝1 =

𝜏 − 𝑊𝑧

𝑧
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Dense environment 

Considering K fixed PRI emitters, the state value is given by 𝑥𝑡 = {0,1,2 … . 𝑘} where 𝑘 = 𝑁𝑚𝑎𝑥 −
𝑁𝑚𝑖𝑛. In this case, the probabilities of the states 𝑝𝑗

𝑘,  where j is the state value and k is the number of 

emitters is given in terms of 𝑝0
𝑘 as: 

 

Thus, for fixed PRI, in case of dense environment, each possible state will have a fixed probability 

and thus can be identified using maximum likelihood by observing the sequence of 𝑥𝑡 

4. Emitters with Variable PRI 
In case of single emitter, the number of states can be more than 2 depending on the gate time and 

type of emitter. Using the similar approach as of fig. [4], The probabilities of different states for 2 stagger 

waveforms having PRI, 𝑧1 𝑎𝑛𝑑 𝑧2 is found shown in fig. [5]. The gate time is considered to be less than 

both PRI and  𝑧1 <  𝑧2 
 

 
Figure 6: Probability of state for variable PRI 

Similar results can be found for 3 stagger waveform and above and are discussed in [3]. The results of 

state probability for fixed PRI and 2 stagger variable PRI can be used to find the state probability for 

different PRI for different gate time intervals. And using the appropriate probability density function, the 

state probability of any PRI can be found. 
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Figure 7: Probabilities for PRI recognition and parameter identification 

In the case of a dense environment, i.e. when many emitters are present, the estimation is similar as 

discussed above. The probabilities of different states are estimated, the polynomial coefficient can be 

estimated, which in turn helps in finding the number of emitters and emitter parameters like 𝜏, 𝑧, 𝑎, 𝑏 

5. PRI Type Recognition and Parameters Estimation 
Another important step in emitter identification is PRI recognition and estimation of 

parameters(𝜏, 𝑧). In this, the state probabilities are calculated considering: 

𝜏 < 𝑎, 𝜏 =
𝑎+𝑏

2
 𝑎𝑛𝑑 𝜏 = 𝑎 + 𝑏. 

The calculated probabilities are compared with standard results shown in fig. [7] for PRI estimation. 

Once the type of PRI is estimated, which is then furthered into parameter estimation using maximum 

likelihood. It first checks for fixed PRI, then 2 position stagger and finally uniform PRI. It faces difficulty 

in estimating uniform and sinusoidal PRI variations.  

6. Adaptive Identification and Pulse Identification 

In identifying when any new emitter starts transmitting, it is assumed that the emitter starts or stops 

transmitting one by one. In this case, the polynomial before the change in emitter behavior is considered 

known and the polynomial after emitter state change is calculated. Then comparing both the polynomial, 

before emitter state change and after state change, the emitter type is recognized. In this way, the 

computational burden in greatly reduced.  

Another important step is the detection of any new overlapping pulses. In this case, the IF signal is 

calculated and is seen that whenever a new pulse starts or stops, there is a sharp change in IF signal 

amplitude and phase. However, a detector to detect this change is very costly. Therefore, a combination 

of band pass filters and logic gate switch pulse detector is used. In this, if there are two overlapping 

pulses, it will be seen as two pulses at the pulse counter detector. 

 

7. Limitation and Detection Capability 

In emitter recognition using probabilistic method, for accurate estimates made from maximum 

likelihood, the zeroes of the polynomial should be real. Also, it is seen that correct estimates are made 

for a longer observation period. It is also seen that the value of 𝜏 for which the maximum value of 

discriminant of a polynomial is obtained, provides the best result for emitter recognition. However, it is 

seen that instead of finding the roots of the polynomial, the adaptive approach works better for PRI 

identification and estimating other parameters. 

8. Conclusion 
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Waveform recognition or emitter recognition forms a challenging problem especially if time domain 

agility is present. Automatic recognition of waveform is essential to take timely measures. Here, 

recognition is done based on PRI modulation. 5 features are discussed based on statistical and sequential 

properties of the signal. A multi-layer perceptron neural network was formed for validating the separation 

performance of the features. It is seen that the selected features can distinguish very well between 

constant, dwell and switch, jittered, staggered, periodic, sliding-type PRIs. Hence, the selected features 

along with the application of neural networks work fine for emitter recognition. The discussed approach 

however doesn’t work for variable PRI and in a dense environment. 

The gate time method discussed above is an adaptive method and adapts itself with changes in the 

environment. Also, this method doesn’t involve any searches for features and this provides a lower 

computational burden. Thus, this method allows emitter with time agility to be recognized with high 

accuracy even in a dense environment at a reasonable cost. 
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